1	Variations of the 630.0 nm airglow emission with meridional
2	neutral wind and neutral temperature around midnight
3	Chih-Yu Chiang ¹ , Sunny Wing-Yee Tam ¹ , Tzu-Fang Chang ^{1,2}
4	¹ Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan
5	70101, Taiwan
6	² Institute for Space-Earth Environmental Research, Nagoya University, Nagoya

7 464-8601, Japan

8 Abstract

9 The ISUAL payload onboard the FORMOSAT-2 satellite has often observed 10 airglow bright spots around midnight at equatorial latitudes. Such features had been 11 suggested as the signature of thermospheric midnight temperature maximum (MTM) 12 effect, which was associated with temperature and meridional neutral winds. This 13 study investigates the influence of neutral temperature and meridional neutral wind on 14 the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to 15 simulate the charged and neutral species at the 630.0 nm nightglow emission layer 16 under different temperatures with and without the effect of neutral wind. The results 17 show that the neutral wind is more efficient than temperature variation in affecting the 18 nightglow emission rates. However, the emission rate features a local maximum in its 19 variation with the temperature. Two kinds of tendencies can be seen regarding the 20 temperature that corresponds to the turning point, which is named the turning 21 temperature (T_t) in this study: firstly, T_t decreases with the emission rate for the same 22 altitude; secondly, for approximately the same emission rate, T_t increases with the 23 altitude.

24

25

1. Introduction

28	The atomic oxygen red line at 630.0 nm is the most prominent emission in the
29	nighttime ionosphere. It usually forms an emission layer in the F region at altitudes of
30	~200-300 km and can be easily observed from ground-based observatories or
31	satellites [Nelson and Cogger, 1971; Kelley et al., 2002; Thuillier et al., 2002]. The
32	emission is related to $O(^{1}D)$, whose production in the nighttime is mainly via the
33	charge exchange and dissociative chemical processes listed as follows:
34	$O^+ + O_2 \rightarrow O_2^+ + O$ (1)
35	$O_2^+ + e^- \rightarrow O(^1D) + O$ (2)
36	$O(^{1}D) \rightarrow O(^{3}P) + hv(630.0 \text{ nm})$ (3)
37	Based on the $[O^+] \sim N_e$ (electron density) approximation [<i>Peterson et al.</i> , 1966;
38	Link and Cogger, 1988] in the F2 region, the intensity of the OI(¹ D) 630.0 nm spectral
38 39	<i>Link and Cogger</i> , 1988] in the F2 region, the intensity of the OI(¹ D) 630.0 nm spectral line is usually used to identify the ionospheric electron density variations. From a rich
39	line is usually used to identify the ionospheric electron density variations. From a rich
39 40	line is usually used to identify the ionospheric electron density variations. From a rich history in the literature, the intensity of OI(¹ D) 630.0 nm airglow emissions is known
394041	line is usually used to identify the ionospheric electron density variations. From a rich history in the literature, the intensity of OI(¹ D) 630.0 nm airglow emissions is known as Midnight Brightness Wave (MBW) [<i>Herrero and Meriwether</i> , 1980; <i>Herrero et al.</i> ,
39404142	line is usually used to identify the ionospheric electron density variations. From a rich history in the literature, the intensity of OI(¹ D) 630.0 nm airglow emissions is known as Midnight Brightness Wave (MBW) [<i>Herrero and Meriwether</i> , 1980; <i>Herrero et al.</i> , 1993; <i>Colerico et al.</i> , 1996; <i>Colerico and Mendillo</i> , 2002].

46	The cases in their studies were observed by the incoherent scatter radar from Arecibo
47	and the NATE experiment aboard the Atmospheric Explorer E (AE-E) satellite,
48	respectively. The amplitude of the temperature bulge was found to range from 20 to
49	200 K [Spencer et al., 1979; Burnside et al., 1981; Colerico and Mendillo, 2002;
50	Meriwether et al., 2008]. In addition, a number of studies about midnight brightness
51	have reported the relation between <i>in-situ</i> temperature and neutral wind measurements
52	[e.g., Herrero and Meriwether, 1980; Sastri et al., 1994, Colerico et al., 1996, 2002;
53	Otsuka et al., 2003; Mukherjee et al., 2006]. Rajesh et al. [2009] showed the first
54	results of the limb image of 630.0 nm airglow using Imager of Sprites and Upper
55	Atmospheric Lightning (ISUAL) [Chang et al., 2012; Chiang et al., 2013; Frey et al.,
56	2016] on board the FORMOSAT-2 satellite. Adachi et al. [2010] also showed a
57	14-day time span of airglow observations obtained from the Asian sector by ISUAL.
58	On the basis of the observation time and location, they suggested that the equatorial
59	airglow probably corresponded to the midnight brightening wave (MBW) which is in
60	association with the occurrence of MTM. Furthermore, Chiang et al. [2013]
61	statistically investigated the global midnight brightness according to seasons and
62	found that the global midnight brightness near the equatorial regions was controlled
63	by different mechanisms. In the study, the features and behavior of the 630.0 nm
64	midnight intensity were investigated by analyzing the optical images obtained by

65	ISUAL. Cases of global midnight brightness were successfully categorized into four
66	types that were mainly due to the influence of temperature changes, neutral wind and
67	ionospheric anomaly.
68	Based on the previous studies, it is known that temperature and meridional
69	neutral wind are correlated and associated with manifestations of MTM. Thus, we
70	want to discuss these two effects at the same time. In this study, we calculate the volume
71	emission rates to understand the influence of neutral temperature and meridional
72	neutral wind on the 630.0 nm nightglow. We shall discuss the sensitivities of the
73	emission rates to the temperature and the densities of several neutral and charged
74	species. Moreover, some new features will also be shown in the discussion section.
75	And we also provide ISUAL observation results to show that our calculation results
76	are reasonable and realistic.
77	
78	2. Model features
79	Temperature changes and meridional neutral wind can influence the O(¹ D)
80	nightglow intensity through particle densities. The volume emission rate of the 630.0
81	nm nightglow in the F2 region [Sobral et al., 1993] can be derived from the chemical
82	process of 630.0 nm nightglow (Supplement I). It is shown as follows:

83
$$I_{630} = \frac{A_{1D}\mu_D\gamma[0_2][0^+]}{k_1[N_2] + k_2[0_2] + k_3[0] + A_{1D} + A_{2D}} , \qquad (4)$$

84	where μ_D is the quantum yield of O(¹ D), which is about 1~1.3 [<i>Torr and Torr</i> , 1982];
85	γ is the rate coefficient of Reaction (1) [<i>StMaurice and Torr</i> , 1978]; k_1 , k_2 and k_3 are
86	the rate coefficients of $O(^{1}D)$ quenched by N_{2} , O_{2} and O , respectively [Langford et al.,
87	1986; Streit et al., 1976; Sun and Dalgarno, 1992]; and A_{1D} and A_{2D} are the transition
88	coefficients [Froese-Fischer and Saha, 1983]. The formulas for the rate coefficients
89	[Vlasov et al., 2005] are listed in Table 1. The production rate of O(¹ D) is contributed
90	by the oxygen ion density $[O^+]$ and the molecular oxygen density $[O_2]$ through the
91	linked reactions (1) and (2). The major loss rates of $O(^{1}D)$ are associated with the
92	densities of molecular oxygen [O ₂], molecular nitrogen [N ₂], and atomic oxygen [O],
93	as reflected in Eq. (4). The densities $[O^+]$, $[O_2]$, $[N_2]$ and $[O]$ and the rate coefficients
94	γ , k_1 , k_2 and k_3 all depend on temperature. In addition, [O ⁺] may change with the
95	neutral wind conditions. In order to determine I_{630} under different temperatures and
96	neutral wind conditions, one must first determine the densities of the relevant species.
97	In this study, [O ⁺] and plasma temperatures under various conditions are found by the
98	SAMI2 model of the Naval Research Lab [Huba et al., 2000]. SAMI2 is a two-
99	dimensional, first-principle model of the comprehensive low to mid-latitude
100	ionosphere. SAMI2 code includes most of the mechanisms that should be considered
101	in the ionosphere. There are photoionizations, chemical process, effects by the
102	magnetic and electric fields, plasma dynamics and the influence from the neutral

103 atmosphere. The input variables, neutral species, are specified using the empirical 104 codes, the Mass Spectrometer Incoherent Scatter model (NRLMSISE-00) [*Picone et* 105 *al.*, 2002] for neutral densities and the Horizontal Wind Model (HWM-93) [*Hedin et* 106 *al.*, 1996] for neutral wind. The continuity and momentum equations of seven ion 107 species (H⁺, He⁺, N⁺, O⁺, N₂⁺, NO⁺, and O₂⁺) are solved in the code.

108 In order to understand the differences due to the meridional neutral wind, we apply the SAMI2 model with and without neutral wind by changing the multiplicative 109 110 factor of neutral wind (tvn0) to see the differences between two solstices. Thus, we 111 simulate the cases of February 1, 2007 (northern winter) and August 1, 2007 (northern 112 summer). In the simulations, we suppose that the solar and geomagnetic activities are 113 in quiet conditions (F10.7 index = 60, Ap index = 7). The simulations are run for the 114 altitude range between 150 and 1000 km from -30° to $+30^{\circ}$ geomagnetic latitudes. 115 Inside this region, we use 100 geomagnetic field lines and 201 grid points along each field line. Our report of the results will focus on the locations at -5° and $+5^{\circ}$ 116 geomagnetic latitude ($+2^{\circ}$ and $+12^{\circ}$ geographic latitude respectively) along the 100°E 117 118 geographic longitude, which intersects these latitudes in the Asian region. Figure 1 119 shows the O⁺ density along the magnetic lines with altitudes between 150 and 315 km in the latitude-altitude plane at the time and longitude described above. Figure 1(a) 120 121 shows the results under the condition that lacks neutral wind, and Fig. 1(b) shows the

122	results with the effect of normal neutral wind. The two left panels are for February 1,
123	2007 and the two right panels are for August 1, 2007. The arrows plotted in Fig. 1(b)
124	indicate the strength and directions of the meridional neutral wind. Comparison of Fig.
125	1(a) and 1(b) clearly shows that meridional winds transport the plasma along the
126	magnetic field line and change the plasma density distribution. And this change of the
127	plasma profile could directly modify the emission rate in Eq. (4). The dashed lines,
128	which correspond to $\pm 5^{\circ}$ geomagnetic latitude, indicate the locations where the
129	intensity of the 630.0 nm nightglow is examined in detail in this study.

131 **3. Results and Analysis**

132 Based on Eq. (4), I₆₃₀ under different temperatures and different neutral wind 133 conditions is plotted in Fig. 2. The neutral wind conditions for the results in Fig. 2 are 134 the same as those for Fig. 1. The strength and directions of the neutral winds are indicated by the arrows shown in Fig. 1. The simulation results shown in the figure 135 136 are for (a) February 1, 2007 and (b) August 1, 2007, with the left and right panels respectively corresponding to -5° and $+5^{\circ}$ geomagnetic latitude. The letters, A, B, C, 137 D and E, indicate the altitudes of 220, 230, 240, 250 and 260 km, respectively. The 138 139 dotted lines indicate the results with normal neutral wind effect; the solid lines 140 indicate the results without neutral wind effect. Note that the temperatures of around 141 650 K, corresponding to the leftmost points of the lines in the figure, were the initial 142 neutral temperatures obtained from the NRLMSISE-00 model at the various altitudes. 143 These neutral temperatures are input into the SAMI2 model, and we set up the 144 48-hour data as a running loop to obtain the plasma data. In order to explore the 145 effects of temperature change, we modify the codes of SAMI2 by increasing 50 K per 146 run as the inputs, and perform the simulations to calculate the emission intensity 147 values associated with different temperature conditions.

148 From Fig. 2, we can see the influence of temperature and neutral wind on the 149 nightglow emission. Note that the neutral wind conditions are as in Fig. 1: Fig. 1(a) 150 for zero wind condition and Fig. 1(b) for normal wind condition. The influence of the 151 temperature variations on I_{630} is usually less than 3 photons/cm³/sec at the heights of 152 220 to 260 km. The variation of I_{630} with temperature, however, is not monotonic; 153 there is a maximum in the intensity as the temperature changes. In terms of height, as 154 I_{630} depends on the local neutral and charged particle densities in accordance with Eq. (4), the emission is the strongest at 230 km, except for the condition of very weak 155 emission (< 1 photon/cm³/sec) that occurs at $+5^{\circ}$ geomagnetic latitude in August with 156 157 normal wind effect (right panel of Fig. 2(b)).

As for the influence of the neutral wind on February 1, 2007 (Fig. 2(a)), both locations ($\pm 5^{\circ}$ geomagnetic latitude) clearly feature significantly smaller I_{630} under

160 this effect. We suggest that this is due to the meridional neutral wind blowing 161 equatorward in both hemispheres (see Fig. 1) and pushing the plasma upward along 162 the field lines, reducing the local charged particle densities and consequently the 163 emission rates as well. On August 1, 2007, as shown in Fig. 2(b), the neutral wind causes the intensity at $+5^{\circ}$ geomagnetic latitude to decrease significantly for the same 164 reason as the wind direction is locally southward (equatorward). This southward 165 neutral wind, however, has an opposite effect on the intensity at -5° geomagnetic 166 latitude; being locally poleward, the wind pushes the plasma downward along the 167 field lines, increasing the local charged particle densities and consequently the 168 169 emission rates as well.

170 From Eq. (4), we can see that I_{630} is related to the densities of several neutral 171 species as well. In order to find out how the temperature affects the overall chemical 172 process that leads to the 630.0 nm emission, a few relevant parameters are shown as 173 functions of temperature in Fig. 3, based on the condition at 230 km altitude and -5° 174 geomagnetic latitude on February 1, 2007. In Fig. 3(a), the $O(^{1}D)$ loss-rate terms associated with [O], [N₂] and [O₂], are shown in dotted, dashed and solid lines 175 176 respectively. The term γ [O⁺][O₂], which is related to the O(¹D) production rate and is in the numerator of Eq. (4), is plotted in Fig. 3(b). The dotted line represents the 177 178 normal neutral wind condition, and the solid line for the windless condition.

180 **4. Discussion**

From Fig. 1(a), we can see that along the field lines, the O^+ density is maximum around the geomagnetic equator when there is no neutral wind, whether it is in the summer or winter season. But the $[O^+]$ maxima tilt to the winter hemisphere in the presence of summer-to-winter neutral wind at the geomagnetic equator, as shown in Fig. 1(b). Therefore, we suggest that the low-latitude emission enhancement in the winter hemisphere be achieved by plasma accumulation brought about by the summer-to-winter neutral wind.

188 From the results that include the normal wind effect as shown in Fig. 2, the 189 intensities on opposite sides of the geomagnetic equator are very different. The 190 weaker emission is in the summer hemisphere, and brightness of higher intensity 191 appears in the winter hemisphere. In previous studies, *Rishbeth and Setty* [1961] 192 found that NmF2 was larger in winter than in summer, and they first suggested the possibility of composition change being the cause of the winter anomaly. Rishbeth 193 194 [1972] and Torr and Torr [1973] suggested that the anomaly might be due to 195 transequatorial neutral wind blowing from the summer hemisphere to the winter hemisphere. Therefore, the enhancement of the emission at the low latitudes of the 196 197 winter hemisphere should be the results of plasma accumulation caused by the neutral 198 wind effect.

199 Figure 2 shows the influence of temperature and neutral wind on the nightglow 200 emission rates. We estimate the intensity change under different neutral wind conditions based on the location at 230 km altitude and -5° geomagnetic latitude on 201 202 February 1, 2007. In this situation, the emission would be reduced by the wind flow, and the average change is about 0.690 photon/cm³/sec for every m/sec of the wind 203 speed. In comparison, the change due to temperature variation is just 0.015 204 205 photon/cm³/sec for every K. The ratio of the two numbers is 46. Consideration of 206 other conditions, such as those cases shown in Fig. 2, may reduce the corresponding 207 ratio, but it should still be at least 20. According to earlier studies, the neutral wind 208 speed is generally 0-300 m/sec in the F region [Dyson et al., 1997], while the 209 amplitude of the temperature bulge due to the MTM effect has been found to range 210 from 20 to 200 K [Burnside et al., 1981; Colerico and Mendillo, 2002]. Even if one 211 assumes the maximum wind speed is just 60 m/sec as in the simulations in this study, 212 it would require a temperature change of 1200 K to match the same change in 213 emission intensity caused by the neutral wind. Such a large temperature change is not 214 realistic in comparison with the maximum observed difference of 200 K. Thus, the 215 emission rate of nightglow, realistically, is influenced more by the neutral wind than 216 temperature change when the former mechanism is clearly present.

217	The densities and some of the rate coefficients are temperature dependent, as
218	given in Eq. (4). We analyze the change with temperature of the individual terms in
219	Eq. (4). In Fig. 3(a) and Fig. 3(b), we plot the terms in the numerator and denominator
220	on the right-hand side of Eq. (4) and find that all these terms increase with
221	temperature. However, if we consider the derivative of the terms with respect to
222	temperature, which characterizes how sensitive the terms are to temperature change,
223	we notice that the derivatives for $k_1[N_2]$ and $k_3[O]$ increase with temperature while
224	those for $k_2[O_2]$ and $\gamma [O^+][O_2]$ decrease, as shown in Fig. 3(a) and 3(b). How the
225	variations of these terms affect the dependence of I_{630} on temperature can now be
226	understood from the right-hand side of Eq. (4). In particular, the numerator, which
227	characterizes the production rate of O(¹ D) and is proportional to γ [O ⁺][O ₂],
228	increases with temperature while featuring a relatively large increase at lower
229	temperatures (less than ~750 K). On the other hand, the denominator, which
230	characterizes the total loss rate of O(¹ D) and is dominated by $k_1[N_2]$ as Fig. 3(a)
231	indicates, features a relatively large increase at higher temperatures (larger than ~750
232	K). Upon division of the numerator by the denominator, the plot of I_{630} vs.
233	temperature is thus characterized by quasi-parabolic lines with the presence of a local
234	maximum or a turning point in the curve as shown in Fig. 2. We refer to the
235	temperature that corresponds to such a local maximum as the turning temperature (T _t).

236	Below T_t , I_{630} increases with temperature, meaning that the increase in the production
237	of $O(^{1}D)$ associated with a rise in the temperature is more efficient than the increase in
238	its loss. In contrast, I_{630} decreases with temperature above T _t , meaning that the
239	increase in the production of $O(^1D)$ associated with a rise in the temperature is less
240	efficient than the increase in its loss. Thus, T_t has the significance of being the
241	temperature at which the production and loss rates of O(¹ D) are equally sensitive to a
242	temperature change.
243	In order to quantitatively describe the effects of neutral temperature and
243 244	In order to quantitatively describe the effects of neutral temperature and meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the
244	meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the
244 245	meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the volume emission rate along the altitude. Figure 4(a) and 4(b) show how the integrated
244 245 246	meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the volume emission rate along the altitude. Figure 4(a) and 4(b) show how the integrated emission rates vary with the increasing neutral temperature and neutral winds,

250
$$S = (0.1354 \pm 0.0069)(\Delta T) - (4.6835 \pm 0.2652) \times 10^{-4} (\Delta T)^2,$$

where S (km/(cm³ * s)) is the change in integrated emission rate and ΔT (K) is the increase in neutral temperature, compared with the standard conditions of 650 K neutral temperature and zero neutral wind. Fig. 4(b) shows the result regarding the integrated emission rate as affected by neutral wind. The results are obtained based on the same standard conditions as those considered in Fig. 4(a). The curve in red fits anexponential function :

257	$S = (64.8883 \pm 0.7772) \times \{1 - \exp[-(0.0885 \pm 0.0041)(\Delta W)]\},\$
258	where S (km/(cm ³ * s)) is the change in integrated emission rate and ΔW (m/s)
259	is the change in neutral wind velocity. Therefore, we combine the results of the two
260	fitting functions to approximate the overall change in the integrated emission rate due
261	to the two effects:
262	$S = 0.1354(\Delta T) - 4.6835 \times 10^{-4} (\Delta T)^2 + 64.8883[1 - \exp(-0.0885(\Delta W))],$
263	Based on the function, we can quantitatively compare the neutral temperature effect
264	with the neutral wind effect. In Fig. 4(a), the maximum change of the integrated
265	emission rate by increasing the neutral temperature is 9.7859 $(km/(cm^3 * s))$ at 145
266	K. To get the same changes of the emission rate by varying the neutral wind, it just
267	requires a neutral wind velocity of 1.85 m/s. Above such a velocity, the neutral wind
268	effect would certainly be larger than that of the neutral temperature for this case.
269	Figure 5 shows a plot of T_t versus the emission rate I_{630} at specific altitudes. The
270	results include all the cases shown in Fig. 2 with different symbols indicating different
271	altitudes. Two kinds of tendencies can be seen from the plot: firstly, T_t decreases with

272 I_{630} for the same altitude; secondly, for approximately the same emission rate, T_t

273 increases with the altitude. This is the first result to show these tendencies of the

turning temperature.

275 Observations have found cases that are consistent with our simulation results 276 regarding the influence of the neutral wind. Figure 6 shows four cases observed by ISUAL in the Asian region at 23:00 local time during the two months considered in 277 278 our studies: two cases in February shown on the left side and two cases in August shown on the right side. Figure 6(a) would be for the condition of no wind or weak 279 wind while Fig. 6(b) would correspond to the normal wind condition. We can see 280 281 from Fig. 6(a) that a bright spot of nightglow was observed at the geomagnetic 282 equator during both months. As the volume emission rate, according to Eq. (4), is 283 proportional to the O^+ density, the observations were supportive of the simulation 284 results of density variations in Fig. 1(a). Similarly, the two cases in Fig. 6(b), which 285 featured nightglow bright spots in the winter hemisphere, suggested that the density 286 variations shown in Fig. 1(b) are realistic.

Previously, *Chiang* et al. [2013] examined the occurrence rates of global midnight brightness observed by ISUAL. In order to verify the enhancement of the emission intensity in the winter hemisphere by the neutral wind, we examined the ISUAL data that correspond to the specific regions and seasons considered in our simulations and the results are shown in Fig. 7(a) and (b). We found that among the 22 valid observation days during January and February, ~77% of the days featured the

293	appearance of nightglow bright spots in the low-latitude region of the winter
294	hemisphere (Fig. 7(a)). Furthermore, ~83% of the 30 valid observation days during
295	July-August also featured nightglow bright spots at low latitudes in the corresponding
296	winter hemisphere (Fig. 7(b)). Thus, statistical results regarding the location of
297	nightglow bright spots agree with the simulation results that demonstrate the crucial
298	role of the neutral wind in affecting the location of high-intensity nightglow regions.
299	Rajesh et al. [2014] showed their simulation results and claimed that using
300	merely the background meridional winds could reproduce the observed brightness.
301	They selected a few cases of ISUAL image data and compared those data with the
302	simulation results by the SAMI2 model. Nevertheless, using such a method by Rajesh
303	et al. [2014], one should be very careful about the details when it comes to physical
304	insights or conclusions drawn from the study. This is because ISUAL only provided
305	optical data and there was not any instrument on the satellite to directly observe the
306	relevant conditions (temperature, wind field, etc.) in the environment. Without such
307	observations to provide constraints for modeling, one can easily reproduce
308	similar-looking results of selected short-period data by adjusting modeling parameters
309	in simulations. However, images seemingly similar to that of an ISUAL observation
310	could be produced from simulation results using considerably different parameter
311	values, which may correspond to different dominant mechanisms. Thus, when there

are few constraints for the parameter values, roughly comparing a short-period case of
ISUAL image data with simulation results without paying attention to details may
lead to an interpretation of brightness production mechanisms that is different from
the real situation.

316 Observations of the movement of MTM temperature bulge and that of nightglow have led to postulations of an association between pressure bulge and nightglow 317 318 intensity [Colerico et al., 1996; Colerico and Mendillo, 2002; Meriwether et al., 319 2008]. However, the high intensities of the observed nightglow have not been 320 successfully reproduced using existing models incorporating the MTM effect, such as 321 the NCAR thermosphere-ionosphere-electrodynamic general circulation model 322 (TIEGCM), as pointed out by Colerico and Mendillo [2002] and Meriwether et al. 323 [2008]. Note that temperature was not included as a varying quantity in traditional 324 ionospheric models. Thus the simulation study of temperature effect upon nightglow 325 intensity is lacking. Our simulation results have demonstrated the unexpectedly non-monotonic dependence of the intensity of nightglow on the neutral temperature, 326 327 with the turning temperature T_t that arises from the dependence implying a limitation 328 for the growth of the emission rates. As the temperature increases above T_t , the emission rates do not continue to grow. In fact, temperature change such as in the case 329 330 of heat transfer is affected by the density, which controls the heat capacity. At the 331 same time, temperature change may generate pressure difference and lead to transport 332 that changes density profiles. As nightglow intensity depends also on particle densities, 333 its non-monotonic variations with temperature are in fact due to the combination of temperature and density. While our study suggests that neutral wind is the dominant 334 335 driver of the I_{630} variation, its influence, however, is via transportation of plasma and neutral particles, in which case consideration of the effect of temperature on the 336 density is essential. Moreover, it has not been established that MTM is affected by the 337 338 wind primarily. The combination of temperature and density, which has shown to 339 cause non-monotonic results in this study, may very well be an important factor in the 340 study of MTM. Thus, if one wants to fully reproduce the observation results, we 341 suggest other extra factors associated with temperature variations should also be 342 considered, such as different tidal modes from lower atmosphere [Akmaev et al., 343 2009]. Our findings of the turning temperature tendencies can help as a guide for 344 choosing the background temperature in future modeling attempts to obtain intensities 345 of nightglow brightness comparable to those observed from ground or from space. Shepherd [2016] investigates the possible extent of the MTM at ~ $20^{\circ}N-40^{\circ}N$, 346 347 considering O(1D) airglow volume emission rates, Doppler temperatures, and neutral wind (zonal and meridional) observations by the Wind Imaging Interferometer 348 349 (WINDII) experiment on board the Upper Atmosphere Research Satellite (UARS).

Their results provide us the relations of the zonal wind to the O(1D) emission rate and of the meridional wind to the temperature. Such relations potentially guide us to design a more extensive future study in simulation so as to reproduce the observation and statistical results by *Shepherd* [2016].

354

355 **5. Conclusion**

356 Previous studies of the MTM effect have pointed out that the temperature 357 anomaly influences the nighttime behavior of the thermosphere. And the neutral wind 358 also plays a key role to cause the intensity variations in the nighttime ionosphere. 359 Based on our simulation results, both temperature change and meridional neutral wind 360 could cause the 630.0 nm nightglow intensity to vary while the latter is more effective. 361 And the simulation results may successfully explain most of the observational results 362 by ISUAL. An unexpected aspect of the results is the non-monotonic dependence of 363 the emission rate on temperature, featuring a turning point as the temperature changes. The temperature T_t at which the turning point occurs corresponds to a balanced 364 condition between the production and loss of $O(^{1}D)$. Thus, our results help understand 365 366 how the overall chemical process of nightglow is affected by the variations of neutral temperature and neutral wind. Two kinds of tendencies can be seen regarding the 367 368 turning temperature T_t . One is the higher T_t corresponding to higher altitude at the

369	same emission rate, the other is the higher T_t corresponding to lower emission rate at
370	the same altitude. Our findings of these turning temperature tendencies can guide
371	future modeling attempts to match the observed nightglow brightness intensities.
372	
373	Acknowledgements
374	The authors acknowledge the FORMOSAT-2/ISUAL science and operator team
375	to provide image data (http://sprite.phys.ncku.edu.tw/en/about-cdf-distribution). The
376	work by C. Y. Chiang and S. W. Y. Tam is supported by Taiwan's Ministry of Science
377	and Technology grants MOST105-2111-M-006-007. T. F. Chang acknowledges
378	support by the Ministry of Education, Taiwan R.O.C., from The Aim for the Top
379	University Project to National Cheng Kung University.
380	
381	
382	
383	
384	
385	
386	
387	

388 References

389	Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, CC. Hsiao, A. B. Chen,
390	and RR. Hsu (2010), Midnight latitude-altitude distribution of 630-nm airglow
391	in the Asian sector measured with FORMOSAT-2/ISUAL, J. Geophys. Res.,
392	doi:10.1029/2009JA015147.
393	Akmaev, R. A., F. Wu, T. J. Fuller-Rowell, and H. Wang (2009), Midnight
394	temperature maximum (MTM) in Whole Atmosphere Model (WAM)
395	simulations, Geophys. Res. Lett., 36, L07108, doi:10.1029/ 2009GL037759.
396	Burnside, R. G., F. A. Herrero, J. W. Meriwether Jr., and J. C. G. Walker (1981),
397	Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res.,
398	86, 5532.
399	Chang, T. F., C. Z. Cheng, C. Y. Chiang, and A. B. Chen (2012), Behavior of substorm
400	auroral arcs and Pi2 waves: Implication for the kinetic ballooning instability,
401	Ann. Geophys., 30, 911–926, doi:10.5194/angeo-30-911-2012.
402	Chiang, C. Y., T. F. Chang, S. WY. Tam, T. Y. Huang, A. BC. Chen, H. T. Su, and R.
403	R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of
404	brightness measured by ISUAL. Terr. Atmos. Ocean. Sci., 24, 283-293, doi:
405	10.3319/TAO.2012.12.13.01(SEC)

406 Colerico, M., M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick,

407	B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi (1996), Coordinated
408	measurements of F region dynamic related to the thermospheric midnight
409	temperature maximum, J. Geophys. Res., 101, 26,783–26,793.
410	Colerico, M. J., and M. Mendillo (2002), The current state of investigations regarding
411	the thermospheric midnight temperature maximum (MTM), J. Atmos. Sol. Terr.
412	<i>Phys.</i> , 64, 1361–1369.
413	Dyson, P. L., T. P. Davies, M. L. Parkinson, A. J. Reeves, P. G. Richards, and C. E.
414	Fairchild (1997), Thermospheric neutral winds at southern mid-latitudes: A
415	comparison of optical and ionosonde hmF2 methods, J. Geophys. Res.,
416	102(A12), 27189–27196, doi:10.1029/97JA02138.
417	Frey, H. U., et al. (2016), The Imager for Sprites and Upper Atmospheric Lightning
418	(ISUAL), J. Geophys. Res. Space Physics, 121, 8134-8145,
419	doi:10.1002/2016JA022616.
420	Froese-Fischer, C., and H. P. Saha (1983), Multiconfiguration Hartree-Fock results
421	with Breit-Pauli corrections for forbidden transitions in the 2p4 configuration,
422	Phys. Rev. A, 28, 3169–3178.
423	Harper, R. M. (1973), Nighttime meridional neutral winds near 350 km at low to
424	mid-latitudes, J. Atmos. Terr. Phys., 35, 2023-2034.

425 Hedin, A.E., E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J.

426	Franke, G.J. Fraser, T. Tsuda, F. Vial, and R.A. Vincent (1996), Empirical wind
427	model for the upper, middle, and lower atmosphere, J. Atmos. Terr. Phys., 58,
428	1421-1447.
429	Herrero, F. A., and J. W. Meriwether Jr. (1980), 6300 airglow meridional intensity
430	gradients, J. Geophys. Res., 85, 4191.
431	Herrero, F. A., N. W. Spencer, and H. G. Mayr (1993), Thermosphere and F-region
432	plasma dynamics in the equatorial region, Adv. Space Res., 13(1), 201–220.
433	Huba, J. D., G. Joyce, and J. A. Fedder (2000), Sami2 is another model of the
434	ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res.,
435	105, 23,035–23,053.
436	Kelley, M. C., J. J. Makela, B. M. Ledvina, and P. M. Kintner (2002), Observations of
437	equatorial spread F from Haleakala, Hawaii, Geophys. Res. Lett., 29(20), 2003,
438	doi:10.1029/2002GL015509.
439	Langford, A. O., V. M. Bierbaum, and S. R. Leone (1986), Branching ratios for
440	electronically excited oxygen atoms formed in the reaction of N+ with O2 at
441	300 K, J. Chem. Phys., 84, 2158–2166.
442	Link, R., and L. L. Cogger (1988), A reexamination of the OI 6300 Å nightglow, J.
443	Geophys. Res., 93(A9), 9883-9892.
444	Meriwether, J., Faivre, M., Fesen, C., Sherwood, P., and Veliz, O (2008), New results

on equatorial thermospheric winds and the midnight temperature maximum,

- 446 Ann. Geophys., 26, 447–466.
- 447 Mukherjee, G. K., N. Parihar, K. Niranjan, and G. Manju (2006), Signature of
- 448 midnight temperature maximum (MTM) using OI 630 nm airglow, *Indian J.*449 *Radio Space Phys.*, 35,14–21.
- 450 Nelson, G. J., and L. L. Cogger (1971), Dynamical behavior of the nighttime
- 451 ionosphere at Arecibo, J. Atmos. Terr. Phys., 33, 1711 1726,
 452 doi:10.1016/0021-9169(71)90219-4.
- 453 Otsuka, Y., T. Kadota, K. Shiokawa, T. Ogawa, S. Kawamura, S. Fukao, and S.-R.
- 454 Zhang (2003), Optical and radio measurements of a 630-nm airglow
- 455 enhancement over Japan on 9 September 1999, J. Geophys. Res., 108(A6), 1252,
- 456 doi:10.1029/2002JA009594.
- 457 Peterson, V. L., T. E. Van Zandt, and R. B. Norton (1966), F-region nightglow
- 458 emissions of atomic oxygen, 1. Theory, J. Geophys. Res., 71, 2255-2265.
- 459 Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00
- 460 empirical model of the atmosphere: Statistical comparisons and scientific issues,
- 461 J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430
- 462 Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C.
- 463 H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee (2009), First results of the limb

464	imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper
465	Atmospheric Lightnings, J. Geophys. Res., 114, A10302,
466	doi:10.1029/2009JA014087.
467	Rajesh, P. K., C. H. Chen, C. H. Lin, J. Y. Liu, J. D. Huba, A. B. Chen, R. R. Hsu, and
468	Y. T. Chen (2014), Low-latitude midnight brightness in 630.0 nm limb
469	observations by FORMOSAT-2/ISUAL, J. Geophys. Res. Space Physics,
470	4894–4904, 119, doi:10.1002/2014JA019927.
471	Rishbeth, H., and C. S. G. K. Setty (1961), The F layer at sunrise, J. Atmos. Terr.
472	Phys., 20, 263-267.
473	Rishbeth, H. (1972), Thermospheric winds and the F-region – A review, J. Atmos. Terr.
474	<i>Phys.</i> , 34, 1.
475	Sastri, J. H., H. N. R. Rao, V. V. Somayajulu, and H. Chandra, Thermospheric winds
476	associated with equatorial midnight temperature maximum (MTM), Geophys.
477	<i>Res. Lett</i> , 21 , 825, 1994.
478	Shepherd, M. G. (2016), WINDII observations of thermospheric O(1D) nightglow
479	emission rates, temperature, and wind: 1. The northern hemisphere midnight
480	temperature maximum and the wave 4, J. Geophys. Res. Space Physics, 121,
481	doi:10.1002/2016JA022703.
482	Sobral, J. H.A., H. Takahashi, M. A. Abdu, P. Muralikrishna, Y. Sahai, C. J. Zamlutti,

483	E. R. de Paula, and P. P. Batista (1993), Determination of the quenching rate of
484	the $O(^{1}D)$ by $O(^{3}D)$ from rocket-borne optical (630 nm) and electron density
485	data, J. Geophys. Res., 98, 7791-7798.
486	Spencer, N. W., C. R. Carignan, H. G. Mayr, H. B. Niemann, R. F. Theis, and L. E.
487	Wharton (1979), The midnight temperature maximum in the Earth's equatorial
488	thermosphere, Geophys. Res. Lett., 6, 444.
489	St. Maurice, J. P., D. G. Tort, Nonthermal rate coefficients in the ionosphere: The
490	reactions of O_2^+ with N_2 , O_2 , and NO, J. Geophys. Res., 83, 969, 1978.
491	Streit, G. E., C. J. Howard, A. L. Schmeltekopf, J. J. A. Davidson, and H. I. Schiff
492	(1976), Temperature dependence of O(1D) rate constants for reactions with O2,
493	N2, CO2, O3 and H2O, J. Chem. Phys., 65, 4761–4764.
494	Sun, Y., and A. Dalgarno (1992), Collisional excitation of metastable O(1D) atoms, J.
495	Chem. Phys., 96, 5017–5019.
496	Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble (2002), Photochemistry
497	and dynamics in thermospheric intertropical arcs measured by the WIND
498	Imaging Interferometer on board UARS: A comparison with TIE-GCM
499	simulations, J. Atmos. Sol. Terr. Phys., 64, 405– 415,
500	doi:10.1016/S1364-6826(01)00109-2.

501 Torr, M. R. and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the

502 ionosphere, J. Atmos. Terr. Phys., 35, 2237.

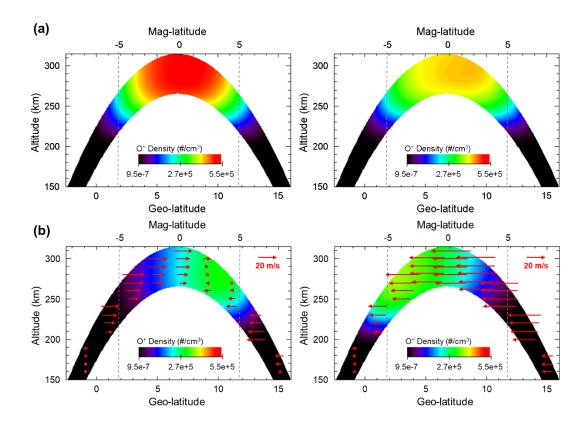
503	Torr,	M.	R.	and D.	G.	Torr	(1982), The	role	of	metastable	species	in	the
504		ther	mos	phere, Ra	ev. G	Geophy	s. and Space	Phys.,	20,	91–144.			

- 505 Vlasov, M. N., M. J. Nicolls, M. C. Kelley, S. M. Smith, N. Aponte, and S. A.
- 506 Gonzalez (2005), Modeling of airglow and ionospheric parameters at Arecibo
- 507 during quiet and disturbed periods in October, 2002, J. Geophys. Res., 110,
- 508 A07303, doi:10.1029/2005JA011074.

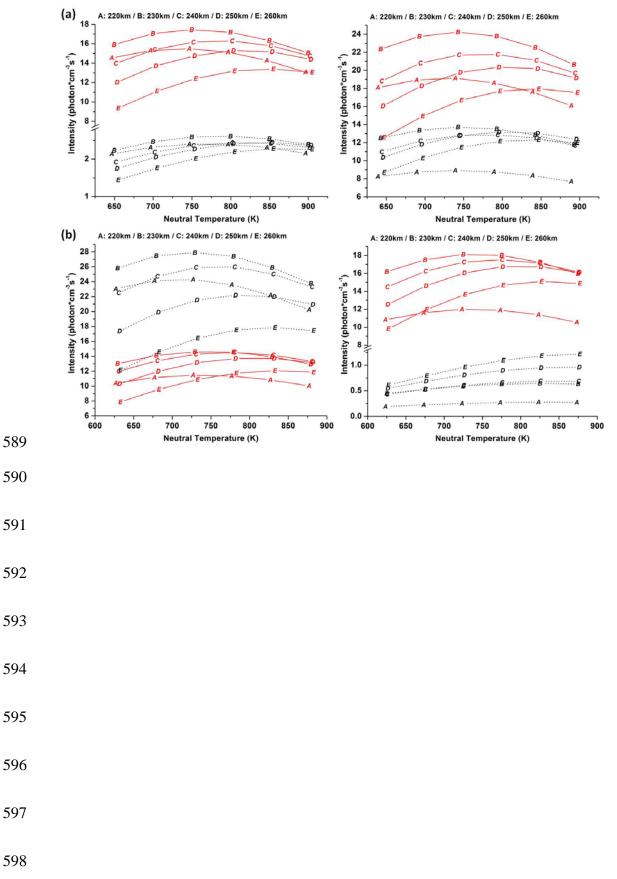
- 521 Table 1. Reactions and rate coefficients related to the volume emission rate of the
- 522 630.0 nm airglow

	Reactions	Rate Coefficients (cm ³ s ⁻¹ , s ⁻¹)
	$O^+ + O_2 \rightarrow O_2^+ + O$	$\gamma = 2.82 \times 10^{-11} - 7.74 \times 10^{-12} (T_{eff}/300) + 1.07 \times 10^{-12} (T_{eff}/300)^2 - 10^{-12} (T_$
		$5.17{\times}10^{-14}(T_{eff}/300)^3{+}9.65{\times}10^{-16}(T_{eff}/300)^4$
	$O(^1D) + N_2 \rightarrow O + N_2$	$k_I = 2 \times 10^{-11} \exp(107.8/\mathrm{T_n})$
	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$	$k_2 = 2.9 \times 10^{-11} \exp(67.5/T_n)$
	$O(^{1}D) + O \rightarrow O + O$	$k_3 = (3.73 + 1.1965 \times 10^{-1} \text{ T}_n^{0.5} - 6.5898 \times 10^{-4} \text{ T}_n) \times 10^{-12}$
	$O(^{1}D) \rightarrow O + hv(630.0nm)$	$A_{1D} = 7.1 \times 10^{-3}$
	$O(^{1}D) \rightarrow O + hv(634.4nm)$	$A_{2D} = 2.2 \times 10^{-3}$
523	Note: $T_{eff} = 0.67T_i + 0.33T_n$ (7)	Γ_{eff} : effective temperature, T_i : ion temperature, T_n : neutral
524	temperature) [StMaurice and	d Torr, 1978]
525		
525		
526		
527		
528		
529		
530		
501		
531		
532		
552		
533		
000		
534		
535		
536		
537		

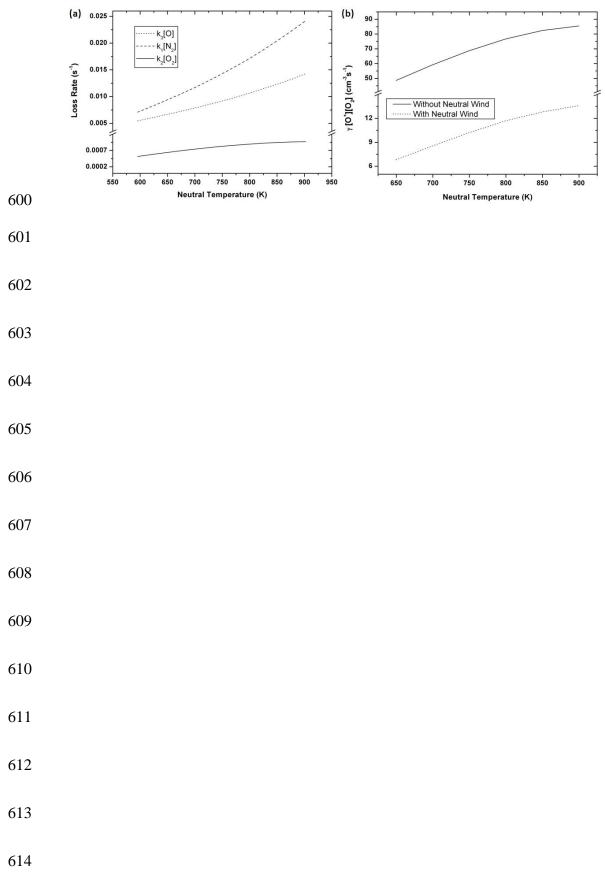
Figure Captions 538

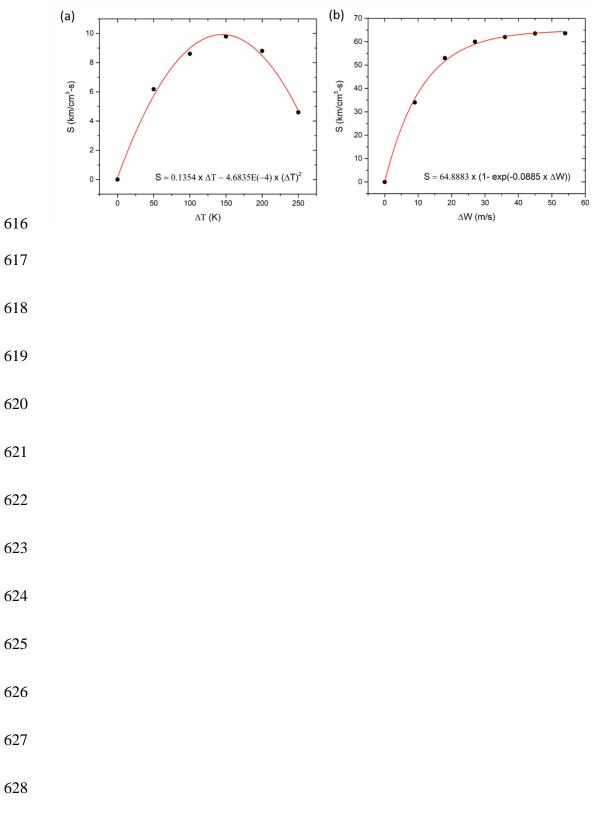

539	Figure 1. Oxygen ion density plotted in the latitude-altitude plane at 23:00 LT on
540	February 1, 2007 (left panels) and August 1, 2007 (right panels) in the Asian
541	region (100°E longitude) from the SAMI-2 model: (a) without neutral wind; (b)
542	with the effect of normal neutral wind, whose strength and directions are
543	indicated by the arrows.
544	Figure 2. The results of 630.0 nm emission rate at 23 LT at different temperatures and
545	under different neutral wind conditions for (a) February 1, 2007 and (b) August
546	1, 2007: left and right panels respectively for -5° and $+5^{\circ}$ geomagnetic latitude;
547	the letters, A, B, C, D and E, for the altitudes of 220 km, 230 km, 240 km, 250
548	km and 260 km, respectively; for normal neutral wind effect (black dotted lines)
549	and windless conditions (red solid lines). The neutral wind conditions of Fig. 2
550	are the same as those shown in Fig. 1.
551	Figure 3. Profiles of the terms in Eq. (4) that are associated with neutral and charged
552	species versus temperature, based on 230 km altitude and -5° geomagnetic
553	latitude on February 1, 2007, with and without neutral wind: (a) the loss-rate
554	terms associated with [O], [N ₂] and [O ₂]; (b) the production-rate term γ
555	$[O^+][O_2].$

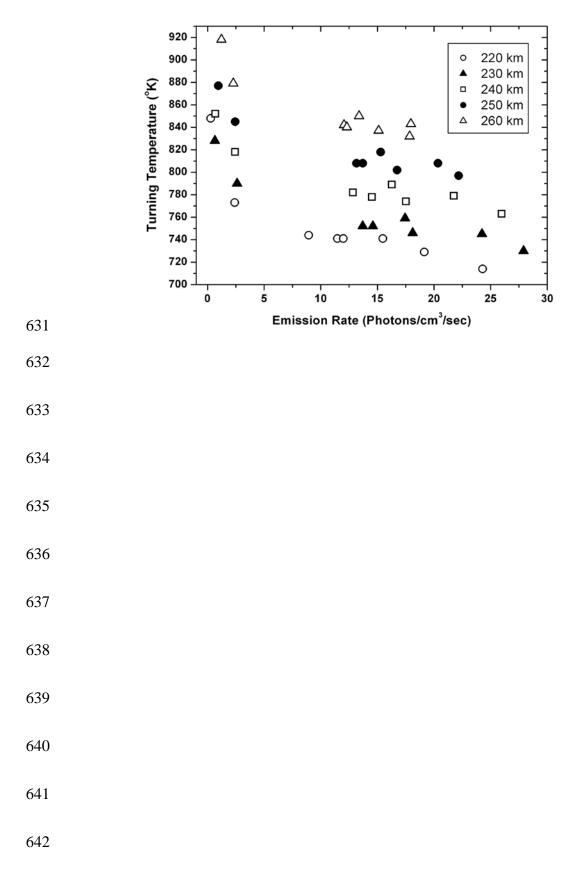
556 Figure 4. Quantitative results for how (a) the neutral temperature and (b) the neutral

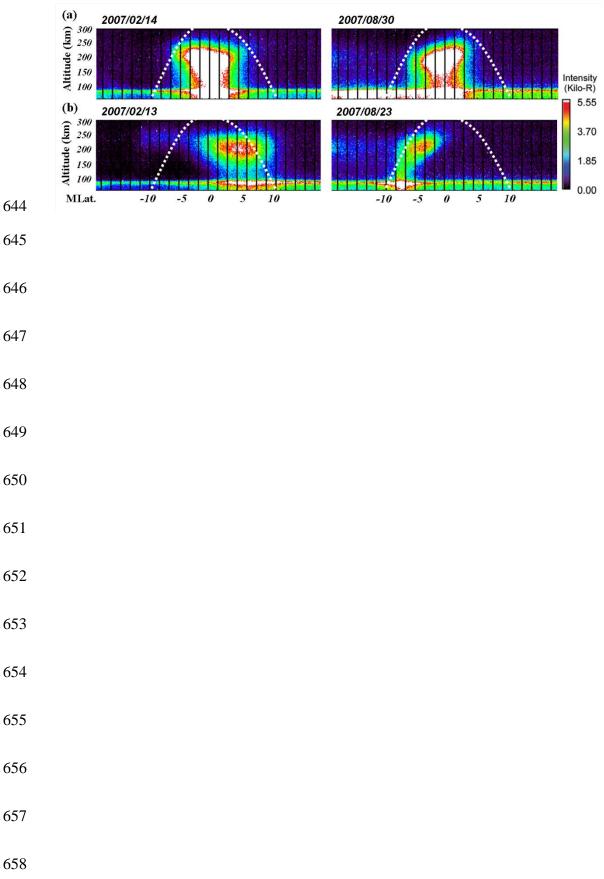

- 557 wind affect the 630-nm airglow intensity.
- 558 Figure 5. Plots of the emission rates against the turning temperature between 220-260
- 559 km altitudes.
- 560 Figure 6. Four observation cases by ISUAL in February 2007 and August 2007 (the
- same periods as shown in Fig. 1).
- 562 Figure 7. ISUAL data in the specific regions and seasons considered in the
- 563 simulations: the nightglow bright spots in valid observation days during (a)
- 564 January-February and (b) July-August.
- 565
- 566
- 567
- 568
- 569
- 570

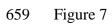
- 571
- 572
- 573
- 574
- 575

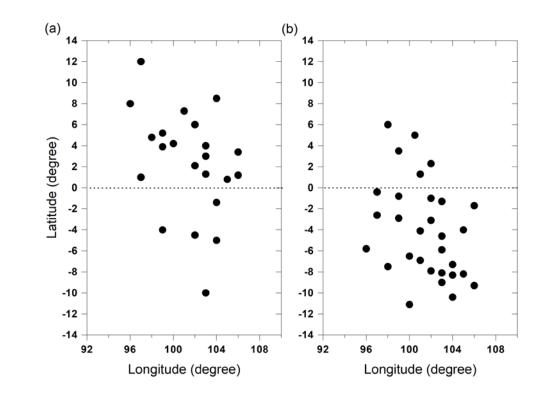





- - -







643 Figure 6

