Reply to the 1st review report of "Variation of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight" by Chiang et al.

Incorporating the previous reviewer's comments, the manuscript has been revised. This paper could contribute to studies of the ionospheric dynamics and disturbances. Consequently, this paper is worth publishing in this journal. However, this reviewer recommends the authors to address the following minor comments.

We would like to thank Referee #1 for recognizing the contribution of our work to studies of the ionospheric dynamics and disturbances. In the revised manuscript we have tried to consider all the suggestions and comments that were raised. Here we reply to the Referee #1's comments accordingly as follows.

-- Abstract and conclusion:

It would be better to describe how largely the temperature variation contributes to the airglow intensity variations compared to the effect of the neutral winds.

We thank Referee#1 for providing the suggestions. Based on our estimation, it would require a temperature change of 145 K to produce a change in the integrated emission rate by 9.8 km-photons/cm³/sec, while it only needs the neutral wind velocity to change by 1.85 m/sec to cause the same change in the integrated emission rate. We have added these descriptions in abstract and conclusion session.

-- LL. 65-67,

"Cases of global midnight brightness were successfully categorized into four types that were mainly due to the influence of temperature changes, neutral wind and ionospheric anomaly.": The authors mention that there are "four types" at l. 65, but only three types are explained at ll. 65-66. According to Chiang et al. [2013], the remaining one type is "no airglow intensity enhancement". This reviewer recommends the authors to change "four types" to "three types" in this manuscript, and also add a word "enhancement" at the part describing "global midnight brightness" to describe apparently enhancement of the 630-nm airglow intensity.

Thank Referee#1 for providing the suggestion. We have revised it in Line 65. And we also use "enhancement of global midnight brightness" to describe apparently enhancement of the 630-nm airglow intensity in Line 66.

-- LL. 250 and 257

Unit of "S" can be described as Rayleigh, defined as a column emission rate of 10¹⁰

photons per square meter per column per second.

We thank Referee#1 for providing the suggestion. The Referee#2 raised the unit issue too and suggested that we regard "km-photons/cm³/sec" as the unit of the volume emission rate change (Δ S). Because the unit of the intensity in Fig. 2 is "photons/cm³/sec", it is more consistent to consider "km-photons/cm³/sec" the unit of Δ S in Fig. 4. We think it is easier for readers to understand them.

-- Figure 3a shows neutral temperature dependence of k_3[O], k_1[N2], and k_2[O2]. It is useful for the reader to describe the temperature dependences of coefficients (k_3, k_1, and k_2) and densities ([O], [N2], and [O2]) separately to show each contribution to the temperature dependence of the volume emission rate. When the neutral temperature increases from 660 K to 900 K, k_1 and k_2 decrease by 6% and 4%, respectively, and k_3 increases by 7%. Therefore, it is found that temperature dependence of the three parameters shown in Figure 3a (k_3[O], k_1[N2], and k_2[O2]) are mainly ascribed to that of the atomic and molecular densities ([O], [N2], and [O2]), and that the coefficients (k_3, k_1, and k_2) does not change significantly.

Thanks for Referee #1's nice suggestions. We have added the new Fig. 3(a) and 3(c) to show the particle densities separately. So in this manuscript the rate coefficients $(k_1, k_2 \text{ and } k_3)$ and the densities of [O], [N₂] and [O₂] show each contribution to the temperature dependence of the volume emission rate. We also added new descriptions in the "Results and Analysis" session in Lines 180-186.

-- Last comment of the previous review report
L. 916, Figure 2 --> Figure 3
was a mistake by this reviewer. This reviewer apologize the authors.

We thank Referee #1for reviewing the manuscript.

Reply to the 2nd review report of "Variation of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight" by Chiang et al.

The 2nd review of "Variation of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight" by Chiang et al.

Summary: The authors have addressed all my previous concerns thoroughly and the content has been improved distinctively. However, the unit of the integrated emission rate sounds incorrect, and the relevant content is blurry. Given the interesting finding in the turning point of the temperature against the volume emission rate, **this work is worth to consider for publication after the substantial revision.**

According to the explanation in Section 4, I am trying to ,the change $(S_{\Delta T} \text{ and } S_{\Delta W})$ in the integrated emission rate along the altitude h in the temperature and the neutral wind can be write down as below,

$$S_{\Delta T}(h) = R_2(T_2, h) - R_1(T_1, h) = \int_0^h I(T_2, z) dz - \int_0^h I(T_1, z) dz$$

Where R_1 and R_2 are the Integrated emission rate with respect to temperature T_1 and T_2 .

$$S_{\Delta W}(h) = R_2(W_2, h) - R_1(W_1, h) = \int_0^h I(W_2, z) dz - \int_0^h I(W_1, z) dz$$

Where R_1 and R_2 are the Integrated emission rate with respect to neutral wind W_1 and W_2 . Combine the both temperatures and neutral winds, the change of the integrated emission rate along the altitude h becomes

$$S_{\Delta T,\Delta W}(h) = R_2(T_2, W_2, h) - R_1(T_1, W_1, h) = \int_0^h I(T_2, W_2, z) dz - \int_0^h I(T_1, W_1, z) dz$$

We thank Referee #2 for providing the constructive comments. These comments made by Referee #2 significantly help us improve the explanation of our calculations on the emission rates in different temperature and neutral wind conditions. Therefore, we have incorporated Referee #2's comment in this manuscript (Lines 253-267). We also take into account Referee#2's other comments and revised the manuscript accordingly. Here we reply to the Referee #2's comments accordingly as follows.

Major points:

1. The unit of the change of the integrated emission rate appears to be incorrect. It should be in the same of the volume emission rate (photons/ cm^3/s) multiplied by a length unit, more

specifically, km- photons/ cm^3/s .

We are sorry that we did not write down "photons" in the unit in the previous manuscript. We thank the Referee#2 and we have revised them in this manuscript.

2. Line 264-267: "The maximum change of the integrated emission rate by increasing the neutral temperature is at 145 K." I am confused by the sentence. As my understanding, Figure 4 (a) is the change of the temperature verses the change of the integrated emission rate. However, the sentence is telling me that it is the change of the integrated emission rate in the certain temperature (145 K). Could you elaborate which parameters are actually compared in Figure 4?

We are sorry that our previous sentences about the neutral temperature are not clear enough. The "145 K" in the article is the temperature change (Δ T). We have revised the sentences in Lines 289-293.

3. If my understanding is correct,

$$S_{\Delta T}(h) = R_2(T_2, h) - R_1(T_1, h) = \int_0^h I(T_2, z) dz - \int_0^h I(T_1, z) dz$$

We need a fixed h to make ΔT -S plot, but the authors did not mention any altitude dependence with respect to Figure 4, so this is unclear to me what is the physical meaning of Figure 4?

As mentioned earlier, we have incorporated Referee #2's comment to improve the explanation of our calculations on the emission rates in different temperature and neutral wind conditions (Lines 253-267). We also provided the altitude information in Lines 268-271. From Fig. 4(a), increasing the neutral temperature by about 145 K leads to the maximum change of the integrated emission rate of 9.7859 km-photons/cm³/sec. In contrast, to get the same changes of the emission rate by varying the neutral wind, it just requires a change of neutral wind velocity by 1.85 m/sec (Fig. 4(b)). With the above estimation, the neutral wind effect would certainly be larger than that of the neutral temperature for this case. These explanations can be found in Lines 289-294.

Minor points:

The authors used S for all the change of the integrated emission rate despite of it is ΔT or ΔW dependent. It is confusing when read it through. I suggest to change the notation in $S_{\Delta T}$, $S_{\Delta W}$

and $S_{\Delta T, \Delta W}$.

Thank Referee #2 for providing the suggestions. They are revised in the manuscript.

1	Variations of the 630.0 nm airglow emission with meridional
2	neutral wind and neutral temperature around midnight
3	Chih-Yu Chiang ¹ , Sunny Wing-Yee Tam ¹ , Tzu-Fang Chang ^{1,2}
4	¹ Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan
5	70101, Taiwan
6	² Institute for Space-Earth Environmental Research, Nagoya University, Nagoya

7 464-8601, Japan

8 Abstract

9 The ISUAL payload onboard the FORMOSAT-2 satellite has often observed 10 airglow bright spots around midnight at equatorial latitudes. Such features had been 11 suggested as the signature of thermospheric midnight temperature maximum (MTM) 12 effect, which was associated with temperature and meridional neutral winds. This 13 study investigates the influence of neutral temperature and meridional neutral wind on 14 the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to 15 simulate the charged and neutral species at the 630.0 nm nightglow emission layer 16 under different temperatures with and without the effect of neutral wind. The results 17 show that the neutral wind is more efficient than temperature variation in affecting the 18 nightglow emission rates. For example, based on our estimation, it would require 19 a-temperature change of 145 K to produce a change in the integrated emission rate by 20 9.8 km-photons/cm³/sec, while it only needs the neutral wind velocity to change by 21 1.85 m/sec to cause the same change in the integrated emission rate. However, the 22 emission rate features a local maximum in its variation with the temperature. Two 23 kinds of tendencies can be seen regarding the temperature that corresponds to the 24 turning point, which is named the turning temperature (T_t) in this study: firstly, T_t 25 decreases with the emission rate for the same altitude; secondly, for approximately the 26 same emission rate, T_t increases with the altitude.

1. Introduction

28	The atomic oxygen red line at 630.0 nm is the most prominent emission in the	
29	nighttime ionosphere. It usually forms an emission layer in the F region at altitudes of	
30	~200-300 km and can be easily observed from ground-based observatories or	
31	satellites [Nelson and Cogger, 1971; Kelley et al., 2002; Thuillier et al., 2002]. The	
32	emission is related to $O(^{1}D)$, whose production in the nighttime is mainly via the	
33	charge exchange and dissociative chemical processes listed as follows:	
34	$O^{+} + O_{2} \rightarrow O_{2}^{+} + O \tag{1}$	
35	$O_2^+ + e^- \rightarrow O(^1D) + O$ (2)	
36	$O(^{1}D) \rightarrow O(^{3}P) + hv(630.0 \text{ nm})$ (3)	
37	Based on the $[O^+] \sim N_e$ (electron density) approximation [<i>Peterson et al.</i> , 1966;	
38	Link and Cogger, 1988] in the F2 region, the intensity of the OI(¹ D) 630.0 nm spectral	
39	line is usually used to identify the ionospheric electron density variations. From a rich	
40	history in the literature, the intensity of OI(¹ D) 630.0 nm airglow emissions is known	
41	as Midnight Brightness Wave (MBW) [Herrero and Meriwether, 1980; Herrero et al.,	
42	1993; Colerico et al., 1996; Colerico and Mendillo, 2002].	
43	During occurrences of MBW, increase in temperature are usually observed	
44	around local midnight, which are termed Midnight Temperature Maximum (MTM)	
45	effect. Harper [1973] and Spencer et al. [1979] reported the MTM phenomenon first.	

46	The cases in their studies were observed by the incoherent scatter radar from Arecibo
47	and the NATE experiment aboard the Atmospheric Explorer E (AE-E) satellite,
48	respectively. The amplitude of the temperature bulge was found to range from 20 to
49	200 K [Spencer et al., 1979; Burnside et al., 1981; Colerico and Mendillo, 2002;
50	Meriwether et al., 2008]. In addition, a number of studies about midnight brightness
51	have reported the relation between <i>in-situ</i> temperature and neutral wind measurements
52	[e.g., Herrero and Meriwether, 1980; Sastri et al., 1994, Colerico et al., 1996, 2002;
53	Otsuka et al., 2003; Mukherjee et al., 2006]. Rajesh et al. [2009] showed the first
54	results of the limb image of 630.0 nm airglow using Imager of Sprites and Upper
55	Atmospheric Lightning (ISUAL) [Chang et al., 2012; Chiang et al., 2013; Frey et al.,
56	2016] on board the FORMOSAT-2 satellite. Adachi et al. [2010] also showed a
57	14-day time span of airglow observations obtained from the Asian sector by ISUAL.
58	On the basis of the observation time and location, they suggested that the equatorial
59	airglow probably corresponded to the midnight brightening wave (MBW) which is in
60	association with the occurrence of MTM. Furthermore, Chiang et al. [2013]
61	statistically investigated the global midnight brightness according to seasons and
62	found that the global midnight brightness near the equatorial regions was controlled
63	by different mechanisms. In the study, the features and behavior of the 630.0 nm
64	midnight intensity were investigated by analyzing the optical images obtained by

65	ISUAL. Cases of enhancement of global midnight brightness were successfully
66	categorized into three types that were mainly due to the influence of temperature
67	changes, neutral wind and ionospheric anomaly.

68 Based on the previous studies, it is known that temperature and meridional neutral wind are correlated and associated with manifestations of MTM. Thus, we 69 70 want to discuss these two effects at the same time. In this study, we calculate the volume 71 emission rates to understand the influence of neutral temperature and meridional 72 neutral wind on the 630.0 nm nightglow. We shall discuss the sensitivities of the 73 emission rates to the temperature and the densities of several neutral and charged 74 species. Moreover, some new features will also be shown in the discussion section. 75 And we also provide ISUAL observation results to show that our calculation results 76 are reasonable and realistic.

77

78 **2. Model features**

Temperature changes and meridional neutral wind can influence the O(¹D) nightglow intensity through particle densities. The volume emission rate of the 630.0 nm nightglow in the F2 region [*Sobral et al.*, 1993] can be derived from the chemical process of 630.0 nm nightglow (Supplement I). It is shown as follows:

$$I_{630} = \frac{A_{1D}\mu_D\gamma[O_2][O^+]}{k_1[N_2] + k_2[O_2] + k_3[O] + A_{1D} + A_{2D}},$$
(4)

83	where μ_D is the quantum yield of O(¹ D), which is about 1~1.3 [<i>Torr and Torr</i> , 1982];
84	γ is the rate coefficient of Reaction (1) [<i>StMaurice and Torr</i> , 1978]; k_1 , k_2 and k_3 are
85	the rate coefficients of $O(^{1}D)$ quenched by N_{2} , O_{2} and O , respectively [Langford et al.,
86	1986; Streit et al., 1976; Sun and Dalgarno, 1992]; and A_{1D} and A_{2D} are the transition
87	coefficients [Froese-Fischer and Saha, 1983]. The formulas for the rate coefficients
88	[Vlasov et al., 2005] are listed in Table 1. The production rate of O(¹ D) is contributed
89	by the oxygen ion density $[O^+]$ and the molecular oxygen density $[O_2]$ through the
90	linked reactions (1) and (2). The major loss rates of $O(^{1}D)$ are associated with the
91	densities of molecular oxygen [O ₂], molecular nitrogen [N ₂], and atomic oxygen [O],
92	as reflected in Eq. (4). The densities $[O^+]$, $[O_2]$, $[N_2]$ and $[O]$ and the rate coefficients
93	γ , k_1 , k_2 and k_3 all depend on temperature. In addition, [O ⁺] may change with the
94	neutral wind conditions. In order to determine I_{630} under different temperatures and
95	neutral wind conditions, one must first determine the densities of the relevant species.
96	In this study, $[O^+]$ and plasma temperatures under various conditions are found by the
97	SAMI2 model of the Naval Research Lab [Huba et al., 2000]. SAMI2 is a two-
98	dimensional, first-principle model of the comprehensive low to mid-latitude
99	ionosphere. SAMI2 code includes most of the mechanisms that should be considered
100	in the ionosphere. There are photoionizations, chemical process, effects by the
101	magnetic and electric fields, plasma dynamics and the influence from the neutral

102 atmosphere. The input variables, neutral species, are specified using the empirical 103 codes, the Mass Spectrometer Incoherent Scatter model (NRLMSISE-00) [*Picone et* 104 *al.*, 2002] for neutral densities and the Horizontal Wind Model (HWM-93) [*Hedin et* 105 *al.*, 1996] for neutral wind. The continuity and momentum equations of seven ion 106 species (H^+ , He^+ , N^+ , O^+ , N_2^+ , NO^+ , and O_2^+) are solved in the code.

107 In order to understand the differences due to the meridional neutral wind, we apply the SAMI2 model with and without neutral wind by changing the multiplicative 108 109 factor of neutral wind (tvn0) to see the differences between two solstices. Thus, we 110 simulate the cases of February 1, 2007 (northern winter) and August 1, 2007 (northern 111 summer). In the simulations, we suppose that the solar and geomagnetic activities are 112 in quiet conditions (F10.7 index = 60, Ap index = 7). The simulations are run for the 113 altitude range between 150 and 1000 km from -30° to $+30^{\circ}$ geomagnetic latitudes. 114 Inside this region, we use 100 geomagnetic field lines and 201 grid points along each field line. Our report of the results will focus on the locations at -5° and $+5^{\circ}$ 115 geomagnetic latitude ($+2^{\circ}$ and $+12^{\circ}$ geographic latitude respectively) along the 100°E 116 117 geographic longitude, which intersects these latitudes in the Asian region. Figure 1 118 shows the O⁺ density along the magnetic lines with altitudes between 150 and 315 km in the latitude-altitude plane at the time and longitude described above. Figure 1(a) 119 120 shows the results under the condition that lacks neutral wind, and Fig. 1(b) shows the

121	results with the effect of normal neutral wind. The two left panels are for February 1,
122	2007 and the two right panels are for August 1, 2007. The arrows plotted in Fig. 1(b)
123	indicate the strength and directions of the meridional neutral wind. Comparison of Fig
124	1(a) and 1(b) clearly shows that meridional winds transport the plasma along the
125	magnetic field line and change the plasma density distribution. And this change of the
126	plasma profile could directly modify the emission rate in Eq. (4). The dashed lines,
127	which correspond to $\pm 5^{\circ}$ geomagnetic latitude, indicate the locations where the
128	intensity of the 630.0 nm nightglow is examined in detail in this study.

129

130 **3. Results and Analysis**

131 Based on Eq. (4), I_{630} under different temperatures and different neutral wind 132 conditions is plotted in Fig. 2. The neutral wind conditions for the results in Fig. 2 are 133 the same as those for Fig. 1. The strength and directions of the neutral winds are indicated by the arrows shown in Fig. 1. The simulation results shown in the figure 134 135 are for (a) February 1, 2007 and (b) August 1, 2007, with the left and right panels respectively corresponding to -5° and $+5^{\circ}$ geomagnetic latitude. The letters, A, B, C, 136 D and E, indicate the altitudes of 220, 230, 240, 250 and 260 km, respectively. The 137 dotted lines indicate the results with normal neutral wind effect; the solid lines 138 139 indicate the results without neutral wind effect. Note that the temperatures of around 140 650 K, corresponding to the leftmost points of the lines in the figure, were the initial 141 neutral temperatures obtained from the NRLMSISE-00 model at the various altitudes. 142 These neutral temperatures are input into the SAMI2 model, and we set up the 143 48-hour data as a running loop to obtain the plasma data. In order to explore the 144 effects of temperature change, we modify the codes of SAMI2 by increasing 50 K per 145 run as the inputs, and perform the simulations to calculate the emission intensity 146 values associated with different temperature conditions.

147 From Fig. 2, we can see the influence of temperature and neutral wind on the 148 nightglow emission. Note that the neutral wind conditions are as in Fig. 1: Fig. 1(a) 149 for zero wind condition and Fig. 1(b) for normal wind condition. The influence of the temperature variations on I_{630} is usually less than 3 photons/cm³/sec at the heights of 150 151 220 to 260 km. The variation of I_{630} with temperature, however, is not monotonic; 152 there is a maximum in the intensity as the temperature changes. In terms of height, as 153 I_{630} depends on the local neutral and charged particle densities in accordance with Eq. (4), the emission is the strongest at 230 km, except for the condition of very weak 154 emission (< 1 photon/cm³/sec) that occurs at $+5^{\circ}$ geomagnetic latitude in August with 155 156 normal wind effect (right panel of Fig. 2(b)).

157 As for the influence of the neutral wind on February 1, 2007 (Fig. 2(a)), both 158 locations ($\pm 5^{\circ}$ geomagnetic latitude) clearly feature significantly smaller I_{630} under 159 this effect. We suggest that this is due to the meridional neutral wind blowing 160 equatorward in both hemispheres (see Fig. 1) and pushing the plasma upward along 161 the field lines, reducing the local charged particle densities and consequently the 162 emission rates as well. On August 1, 2007, as shown in Fig. 2(b), the neutral wind causes the intensity at $+5^{\circ}$ geomagnetic latitude to decrease significantly for the same 163 reason as the wind direction is locally southward (equatorward). This southward 164 neutral wind, however, has an opposite effect on the intensity at -5° geomagnetic 165 latitude; being locally poleward, the wind pushes the plasma downward along the 166 field lines, increasing the local charged particle densities and consequently the 167 168 emission rates as well.

169 From Eq. (4), we can see that I_{630} is related to the densities of several neutral 170 species as well. In order to find out how the temperature affects the overall chemical 171 process that leads to the 630.0 nm emission, a few relevant parameters are shown as 172 functions of temperature in Fig. 3, based on the condition at 230 km altitude and -5° 173 geomagnetic latitude on February 1, 2007. In Fig. 3(a), we plot [O], [N₂] and [O₂] in dotted, dashed and solid lines respectively. Then the corresponding loss rates of these 174 neutral species are shown in Fig. 3(b). In Fig. 3(c), $[O^+]$ with and without neutral wind 175 176 effect are plotted with dotted line and solid line respectively. The values of γ 177 $[O^+][O_2]$, which are related to the production rate and in the numerator of Eq. (4), are

plotted in Fig. 3(d). The dotted line represents the normal neutral wind condition, andthe solid line for the windless condition.

180	When the neutral temperature increases from 600 K to 900 K, the rate
181	coefficients k_1 and k_2 decrease by 5.8% and 3.7%, respectively, and k_3 increases by
182	7.4% as calculated from Table 1. The rate coefficients k_1 , k_2 and k_3 do not change
183	significantly. However, in the same temperature range, $[O]$, $[N_2]$ and $[O_2]$ show
184	prominent increases of 253%, 363% and 171%, respectively, as shown in Fig. 3(a).
185	Therefore, the atomic and molecular densities dominate the changes of the loss rates
186	(Fig. 3(b)).

187

188 **4. Discussion**

From Fig. 1(a), we can see that along the field lines, the O^+ density is maximum around the geomagnetic equator when there is no neutral wind, whether it is in the summer or winter season. But the $[O^+]$ maxima tilt to the winter hemisphere in the presence of summer-to-winter neutral wind at the geomagnetic equator, as shown in Fig. 1(b). Therefore, we suggest that the low-latitude emission enhancement in the winter hemisphere be achieved by plasma accumulation brought about by the summer-to-winter neutral wind.

196 From the results that include the normal wind effect as shown in Fig. 2, the

197 intensities on opposite sides of the geomagnetic equator are very different. The 198 weaker emission is in the summer hemisphere, and brightness of higher intensity 199 appears in the winter hemisphere. In previous studies, *Rishbeth and Setty* [1961] 200 found that NmF2 was larger in winter than in summer, and they first suggested the possibility of composition change being the cause of the winter anomaly. Rishbeth 201 [1972] and Torr and Torr [1973] suggested that the anomaly might be due to 202 203 transequatorial neutral wind blowing from the summer hemisphere to the winter 204 hemisphere. Therefore, the enhancement of the emission at the low latitudes of the winter hemisphere should be the results of plasma accumulation caused by the neutral 205 206 wind effect.

207 Figure 2 shows the influence of temperature and neutral wind on the nightglow 208 emission rates. We estimate the intensity change under different neutral wind 209 conditions based on the location at 230 km altitude and -5° geomagnetic latitude on 210 February 1, 2007. In this situation, the emission would be reduced by the wind flow, and the average change is about 0.690 photon/cm³/sec for every m/sec of the wind 211 speed. In comparison, the change due to temperature variation is just 0.015 212 photon/cm³/sec for every K. The ratio of the two numbers is 46. Consideration of 213 214 other conditions, such as those cases shown in Fig. 2, may reduce the corresponding 215 ratio, but it should still be at least 20. According to earlier studies, the neutral wind

216	speed is generally 0-300 m/sec in the F region [Dyson et al., 1997], while the
217	amplitude of the temperature bulge due to the MTM effect has been found to range
218	from 20 to 200 K [Burnside et al., 1981; Colerico and Mendillo, 2002]. Even if one
219	assumes the maximum wind speed is just 60 m/sec as in the simulations in this study,
220	it would require a temperature change of 1200 K to match the same change in
221	emission intensity caused by the neutral wind. Such a large temperature change is not
222	realistic in comparison with the maximum observed difference of 200 K. Thus, the
223	emission rate of nightglow, realistically, is influenced more by the neutral wind than
224	temperature change when the former mechanism is clearly present.
225	The densities and some of the rate coefficients are temperature dependent, as
226	given in Eq. (4). We analyze the change with temperature of the individual terms in
227	Eq. (4). In Fig. $3(b)$ and Fig. $3(d)$, we plot the terms in the numerator and denominator
228	on the right-hand side of Eq. (4) and find that all these terms increase with
229	temperature. However, if we consider the derivative of the terms with respect to
230	temperature, which characterizes how sensitive the terms are to temperature change,
231	we notice that the derivatives for $k_1[N_2]$ and $k_3[O]$ increase with temperature while
232	those for $k_2[O_2]$ and $\gamma [O^+][O_2]$ decrease, as shown in Fig. 3(b) and 3(d). How the
233	variations of these terms affect the dependence of I_{630} on temperature can now be
234	understood from the right-hand side of Eq. (4). In particular, the numerator, which

235	characterizes the production rate of $O(^{1}D)$ and is proportional to $\gamma [O^{+}][O_{2}]$,
236	increases with temperature while featuring a relatively large increase at lower
237	temperatures (less than ~750 K). On the other hand, the denominator, which
238	characterizes the total loss rate of $O(^{1}D)$ and is dominated by $k_{I}[N_{2}]$ as Fig. 3(b)
239	indicates, features a relatively large increase at higher temperatures (larger than ~750
240	K). Upon division of the numerator by the denominator, the plot of I_{630} vs.
241	temperature is thus characterized by quasi-parabolic lines with the presence of a local
242	maximum or a turning point in the curve as shown in Fig. 2. We refer to the
243	temperature that corresponds to such a local maximum as the turning temperature (T_t) .
244	Below T _t , I_{630} increases with temperature, meaning that the increase in the production
245	of $O(^{1}D)$ associated with a rise in the temperature is more efficient than the increase in
246	its loss. In contrast, I_{630} decreases with temperature above T _t , meaning that the
247	increase in the production of $O(^1D)$ associated with a rise in the temperature is less
248	efficient than the increase in its loss. Thus, T_{t} has the significance of being the
249	temperature at which the production and loss rates of $O(^{1}D)$ are equally sensitive to a
250	temperature change.

In order to quantitatively describe the effects of neutral temperature and meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the volume emission rate along the altitude. Thus, the change in the integrated emission 254 rate (ΔS_T) over a fixed altitude range h1 to h2 due to a change in temperature from

 T_1 to T_2 can be written as: 255

256
$$\Delta S_T = S(T_2, W) - S(T_1, W) = \int_{h_1}^{h_2} I_{630}(T_2, W, z) dz - \int_{h_1}^{h_2} I_{630}(T_1, W, z) dz , \qquad (5)$$

257 where S is the integrated emission rate from height h1 to h2 as a function of temperature and neutral wind speed W. Similarly, the change in the integrated 258 emission rate (ΔS_w) over a fixed altitude range h1 to h2 due to a change in the 259 260

neutral wind speed from W_1 to W_2 can be obtained as:

261
$$\Delta S_W = S(T, W_2) - S(T, W_1) = \int_{h_1}^{h_2} I_{630}(T, W_2, z) dz - \int_{h_1}^{h_2} I_{630}(T, W_1, z) dz , \qquad (6)$$

262 Combining the changes in both temperature and neutral wind, one may express the

263 change of the integrated emission rate over the altitude range as:

264
$$\Delta S_{T,W} = S(T_2, W_2) - S(T_1, W_1) = \int_{h_1}^{h_2} I_{630}(T_2, W_2, z) dz - \int_{h_1}^{h_2} I_{630}(T_1, W_1, z) dz$$

265 One can show that to the leading order, the above equation reduces to

$$\Delta S_{T,W} = \Delta S_T + \Delta S_W , \qquad (7)$$

with ΔS_T in Eq. (5) evaluated at $W = W_1$ and ΔS_W in Eq. (6) evaluated at $T = T_1$. 267 Based on Eq. (4), we calculated I_{630} for different temperatures and neutral wind 268 conditions, and then according to the integrals in Eq. (5) and (6), integrated the 269 270 emission rates over the major altitudes of the 630.0 nm nightglow emission layer, 271 ranging from 150 to 315 km altitude. Figure 4(a) and 4(b) show how the integrated 272 emission rates vary with the increases in the neutral temperature and neutral wind speed, respectively. Fig. 4(a) shows the result regarding the integrated emission rate as
affected by neutral temperature (at -5° geomagnetic latitude on February 1, 2007). The
curve in red is fitted as 2nd-order polynomial :

276
$$\Delta S_T = (0.1354 \pm 0.0069)(\Delta T) - (4.6835 \pm 0.2652) \times 10^{-4} (\Delta T)^2 ,$$

where ΔS_T (km-photons/cm³/sec) is the change in integrated emission rate and ΔT (K) is the increase in neutral temperature, compared with the standard conditions of 650 K neutral temperature and zero neutral wind. Fig. 4(b) shows the result regarding the integrated emission rate as affected by neutral wind. The results are obtained based on the same standard conditions as those considered in Fig. 4(a). The curve in red fits an exponential function :

283
$$\Delta S_W = (64.8883 \pm 0.7772) \times \{1 - \exp[-(0.0885 \pm 0.0041)(\Delta W)]\}$$

where ΔS_W (km-photons/cm³/sec) is the change in integrated emission rate and ΔW (m/sec) is the change in neutral wind velocity. Therefore, according to Eq. (7), we combine the results of the two fitting functions to approximate the overall change in the integrated emission rate due to the two effects:

$\Delta S_{T,W} = 0.1354(\Delta T) - 4.6835 \times 10^{-4} (\Delta T)^2 + 64.8883 [1 - \exp(-0.0885(\Delta W))]$

Based on the function, we can quantitatively compare the neutral temperature effect with the neutral wind effect. From Fig. 4(a), increasing the neutral temperature by about 145 K leads to the maximum change of the integrated emission rate of 9.7859 km-photons/cm³/sec. In contrast, to get the same change of the emission rate
by varying the neutral wind, it just requires a change of neutral wind velocity by 1.85
m/sec (Fig. 4(b)). With the above estimation, the neutral wind effect would certainly
be larger than that of the neutral temperature for this case.

Figure 5 shows a plot of T_t versus the emission rate I_{630} at specific altitudes. The results include all the cases shown in Fig. 2 with different symbols indicating different altitudes. Two kinds of tendencies can be seen from the plot: firstly, T_t decreases with I_{630} for the same altitude; secondly, for approximately the same emission rate, T_t increases with the altitude. This is the first result to show these tendencies of the turning temperature.

301 Observations have found cases that are consistent with our simulation results 302 regarding the influence of the neutral wind. Figure 6 shows four cases observed by 303 ISUAL in the Asian region at 23:00 local time during the two months considered in 304 our studies: two cases in February shown on the left side and two cases in August shown on the right side. Figure 6(a) would be for the condition of no wind or weak 305 306 wind while Fig. 6(b) would correspond to the normal wind condition. We can see 307 from Fig. 6(a) that a bright spot of nightglow was observed at the geomagnetic equator during both months. As the volume emission rate, according to Eq. (4), is 308 309 proportional to the O^+ density, the observations were supportive of the simulation results of density variations in Fig. 1(a). Similarly, the two cases in Fig. 6(b), which
featured nightglow bright spots in the winter hemisphere, suggested that the density
variations shown in Fig. 1(b) are realistic.

313 Previously, Chiang et al. [2013] examined the occurrence rates of global midnight brightness observed by ISUAL. In order to verify the enhancement of the 314 315 emission intensity in the winter hemisphere by the neutral wind, we examined the 316 ISUAL data that correspond to the specific regions and seasons considered in our simulations and the results are shown in Fig. 7(a) and (b). We found that among the 317 22 valid observation days during January and February, ~77% of the days featured the 318 appearance of nightglow bright spots in the low-latitude region of the winter 319 320 hemisphere (Fig. 7(a)). Furthermore, ~83% of the 30 valid observation days during 321 July-August also featured nightglow bright spots at low latitudes in the corresponding 322 winter hemisphere (Fig. 7(b)). Thus, statistical results regarding the location of 323 nightglow bright spots agree with the simulation results that demonstrate the crucial role of the neutral wind in affecting the location of high-intensity nightglow regions. 324 325 Rajesh et al. [2014] showed their simulation results and claimed that using 326 merely the background meridional winds could reproduce the observed brightness.

327 They selected a few cases of ISUAL image data and compared those data with the

328 simulation results by the SAMI2 model. Nevertheless, using such a method by Rajesh

329 et al. [2014], one should be very careful about the details when it comes to physical 330 insights or conclusions drawn from the study. This is because ISUAL only provided 331 optical data and there was not any instrument on the satellite to directly observe the 332 relevant conditions (temperature, wind field, etc.) in the environment. Without such observations to provide constraints for modeling, one can easily reproduce 333 334 similar-looking results of selected short-period data by adjusting modeling parameters 335 in simulations. However, images seemingly similar to that of an ISUAL observation 336 could be produced from simulation results using considerably different parameter 337 values, which may correspond to different dominant mechanisms. Thus, when there 338 are few constraints for the parameter values, roughly comparing a short-period case of 339 ISUAL image data with simulation results without paying attention to details may 340 lead to an interpretation of brightness production mechanisms that is different from 341 the real situation.

Observations of the movement of MTM temperature bulge and that of nightglow have led to postulations of an association between pressure bulge and nightglow intensity [*Colerico et al.*, 1996; *Colerico and Mendillo*, 2002; *Meriwether et al.*, 2008]. However, the high intensities of the observed nightglow have not been successfully reproduced using existing models incorporating the MTM effect, such as the NCAR thermosphere-ionosphere-electrodynamic general circulation model

348	(TIEGCM), as pointed out by Colerico and Mendillo [2002] and Meriwether et al.
349	[2008]. Note that temperature was not included as a varying quantity in traditional
350	ionospheric models. Thus the simulation study of temperature effect upon nightglow
351	intensity is lacking. Our simulation results have demonstrated the unexpectedly
352	non-monotonic dependence of the intensity of nightglow on the neutral temperature,
353	with the turning temperature T_t that arises from the dependence implying a limitation
354	for the growth of the emission rates. As the temperature increases above $T_{t},$ the
355	emission rates do not continue to grow. In fact, temperature change such as in the case
356	of heat transfer is affected by the density, which controls the heat capacity. At the
357	same time, temperature change may generate pressure difference and lead to transport
358	that changes density profiles. As nightglow intensity depends also on particle densities,
359	its non-monotonic variations with temperature are in fact due to the combination of
360	temperature and density. While our study suggests that neutral wind is the dominant
361	driver of the I_{630} variation, its influence, however, is via transportation of plasma and
362	neutral particles, in which case consideration of the effect of temperature on the
363	density is essential. Moreover, it has not been established that MTM is affected by the
364	wind primarily. The combination of temperature and density, which has shown to
365	cause non-monotonic results in this study, may very well be an important factor in the
366	study of MTM. Thus, if one wants to fully reproduce the observation results, we

367	suggest other extra factors associated with temperature variations should also be
368	considered, such as different tidal modes from lower atmosphere [Akmaev et al.,
369	2009]. Our findings of the turning temperature tendencies can help as a guide for
370	choosing the background temperature in future modeling attempts to obtain intensities
371	of nightglow brightness comparable to those observed from ground or from space.
372	Shepherd [2016] investigates the possible extent of the MTM at ~ $20^{\circ}N-40^{\circ}N$,
373	considering O(1D) airglow volume emission rates, Doppler temperatures, and neutral
374	wind (zonal and meridional) observations by the Wind Imaging Interferometer
375	(WINDII) experiment on board the Upper Atmosphere Research Satellite (UARS).
376	Their results provide us the relations of the zonal wind to the O(1D) emission rate and
377	of the meridional wind to the temperature. Such relations potentially guide us to
378	design a more extensive future study in simulation so as to reproduce the observation
379	and statistical results by Shepherd [2016].

380

5. Conclusion

Previous studies of the MTM effect have pointed out that the temperature anomaly influences the nighttime behavior of the thermosphere. And the neutral wind also plays a key role to cause the intensity variations in the nighttime ionosphere. Based on our simulation results, both temperature change and meridional neutral wind 386 could cause the 630.0 nm nightglow intensity to vary while the latter is more effective. 387 A temperature change of 145 K is shown to result in an integrated emission rate change of 9.8 km-photons/cm³/sec. However, it only requires a neutral wind velocity 388 389 change of 1.85 m/sec to produce the same change in the integrated emission rate. And 390 the simulation results may successfully explain most of the observational results by 391 ISUAL. An unexpected aspect of the results is the non-monotonic dependence of the 392 emission rate on temperature, featuring a turning point as the temperature changes. 393 The temperature T_t at which the turning point occurs corresponds to a balanced condition between the production and loss of $O(^{1}D)$. Thus, our results help understand 394 395 how the overall chemical process of nightglow is affected by the variations of neutral 396 temperature and neutral wind. Two kinds of tendencies can be seen regarding the turning temperature T_t. One is the higher T_t corresponding to higher altitude at the 397 398 same emission rate, the other is the higher T_t corresponding to lower emission rate at 399 the same altitude. Our findings of these turning temperature tendencies can guide future modeling attempts to match the observed nightglow brightness intensities. 400

401

402 Acknowledgements

403 The authors acknowledge the FORMOSAT-2/ISUAL science and operator team
404 to provide image data (http://sprite.phys.ncku.edu.tw/en/about-cdf-distribution). The

405	work by C. Y. Chiang and S. W. Y. Tam is supported by Taiwan's Ministry of Science
406	and Technology grant MOST 107-2111-M006-003. T. F. Chang acknowledges support
407	by the Ministry of Education, Taiwan R.O.C., from The Aim for the Top University
408	Project to National Cheng Kung University.
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	

References

425	Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, CC. Hsiao, A. B. Chen,
426	and RR. Hsu (2010), Midnight latitude-altitude distribution of 630-nm airglow
427	in the Asian sector measured with FORMOSAT-2/ISUAL, J. Geophys. Res.,
428	doi:10.1029/2009JA015147.
429	Akmaev, R. A., F. Wu, T. J. Fuller-Rowell, and H. Wang (2009), Midnight
430	temperature maximum (MTM) in Whole Atmosphere Model (WAM)
431	simulations, Geophys. Res. Lett., 36, L07108, doi:10.1029/ 2009GL037759.
432	Burnside, R. G., F. A. Herrero, J. W. Meriwether Jr., and J. C. G. Walker (1981),
433	Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res.,
434	86, 5532.
435	Chang, T. F., C. Z. Cheng, C. Y. Chiang, and A. B. Chen (2012), Behavior of substorm
436	auroral arcs and Pi2 waves: Implication for the kinetic ballooning instability,
437	Ann. Geophys., 30, 911–926, doi:10.5194/angeo-30-911-2012.
438	Chiang, C. Y., T. F. Chang, S. WY. Tam, T. Y. Huang, A. BC. Chen, H. T. Su, and R.
	······································
439	R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of
439 440	R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of brightness measured by ISUAL. <i>Terr. Atmos. Ocean. Sci.</i> , 24, 283-293, doi:
439 440 441	R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of brightness measured by ISUAL. <i>Terr. Atmos. Ocean. Sci.</i> , 24, 283-293, doi: 10.3319/TAO.2012.12.13.01(SEC)

443	B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi (1996), Coordinated
444	measurements of F region dynamic related to the thermospheric midnight
445	temperature maximum, J. Geophys. Res., 101, 26,783–26,793.
446	Colerico, M. J., and M. Mendillo (2002), The current state of investigations regarding
447	the thermospheric midnight temperature maximum (MTM), J. Atmos. Sol. Terr.
448	<i>Phys.</i> , 64, 1361–1369.
449	Dyson, P. L., T. P. Davies, M. L. Parkinson, A. J. Reeves, P. G. Richards, and C. E.
450	Fairchild (1997), Thermospheric neutral winds at southern mid-latitudes: A
451	comparison of optical and ionosonde hmF2 methods, J. Geophys. Res.,
452	102(A12), 27189–27196, doi:10.1029/ 97JA02138.
453	Frey, H. U., et al. (2016), The Imager for Sprites and Upper Atmospheric Lightning
454	(ISUAL), J. Geophys. Res. Space Physics, 121, 8134-8145,
455	doi:10.1002/2016JA022616.
456	Froese-Fischer, C., and H. P. Saha (1983), Multiconfiguration Hartree-Fock results
457	with Breit-Pauli corrections for forbidden transitions in the 2p4 configuration,
458	Phys. Rev. A, 28, 3169–3178.
459	Harper, R. M. (1973), Nighttime meridional neutral winds near 350 km at low to
460	mid-latitudes, J. Atmos. Terr. Phys., 35, 2023-2034.

461 Hedin, A.E., E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J.

462	Franke, G.J. Fraser, T. Tsuda, F. Vial, and R.A. Vincent (1996), Empirical wind
463	model for the upper, middle, and lower atmosphere, J. Atmos. Terr. Phys., 58,
464	1421-1447.
465	Herrero, F. A., and J. W. Meriwether Jr. (1980), 6300 airglow meridional intensity
466	gradients, J. Geophys. Res., 85, 4191.
467	Herrero, F. A., N. W. Spencer, and H. G. Mayr (1993), Thermosphere and F-region
468	plasma dynamics in the equatorial region, Adv. Space Res., 13(1), 201–220.
469	Huba, J. D., G. Joyce, and J. A. Fedder (2000), Sami2 is another model of the
470	ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res.,
471	105, 23,035–23,053.
472	Kelley, M. C., J. J. Makela, B. M. Ledvina, and P. M. Kintner (2002), Observations of
473	equatorial spread F from Haleakala, Hawaii, Geophys. Res. Lett., 29(20), 2003,
474	doi:10.1029/2002GL015509.
475	Langford, A. O., V. M. Bierbaum, and S. R. Leone (1986), Branching ratios for
476	electronically excited oxygen atoms formed in the reaction of N+ with O2 at
477	300 K, J. Chem. Phys., 84, 2158–2166.
478	Link, R., and L. L. Cogger (1988), A reexamination of the OI 6300 Å nightglow, J.
479	Geophys. Res., 93(A9), 9883-9892.
480	Meriwether, J., Faivre, M., Fesen, C., Sherwood, P., and Veliz, O (2008), New results

481

on equatorial thermospheric winds and the midnight temperature maximum,

- 482 Ann. Geophys., 26, 447–466.
- 483 Mukherjee, G. K., N. Parihar, K. Niranjan, and G. Manju (2006), Signature of
- 484 midnight temperature maximum (MTM) using OI 630 nm airglow, *Indian J.*485 *Radio Space Phys.*, 35,14–21.
- 486 Nelson, G. J., and L. L. Cogger (1971), Dynamical behavior of the nighttime
- 487 ionosphere at Arecibo, J. Atmos. Terr. Phys., 33, 1711 1726,
 488 doi:10.1016/0021-9169(71)90219-4.
- 489 Otsuka, Y., T. Kadota, K. Shiokawa, T. Ogawa, S. Kawamura, S. Fukao, and S.-R.
- 490 Zhang (2003), Optical and radio measurements of a 630-nm airglow
- 491 enhancement over Japan on 9 September 1999, J. Geophys. Res., 108(A6), 1252,
- doi:10.1029/2002JA009594.
- 493 Peterson, V. L., T. E. Van Zandt, and R. B. Norton (1966), F-region nightglow
- 494 emissions of atomic oxygen, 1. Theory, J. Geophys. Res., 71, 2255-2265.
- 495 Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00
- 496 empirical model of the atmosphere: Statistical comparisons and scientific issues,
- 497 J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430
- 498 Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C.
- 499 H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee (2009), First results of the limb

500	imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper
501	Atmospheric Lightnings, J. Geophys. Res., 114, A10302,
502	doi:10.1029/2009JA014087.
503	Rajesh, P. K., C. H. Chen, C. H. Lin, J. Y. Liu, J. D. Huba, A. B. Chen, R. R. Hsu, and
504	Y. T. Chen (2014), Low-latitude midnight brightness in 630.0 nm limb
505	observations by FORMOSAT-2/ISUAL, J. Geophys. Res. Space Physics,
506	4894–4904, 119, doi:10.1002/2014JA019927.
507	Rishbeth, H., and C. S. G. K. Setty (1961), The F layer at sunrise, J. Atmos. Terr.
508	Phys., 20, 263-267.
509	Rishbeth, H. (1972), Thermospheric winds and the F-region – A review, J. Atmos. Terr.
510	<i>Phys.</i> , 34, 1.
511	Sastri, J. H., H. N. R. Rao, V. V. Somayajulu, and H. Chandra, Thermospheric winds
512	associated with equatorial midnight temperature maximum (MTM), Geophys.
513	<i>Res. Lett</i> , 21 , 825, 1994.
514	Shepherd, M. G. (2016), WINDII observations of thermospheric O(1D) nightglow
515	emission rates, temperature, and wind: 1. The northern hemisphere midnight
516	temperature maximum and the wave 4, J. Geophys. Res. Space Physics, 121,
517	doi:10.1002/2016JA022703.
518	Sobral, J. H.A., H. Takahashi, M. A. Abdu, P. Muralikrishna, Y. Sahai, C. J. Zamlutti,

519	E. R. de Paula, and P. P. Batista (1993), Determination of the quenching rate of
520	the $O(^{1}D)$ by $O(^{3}D)$ from rocket-borne optical (630 nm) and electron density
521	data, J. Geophys. Res., 98, 7791-7798.
522	Spencer, N. W., C. R. Carignan, H. G. Mayr, H. B. Niemann, R. F. Theis, and L. E.
523	Wharton (1979), The midnight temperature maximum in the Earth's equatorial
524	thermosphere, Geophys. Res. Lett., 6, 444.
525	St. Maurice, J. P., D. G. Tort, Nonthermal rate coefficients in the ionosphere: The
526	reactions of O_2^+ with N_2 , O_2 , and NO, J. Geophys. Res., 83, 969, 1978.
527	Streit, G. E., C. J. Howard, A. L. Schmeltekopf, J. J. A. Davidson, and H. I. Schiff
528	(1976), Temperature dependence of O(1D) rate constants for reactions with O2,
529	N2, CO2, O3 and H2O, J. Chem. Phys., 65, 4761–4764.
530	Sun, Y., and A. Dalgarno (1992), Collisional excitation of metastable O(1D) atoms, J.
531	Chem. Phys., 96, 5017–5019.
532	Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble (2002), Photochemistry
533	and dynamics in thermospheric intertropical arcs measured by the WIND
534	Imaging Interferometer on board UARS: A comparison with TIE-GCM
535	simulations, J. Atmos. Sol. Terr. Phys., 64, 405–415,
536	doi:10.1016/S1364-6826(01)00109-2.
537	Torr, M. R. and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the

29

538 ionosphere, J. Atmos. Terr. Phys., 35, 2237.

539	Torr, M. R. and D. G. Torr (1982), The role of metastable species in the
540	thermosphere, Rev. Geophys. and Space Phys., 20, 91–144.
541	Vlasov, M. N., M. J. Nicolls, M. C. Kelley, S. M. Smith, N. Aponte, and S. A.
542	Gonzalez (2005), Modeling of airglow and ionospheric parameters at Arecibo
543	during quiet and disturbed periods in October, 2002, J. Geophys. Res., 110,
544	A07303, doi:10.1029/2005JA011074.
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	

- Table 1. Reactions and rate coefficients related to the volume emission rate of the
- 558 630.0 nm airglow

	Reactions	Rate Coefficients (cm ³ s ⁻¹ , s ⁻¹)
	$O^+ + O_2 \rightarrow O_2^+ + O$	$\gamma = 2.82 \times 10^{-11} - 7.74 \times 10^{-12} (T_{eff}/300) + 1.07 \times 10^{-12} (T_{eff}/300)^2 - 10^{-12} (T_{eff}/300)^2 - 10^{-12} (T_{eff}/300) + 10^{$
		$5.17{\times}10^{-14}(T_{eff}/300)^3 + 9.65{\times}10^{-16}(T_{eff}/300)^4$
	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$k_I = 2 \times 10^{-11} \exp(107.8/\mathrm{T_n})$
	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$	$k_2 = 2.9 \times 10^{-11} \exp(67.5/T_n)$
	$O(^{1}D) + O \rightarrow O + O$	$k_3 = (3.73 + 1.1965 \times 10^{-1} \text{ T}_n^{0.5} - 6.5898 \times 10^{-4} \text{ T}_n) \times 10^{-12}$
	$O(^{1}D) \rightarrow O + hv(630.0nm)$	$A_{1D} = 7.1 \times 10^{-3}$
	$O(^{1}D) \rightarrow O + hv(634.4nm)$	$A_{2D} = 2.2 \times 10^{-3}$
559	Note: $T_{eff} = 0.67T_i + 0.33T_n$ (T	$_{eff}$: effective temperature, T_i : ion temperature, T_n : neutral
560	temperature) [StMaurice and	Torr, 1978]
561		
501		
562		
002		
563		
564		
565		
566		
567		
568		
5(0)		
209		
570		
570		
571		
011		
572		
573		

574 Figure Captions

575	Figure 1. Oxygen ion density plotted in the latitude-altitude plane at 23:00 LT on
576	February 1, 2007 (left panels) and August 1, 2007 (right panels) in the Asian
577	region (100°E longitude) from the SAMI-2 model: (a) without neutral wind; (b)
578	with the effect of normal neutral wind, whose strength and directions are
579	indicated by the arrows.
580	Figure 2. The results of 630.0 nm emission rate at 23 LT at different temperatures and
581	under different neutral wind conditions for (a) February 1, 2007 and (b) August
582	1, 2007: left and right panels respectively for -5° and $+5^{\circ}$ geomagnetic latitude;
583	the letters, A, B, C, D and E, for the altitudes of 220 km, 230 km, 240 km, 250
584	km and 260 km, respectively; for normal neutral wind effect (black dotted lines)
585	and windless conditions (red solid lines). The neutral wind conditions of Fig. 2
586	are the same as those shown in Fig. 1.
587	Figure 3. The profiles of neutral and charged species versus temperature which are
588	involved in Eq. (4) at 230 km altitudes and -5° geomagnetic latitudes on
589	February 1, 2007. (a) [O], $[N_2]$ and $[O_2]$ versus temperature. (b) The loss rate
590	terms of $k_1[O]$, k_2 [N ₂] and k_3 [O ₂] versus temperature. (c) [O ⁺] versus
591	temperature with/without the neutral wind effect. (d) The production
592	rate-associated term of γ [O ⁺][O ₂] versus temperature with/without the neutral

593 wind effect.

594	Figure 4. Quantitative results for how (a) the neutral temperature and (b) the neutral
595	wind affect the 630-nm airglow intensity.
596	Figure 5. Plots of the emission rates against the turning temperature between 220-260
597	km altitudes.
598	Figure 6. Four observation cases by ISUAL in February 2007 and August 2007 (the
599	same periods as shown in Fig. 1).
600	Figure 7. ISUAL data in the specific regions and seasons considered in the
601	simulations: the nightglow bright spots in valid observation days during (a)
602	January-February and (b) July-August.
603	
604	
605	
606	
607	
608	
609	
610	
611	

