

Anonymous Referee #1

In this paper, volume emission rate of the 630-nm airglow is calculated using the SAMI2 model, which is a numerical model of the ionosphere. The authors investigate effects of the neutral winds and temperatures on the volume emission rate, but their argument is still only qualitative. This reviewer considers that quantitative investigation is needed. Therefore, major revision is needed before its publication.

We would like to thank Referee #1 for reading our article carefully and providing us helpful and valuable suggestions for improving our manuscript. About quantitative investigation, we have added new figures (Fig. 4) and addressed it in detail in our manuscript. We have also revised the manuscript accordingly by taking into account the Referee's comments. We hope that Referee #1 now finds the manuscript acceptable for publication.

Although the authors describe that effect of the meridional neutral wind is dominant, it is obvious from the equation of the volume emission rate because the volume emission rate is proportional to a product of the plasma and atomic oxygen densities. Meridional neutral winds move the plasma along the magnetic field line and modify plasma density distribution. Consequently, effects of the neutral winds is dominant. This reviewer recommends the author to calculate the 630-nm airglow intensity by integrating the volume emission rate along the altitude, and show it as a function of the neutral temperature and meridional neutral winds. The, the authors should argue quantitatively how much the neutral temperature affect the 630-nm airglow intensity compared to the effects of the neutral winds.

Thanks for Referee #1's nice suggestion, we have added the suggested quantitative investigation in Line 243-268 as follows:

In order to quantitatively describe the effects of neutral temperature and meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the volume emission rate along the altitude. So we make two new plots [Fig. (a) and Fig. (b)] to show how the integrated emission rates vary with the increasing neutral temperature and neutral winds, respectively. Fig. (a) shows the result regarding the integrated emission rate as affected by neutral temperature (at -5° geomagnetic latitude on February 1, 2007). The curve in red is fitted as 2nd-order polynomial :

$$S = (0.1354 \pm 0.0069)(\Delta T) - (4.6835 \pm 0.2652) \times 10^{-4}(\Delta T)^2 ,$$

where S ($\text{km}/(\text{cm}^3 * \text{s})$) is the change in integrated emission rate and ΔT (K) is

the increase in neutral temperature, compared with the standard conditions of 650 K neutral temperature and zero neutral wind.

Figure (a)

Fig. (b) shows the result regarding the integrated emission rate as affected by neutral wind. The results are obtained based on the same standard conditions as those considered in Fig. (a). The curve in red fits an exponential function :

$$S = (64.8883 \pm 0.7772) \times \{1 - \exp[-(0.0885 \pm 0.0041)(\Delta W)]\} ,$$

where S (km/(cm³ * s)) is the change in integrated emission rate and ΔW (m/s) is the change in neutral wind velocity.

Figure (b)

Therefore, we combine the results of the two fitting functions to approximate the overall change in the integrated emission rate due to the two effects:

$$S = 0.1354(\Delta T) - 4.6835 \times 10^{-4}(\Delta T)^2 + 64.8883[1 - \exp(-0.0885(\Delta W))]$$

Based on the function, we can quantitatively compare the neutral temperature effect with the neutral wind effect. In Fig. (a), the maximum change of the integrated emission rate by increasing the neutral temperature is 9.7859 (km/(cm³ * s)) at 145 K. To get the same changes of the emission rate by varying the neutral wind, it just requires a neutral wind velocity of 1.85 m/s. Above such a velocity, the neutral wind effect would certainly be larger than that of the neutral temperature for this case.

Minor comments:

- Figure 1: Arrows representing wind velocity is not seen clearly.

We have replotted the Fig. 1 as follows, thank you.

- L. 916, Figure 2 \rightarrow Figure 3

Our manuscript does not have Line 916. We searched all the “Figure 2” in our article but did not find a similar typo as mentioned. If Referee #1 can still identify the typo, please let us know again. We would revise it. Thank you.

Anonymous Referee #2

Chiang et al. demonstrate the influence of meridional wind and neutral temperature to the intensity of 630.0 nm nightglow around the equatorial midnight, altering the SAMI2 model for the resulting plasma density and temperature with the inputs from NRLMSISE-00 for neutral densities and the HWM-93 for neutral wind vectors. The work is potentially interesting and novelty to the community, particularly the finding with respect to the neutral temperature. However, the literature survey by the authors seems to be hasty, the major lacking is that the role of meridional wind to the midnight 630.0 nm airglow enhancement seeing by ISUAL Imager has been studied and published (Rajesh et al.(2014) doi 10.1002/2014JA019927). In addition, the manuscript requires an editing for English before it can be published in the peer-review journal. Given the interesting result and a very valuable dataset, I encourage the authors in extending the content in greater detail that be able to deliver the science finding clearly. Please see further comment below. Summary: Consider for publication after substantial revision Major points:

We thank the Reviewer for reading our article carefully and providing many valuable suggestions for improving the manuscript. We revise the manuscript by taking into account the Reviewer's comments. We also extend the contents and include the observation results in this manuscript in accordance with the Reviewer's suggestions.

(1) Observation data Since the satellite data are used, it would be appropriate to cite Frey et al.(2016) (doi 10.1002/2016JA022616) for the instrument details and the first results of the limb imaging of 630.0 nm airglow using ISUAL by Rajesh et al. (doi 10.1029/2009JA014087). The authors put the observation data in the Supplement for some reasons, but it could be nicer if move the section to the main content. The observation data deserve more attention and discussion.

The main purpose of this study is to understand the influence of temperature and meridional neutral wind on the 630.0 nm nightglow by calculating the volume emission rates. The observations by ISUAL can help us realize the tendency in typical solstice condition. In our previous manuscript, we merely wanted to state that our simulations can easily reproduce the selected short-period cases of the brightness patterns observed by ISUAL. But case-study results are not our main points. Considering the observational data that we can access, we suggest that statistical analyses are a more appropriate method to unveil the midnight brightness mechanism.

So in the previous manuscript, we put the observation data in the Supplement. Since Referee #2 thinks that the observation data deserve more attention and discussion, we agree to move them to the main contents in Line 275-286. Moreover, we also add the two references suggested by Referee #2 in Line 53-56 and references section.

(2) The effect of meridional winds to the 630.0 nm midnight brightness By reading this work and Rajesh et al. (2014), I happened to find many similarities in between. Both of the groups modulate the HWM-93 meridional winds on the SAMI2 model and apparently find that the meridional wind utilizes the location and intensity of the airglow brightness. What is the novelty of this work out of Rajesh et al. (2014) in the effect of meridional winds to the midnight brightness? The authors should include the comparison in the content and give the credit to the previous work properly.

We thank the Referee's suggestion. We discuss the differences in detail between the work by Rajesh et al. [2014] and our study. In our manuscript, we include the following discussion in Line 299-315 to compare the two studies.

Rajesh et al. [2014] showed their simulation results and claimed that using merely the background meridional winds could reproduce the observed brightness. They selected a few cases of ISUAL image data and compared those data with the simulation results by the SAMI2 model. Nevertheless, using such a method by Rajesh et al. [2014], one should be very careful about the details when it comes to physical insights or conclusions drawn from the study. This is because ISUAL only provided optical data and there was not any instrument on the satellite to directly observe the relevant conditions (temperature, wind field, etc.) in the environment. Without such observations to provide constraints for modeling, one can easily reproduce similar-looking results of selected short-period data by adjusting modeling parameters in simulations. However, images seemingly similar to that of an ISUAL observation could be produced from simulation results using considerably different parameter values, which may correspond to different dominant mechanisms. Thus, when there are few constraints for the parameter values, roughly comparing a short-period case of ISUAL image data with simulation results without paying attention to details may lead to an interpretation of brightness production mechanisms that is different from the real situation.

The production mechanisms of 630-nm bright spot around midnight from ISUAL observations have been explained by Adachi et al. [2010]. Adachi et al. [2010] suggested the midnight temperature maximum (MTM) effect can well explain the bright spot based on the observation timing and brightness locations. Our previous

research (Chiang et al. [2013]) also reached similar conclusions based on statistical studies using two years of ISUAL data. The brightness region tends to appear between the geographic equator and magnetic equator as Fig. 5 in Chiang et al. [2013] indicates (see figure below). This figure shows the sequencing data observed from different longitudinal regions by ISUAL. The dotted red lines indicate the geomagnetic equator; the solid red lines indicate the geographic equator. Rajesh et al. [2014] claimed that the production mechanism of midnight brightness can be explained by meridional winds. The brightness region in their simulation results, however, basically appeared on the winter side of the magnetic equator in the solstices due to the summer-to-winter wind, regardless of where the geographic equator was. Thus, with the consideration of the location of the geographic equator, which is a significant physical factor associated with the MTM effect, the observation results of Fig. 5 in Chiang et al. [2013] indicated that the real situation would actually be different from the case simulated by Rajesh et al. [2014]. Thus the production mechanisms of midnight brightness require different interpretations from those provided by Rajesh et al. [2014].

Thus, we propose that the production of midnight brightness should not be explained by considering merely the effect of meridional neutral wind. Both temperature change and meridional neutral wind can lead to variations of the 630.0 nm nightglow intensity while the latter is more effective. These two effects should be taken into account in the study of midnight brightness.

Note: Fig. 5 in Chiang et al. [2013] shows the observations from three different longitudinal regions [(i), (ii) and (iii)] that correspond to the different declination angles. Orbit (i) was in the longitudinal region (between $-15^\circ \sim +150^\circ$ longitude) where the geomagnetic equator is northward of the geographic equator with the declination angle around 0° . Orbit (iii) was in the region (between $-85^\circ \sim -60^\circ$ longitude) with the geomagnetic equator southward of the geographic equator and the declination angle around 0° . Orbit (ii) was in the geographic region between $-60^\circ \sim -15^\circ$ longitude, with a declination angle around -20° (westward). The solid lines and dashed lines indicate the geographic equator and geomagnetic equator, respectively.

Line 116-117 What is special of O+ density along the magnetic line with apex altitude between 265 and 315 km ? Can you show the model result between altitude 150 to 315 km for all latitude?

Sorry for our typo. We have modified this sentence to “Figure 1 shows the O+ density along the magnetic lines with altitudes between 150 and 315 km in the latitude-altitude plane at the time and longitude described above” in Line 118-120.

Line 214-226 Again, what is the new finding out of fig.3 in Rajesh et al. (2014) ?

Figure 3 in Rajesh et al. [2014] shows statistical results of midnight brightness for different seasons using all the ISUAL images. They collected all the airglow mode data to consider the occurrence of the brightness region but they did not separate the situations for different longitudinal regions.

As we explained in our response to the previous question, Fig. 5 in Chiang et al. [2013] indicates that the latitudinal locations of brightness observed from 3 different orbits (different longitudes) are quite different. We need to consider both temperature change and meridional neutral wind such that the production of midnight brightness in different longitudinal regions can be appropriately addressed. Thus, the statistical results of Fig. 3 in Rajesh et al. [2014] can be considered preliminary work to address the production of midnight brightness, but a broader study to include more relevant physics, such as one also considering the physical factors related to the longitudes, is warranted so as to improve our understanding on the topic. This is also the reason why our study in this manuscript just focuses on the specific longitudinal regions.

Figure 1 has to be modified, what is the reason that the authors didn't convert [O+] density to volume emission rate of 630.0 nm nightglow while the observation images are the airglow intensities?

The effects of neutral wind and temperature on the volume emission rate of the 630.0 nm nightglow are shown in Fig. 2 in our manuscript. The volume emission rate of the 630.0 nm nightglow in the F2 region can be derived as follows:

$$I_{630} = \frac{A_{1D}\mu_D\gamma[O_2][O^+]}{k_1[N_2] + k_2[O_2] + k_3[O] + A_{1D} + A_{2D}}$$

It shows that the volume emission rate is associated with neutral and charged densities. Charged density can be shifted along the field line by neutral wind. On the other hand, most of the items, including charged density, neutral densities and chemical reaction rates, can be affected by temperature variation. Here we would like to explain the thread of thoughts in describing Fig. 1 and Fig. 2. In the context, we first let readers understand the neutral wind effect on charged densities (as shown in Fig. 1), and subsequently we show the effects of neutral wind and temperature on the volume emission rate of the 630.0 nm nightglow (as shown in Fig. 2). Referee #2 suggested that we plot volume emission rate instead of [O+] density in Figure 1. If we plot volume emission rate as suggested, that means both the neutral wind effect and temperature effect need to be considered in Figure 1. Thus it will require lots of figures to show the results because temperature changes need to be considered. We

are afraid that readers would be confused by the large number of plots in such an early part of the manuscript, and thus it might not be easy for them to understand our points. Therefore, we tend to keep Fig. 1 as it is shown in the previous manuscript.

Minor points line by line:

Line 43 enhancement > increase

Thank you. We have revised it in Line 43.

Line 45-46 "first reported the MTM" should be "reported the MTM phenomenon first"

Thank you. We have revised it in Line 45.

Line 61 What are the different mechanisms addressed in Chiang et al. (2013)? The readers would be pleased to learn the relevant work leading by the same author.

Thanks for the Reviewer's comment, we have put the sentence in Line 60-67.

The following figure is Fig. 6 in Chiang et al. [2013]. In the paper, our major goals are to investigate the different patterns of midnight brightness observed by ISUAL and to consider the possible mechanisms for all kinds of cases. Occurrence rates of the four brightness types from all the orbits in each month are shown in the figure: single equatorial brightness (SEB) cases are in green, double equatorial brightness (DEB) in yellow, conjugate brightness (CB) in red, and no brightness (NB) in blue. We found that midnight brightness was controlled by different sources at different locations. First, NB was associated with the ionospheric annual anomaly during May to July. Second, we suppose that SEB and DEB were associated primarily with the MTM effect and the featured temperature variation. Third, the CB case, however, was associated largely with the winter anomaly which the neutral wind plays a role in its formation. It is necessary to take into account the locations and seasons when explaining the mechanisms of midnight brightness occurrence. Overall, the global midnight brightness can be contributed by several effects including the influence of the MTM effect, summer-to-winter neutral wind and ionospheric anomaly.

Line 142-143 Rewrite the sentence please.

Thanks for the Reviewer's comment, we have rewritten the sentence in Line 144-147 as follows:

"In order to explore the effects of temperature change, we modify the codes of SAMI2 by increasing 50 K per run as the inputs, and perform the simulations to calculate the emission intensity values associated with different temperature conditions."

Line 193-195 Rewrite the sentence please.

Thanks for the Reviewer's comment, we have rewritten the sentence in Line 185-187 as follows:

"Therefore, we suggest that the low-latitude emission enhancement in the winter hemisphere be achieved by plasma accumulation brought about by the summer-to-winter neutral wind."

Line 202-203 Rewrite the sentence please.

Thanks for the Reviewer's comment, we have rewritten the sentence in Line 204-207 as follows:

"In comparison, the change due to temperature variation is just 0.015 photon/cm³/sec for every K. The ratio of the two numbers is 46. Consideration of

other conditions, such as those cases shown in Fig. 2, may reduce the corresponding ratio, but it should still be at least 20.”

1 Variations of the 630.0 nm airglow emission with meridional
2 neutral wind and neutral temperature around midnight

3 Chih-Yu Chiang¹, Sunny Wing-Yee Tam¹, Tzu-Fang Chang^{1,2}

4 ¹ Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan
5 70101, Taiwan

6 ² Institute for Space-Earth Environmental Research, Nagoya University, Nagoya
7 464-8601, Japan

8 **Abstract**

9 The ISUAL payload onboard the FORMOSAT-2 satellite has often observed
10 airglow bright spots around midnight at equatorial latitudes. Such features had been
11 suggested as the signature of thermospheric midnight temperature maximum (MTM)
12 effect, which was associated with temperature and meridional neutral winds. This
13 study investigates the influence of neutral temperature and meridional neutral wind on
14 the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to
15 simulate the charged and neutral species at the 630.0 nm nightglow emission layer
16 under different temperatures with and without the effect of neutral wind. The results
17 show that the neutral wind is more efficient than temperature variation in affecting the
18 nightglow emission rates. However, the emission rate features a local maximum in its
19 variation with the temperature. Two kinds of tendencies can be seen regarding the
20 temperature that corresponds to the turning point, which is named the turning
21 temperature (T_t) in this study: firstly, T_t decreases with the emission rate for the same
22 altitude; secondly, for approximately the same emission rate, T_t increases with the
23 altitude.

24

25

26

27 1. Introduction

28 The atomic oxygen red line at 630.0 nm is the most prominent emission in the
29 nighttime ionosphere. It usually forms an emission layer in the F region at altitudes of
30 ~200–300 km and can be easily observed from ground-based observatories or
31 satellites [Nelson and Cogger, 1971; Kelley *et al.*, 2002; Thuillier *et al.*, 2002]. The
32 emission is related to O(¹D), whose production in the nighttime is mainly via the
33 charge exchange and dissociative chemical processes listed as follows:

37 Based on the $[O^+] \sim N_e$ (electron density) approximation [Peterson *et al.*, 1966;
38 *Link and Cogger, 1988*] in the F2 region, the intensity of the OI(¹D) 630.0 nm spectral
39 line is usually used to identify the ionospheric electron density variations. From a rich
40 history in the literature, the intensity of OI(¹D) 630.0 nm airglow emissions is known
41 as Midnight Brightness Wave (MBW) [*Herrero and Meriwether, 1980; Herrero et al.,*
42 *1993; Colerico et al., 1996; Colerico and Mendillo, 2002*].

43 During occurrences of MBW, **increase** in temperature are usually observed
44 around local midnight, which are termed Midnight Temperature Maximum (MTM)
45 effect. *Harper* [1973] and *Spencer et al.* [1979] **reported the MTM phenomenon first.**

46 The cases in their studies were observed by the incoherent scatter radar from Arecibo
47 and the NATE experiment aboard the Atmospheric Explorer E (AE-E) satellite,
48 respectively. The amplitude of the temperature bulge was found to range from 20 to
49 200 K [Spencer *et al.*, 1979; Burnside *et al.*, 1981; Colerico and Mendillo, 2002;
50 Meriwether *et al.*, 2008]. In addition, a number of studies about midnight brightness
51 have reported the relation between *in-situ* temperature and neutral wind measurements
52 [e.g., Herrero and Meriwether, 1980; Sastri *et al.*, 1994, Colerico *et al.*, 1996, 2002;
53 Otsuka *et al.*, 2003; Mukherjee *et al.*, 2006]. Rajesh *et al.* [2009] showed the first
54 results of the limb image of 630.0 nm airglow using Imager of Sprites and Upper
55 Atmospheric Lightning (ISUAL) [Chang *et al.*, 2012; Chiang *et al.*, 2013; Frey *et al.*,
56 2016] on board the FORMOSAT-2 satellite. Adachi *et al.* [2010] also showed a
57 14-day time span of airglow observations obtained from the Asian sector by ISUAL.
58 On the basis of the observation time and location, they suggested that the equatorial
59 airglow probably corresponded to the midnight brightening wave (MBW) which is in
60 association with the occurrence of MTM. Furthermore, Chiang *et al.* [2013]
61 statistically investigated the global midnight brightness according to seasons and
62 found that the global midnight brightness near the equatorial regions was controlled
63 by different mechanisms. In the study, the features and behavior of the 630.0 nm
64 midnight intensity were investigated by analyzing the optical images obtained by

65 ISUAL. Cases of global midnight brightness were successfully categorized into four
66 types that were mainly due to the influence of temperature changes, neutral wind and
67 ionospheric anomaly.

68 Based on the previous studies, it is known that temperature and meridional
69 neutral wind are correlated and associated with manifestations of MTM. Thus, we
70 want to discuss these two effects at the same time. In this study, we calculate the volume
71 emission rates to understand the influence of neutral temperature and meridional
72 neutral wind on the 630.0 nm nightglow. We shall discuss the sensitivities of the
73 emission rates to the temperature and the densities of several neutral and charged
74 species. Moreover, some new features will also be shown in the discussion section.
75 And we also provide ISUAL observation results to show that our calculation results
76 are reasonable and realistic.

77

78 **2. Model features**

79 Temperature changes and meridional neutral wind can influence the O(¹D)
80 nightglow intensity through particle densities. The volume emission rate of the 630.0
81 nm nightglow in the F2 region [Sobral *et al.*, 1993] can be derived from the chemical
82 process of 630.0 nm nightglow (Supplement I). It is shown as follows:

$$83 I_{630} = \frac{A_{1D}\mu_D\gamma[O_2][O^+]}{k_1[N_2] + k_2[O_2] + k_3[O] + A_{1D} + A_{2D}} , \quad (4)$$

84 where μ_D is the quantum yield of O(¹D), which is about 1~1.3 [Torr and Torr, 1982];
85 γ is the rate coefficient of Reaction (1) [St.-Maurice and Torr, 1978]; k_1 , k_2 and k_3 are
86 the rate coefficients of O(¹D) quenched by N₂, O₂ and O, respectively [Langford *et al.*,
87 1986; Streit *et al.*, 1976; Sun and Dalgarno, 1992]; and A_{1D} and A_{2D} are the transition
88 coefficients [Froese-Fischer and Saha, 1983]. The formulas for the rate coefficients
89 [Vlasov *et al.*, 2005] are listed in Table 1. The production rate of O(¹D) is contributed
90 by the oxygen ion density [O⁺] and the molecular oxygen density [O₂] through the
91 linked reactions (1) and (2). The major loss rates of O(¹D) are associated with the
92 densities of molecular oxygen [O₂], molecular nitrogen [N₂], and atomic oxygen [O],
93 as reflected in Eq. (4). The densities [O⁺], [O₂], [N₂] and [O] and the rate coefficients
94 γ , k_1 , k_2 and k_3 all depend on temperature. In addition, [O⁺] may change with the
95 neutral wind conditions. In order to determine I_{630} under different temperatures and
96 neutral wind conditions, one must first determine the densities of the relevant species.
97 In this study, [O⁺] and plasma temperatures under various conditions are found by the
98 SAMI2 model of the Naval Research Lab [Huba *et al.*, 2000]. SAMI2 is a two-
99 dimensional, first-principle model of the comprehensive low to mid-latitude
100 ionosphere. SAMI2 code includes most of the mechanisms that should be considered
101 in the ionosphere. There are photoionizations, chemical process, effects by the
102 magnetic and electric fields, plasma dynamics and the influence from the neutral

103 atmosphere. The input variables, neutral species, are specified using the empirical
104 codes, the Mass Spectrometer Incoherent Scatter model (NRLMSISE-00) [Picone *et*
105 *al.*, 2002] for neutral densities and the Horizontal Wind Model (HWM-93) [Hedin *et*
106 *al.*, 1996] for neutral wind. The continuity and momentum equations of seven ion
107 species (H^+ , He^+ , N^+ , O^+ , N_2^+ , NO^+ , and O_2^+) are solved in the code.

108 In order to understand the differences due to the meridional neutral wind, we
109 apply the SAMI2 model with and without neutral wind by changing the multiplicative
110 factor of neutral wind (tvn0) to see the differences between two solstices. Thus, we
111 simulate the cases of February 1, 2007 (northern winter) and August 1, 2007 (northern
112 summer). In the simulations, we suppose that the solar and geomagnetic activities are
113 in quiet conditions (F10.7 index = 60, Ap index = 7). The simulations are run for the
114 altitude range between 150 and 1000 km from -30° to $+30^\circ$ geomagnetic latitudes.
115 Inside this region, we use 100 geomagnetic field lines and 201 grid points along **each**
116 field line. Our report of the results will focus on the locations at -5° and $+5^\circ$
117 geomagnetic latitude ($+2^\circ$ and $+12^\circ$ geographic latitude respectively) along the 100°E
118 geographic longitude, which intersects these latitudes in the Asian region. **Figure 1**
119 **shows the O^+ density along the magnetic lines with altitudes between 150 and 315 km**
120 **in the latitude-altitude plane at the time and longitude described above.** Figure 1(a)
121 shows the results under the condition that lacks neutral wind, and Fig. 1(b) shows the

122 results with the effect of normal neutral wind. The two left panels are for February 1,
123 2007 and the two right panels are for August 1, 2007. The arrows plotted in Fig. 1(b)
124 indicate the strength and directions of the meridional neutral wind. Comparison of Fig.
125 1(a) and 1(b) clearly shows that meridional winds transport the plasma along the
126 magnetic field line and change the plasma density distribution. And this change of the
127 plasma profile could directly modify the emission rate in Eq. (4). The dashed lines,
128 which correspond to $\pm 5^\circ$ geomagnetic latitude, indicate the locations where the
129 intensity of the 630.0 nm nightglow is examined in detail in this study.

130

131 **3. Results and Analysis**

132 Based on Eq. (4), I_{630} under different temperatures and different neutral wind
133 conditions is plotted in Fig. 2. The neutral wind conditions for the results in Fig. 2 are
134 the same as those for Fig. 1. The strength and directions of the neutral winds are
135 indicated by the arrows shown in Fig. 1. The simulation results shown in the figure
136 are for (a) February 1, 2007 and (b) August 1, 2007, with the left and right panels
137 respectively corresponding to -5° and $+5^\circ$ geomagnetic latitude. The letters, A, B, C,
138 D and E, indicate the altitudes of 220, 230, 240, 250 and 260 km, respectively. The
139 dotted lines indicate the results with normal neutral wind effect; the solid lines
140 indicate the results without neutral wind effect. Note that the temperatures of around

141 650 K, corresponding to the leftmost points of the lines in the figure, were the initial
142 neutral temperatures obtained from the NRLMSISE-00 model at the various altitudes.
143 These neutral temperatures are input into the SAMI2 model, and we set up the
144 48-hour data as a running loop to obtain the plasma data. In order to explore the
145 effects of temperature change, we modify the codes of SAMI2 by increasing 50 K per
146 run as the inputs, and perform the simulations to calculate the emission intensity
147 values associated with different temperature conditions.

148 From Fig. 2, we can see the influence of temperature and neutral wind on the
149 nightglow emission. Note that the neutral wind conditions are as in Fig. 1: Fig. 1(a)
150 for zero wind condition and Fig. 1(b) for normal wind condition. The influence of the
151 temperature variations on I_{630} is usually less than 3 photons/cm³/sec at the heights of
152 220 to 260 km. The variation of I_{630} with temperature, however, is not monotonic;
153 there is a maximum in the intensity as the temperature changes. In terms of height, as
154 I_{630} depends on the local neutral and charged particle densities in accordance with Eq.
155 (4), the emission is the strongest at 230 km, except for the condition of very weak
156 emission (< 1 photon/cm³/sec) that occurs at +5° geomagnetic latitude in August with
157 normal wind effect (right panel of Fig. 2(b)).

158 As for the influence of the neutral wind on February 1, 2007 (Fig. 2(a)), both
159 locations ($\pm 5^\circ$ geomagnetic latitude) clearly feature significantly smaller I_{630} under

160 this effect. We suggest that this is due to the meridional neutral wind blowing
161 equatorward in both hemispheres (see Fig. 1) and pushing the plasma upward along
162 the field lines, reducing the local charged particle densities and consequently the
163 emission rates as well. On August 1, 2007, as shown in Fig. 2(b), the neutral wind
164 causes the intensity at $+5^\circ$ geomagnetic latitude to decrease significantly for the same
165 reason as the wind direction is locally southward (equatorward). This southward
166 neutral wind, however, has an opposite effect on the intensity at -5° geomagnetic
167 latitude; being locally poleward, the wind pushes the plasma downward along the
168 field lines, increasing the local charged particle densities and consequently the
169 emission rates as well.

170 From Eq. (4), we can see that I_{630} is related to the densities of several neutral
171 species as well. In order to find out how the temperature affects the overall chemical
172 process that leads to the 630.0 nm emission, a few relevant parameters are shown as
173 functions of temperature in Fig. 3, based on the condition at 230 km altitude and -5°
174 geomagnetic latitude on February 1, 2007. In Fig. 3(a), the $\text{O}({^1}\text{D})$ loss-rate terms
175 associated with $[\text{O}]$, $[\text{N}_2]$ and $[\text{O}_2]$, are shown in dotted, dashed and solid lines
176 respectively. The term $\gamma [\text{O}^+][\text{O}_2]$, which is related to the $\text{O}({^1}\text{D})$ production rate and
177 is in the numerator of Eq. (4), is plotted in Fig. 3(b). The dotted line represents the
178 normal neutral wind condition, and the solid line for the windless condition.

179

180 **4. Discussion**

181 From Fig. 1(a), we can see that along the field lines, the O⁺ density is maximum
182 around the geomagnetic equator when there is no neutral wind, whether it is in the
183 summer or winter season. But the [O⁺] maxima tilt to the winter hemisphere in the
184 presence of summer-to-winter neutral wind at the geomagnetic equator, as shown in
185 Fig. 1(b). **Therefore, we suggest that the low-latitude emission enhancement in the**
186 **winter hemisphere be achieved by plasma accumulation brought about by the**
187 **summer-to-winter neutral wind.**

188 From the results that include the normal wind effect as shown in Fig. 2, the
189 intensities on opposite sides of the geomagnetic equator are very different. The
190 weaker emission is in the summer hemisphere, and brightness of higher intensity
191 appears in the winter hemisphere. In previous studies, *Rishbeth and Setty* [1961]
192 found that NmF2 was larger in winter than in summer, and they first suggested the
193 possibility of composition change being the cause of the winter anomaly. *Rishbeth*
194 [1972] and *Torr and Torr* [1973] suggested that the anomaly might be due to
195 transequatorial neutral wind blowing from the summer hemisphere to the winter
196 hemisphere. Therefore, the enhancement of the emission at the low latitudes of the
197 winter hemisphere should be the results of plasma accumulation caused by the neutral

198 wind effect.

199 Figure 2 shows the influence of temperature and neutral wind on the nightglow
200 emission rates. We estimate the intensity change under different neutral wind
201 conditions based on the location at 230 km altitude and -5° geomagnetic latitude on
202 February 1, 2007. In this situation, the emission would be reduced by the wind flow,
203 and the average change is about 0.690 photon/cm³/sec for every m/sec of the wind
204 speed. In comparison, the change due to temperature variation is just 0.015
205 photon/cm³/sec for every K. The ratio of the two numbers is 46. Consideration of
206 other conditions, such as those cases shown in Fig. 2, may reduce the corresponding
207 ratio, but it should still be at least 20. According to earlier studies, the neutral wind
208 speed is generally 0-300 m/sec in the F region [Dyson *et al.*, 1997], while the
209 amplitude of the temperature bulge due to the MTM effect has been found to range
210 from 20 to 200 K [Burnside *et al.*, 1981; Colerico and Mendillo, 2002]. Even if one
211 assumes the maximum wind speed is just 60 m/sec as in the simulations in this study,
212 it would require a temperature change of 1200 K to match the same change in
213 emission intensity caused by the neutral wind. Such a large temperature change is not
214 realistic in comparison with the maximum observed difference of 200 K. Thus, the
215 emission rate of nightglow, realistically, is influenced more by the neutral wind than
216 temperature change when the former mechanism is clearly present.

217 The densities and some of the rate coefficients are temperature dependent, as
218 given in Eq. (4). We analyze the change with temperature of the individual terms in
219 Eq. (4). In Fig. 3(a) and Fig. 3(b), we **plot** the terms in the numerator and denominator
220 on the right-hand side of Eq. (4) and **find** that all these terms increase with
221 temperature. However, if we consider the derivative of the terms with respect to
222 temperature, which characterizes how sensitive the terms are to temperature change,
223 we notice that the derivatives for $k_1[N_2]$ and $k_3[O]$ increase with temperature while
224 those for $k_2[O_2]$ and $\gamma [O^+][O_2]$ decrease, as shown in Fig. 3(a) and 3(b). How the
225 variations of these terms affect the dependence of I_{630} on temperature can now be
226 understood from the right-hand side of Eq. (4). In particular, the numerator, which
227 characterizes the production rate of $O(^1D)$ and is proportional to $\gamma [O^+][O_2]$,
228 increases with temperature while featuring a relatively large increase at lower
229 temperatures (less than ~ 750 K). On the other hand, the denominator, which
230 characterizes the total loss rate of $O(^1D)$ and is dominated by $k_1[N_2]$ as Fig. 3(a)
231 indicates, features a relatively large increase at higher temperatures (larger than ~ 750
232 K). Upon division of the numerator by the denominator, the plot of I_{630} vs.
233 temperature is thus characterized by quasi-parabolic lines with the presence of a local
234 maximum --- or a turning point in the curve --- as shown in Fig. 2. We refer to the
235 temperature that corresponds to such a local maximum as the turning temperature (T_t).

236 Below T_t , I_{630} increases with temperature, meaning that the increase in the production
237 of $O(^1D)$ associated with a rise in the temperature is more efficient than the increase in
238 its loss. In contrast, I_{630} decreases with temperature above T_t , meaning that the
239 increase in the production of $O(^1D)$ associated with a rise in the temperature is less
240 efficient than the increase in its loss. Thus, T_t has the significance of being the
241 temperature at which the production and loss rates of $O(^1D)$ are equally sensitive to a
242 temperature change.

243 In order to quantitatively describe the effects of neutral temperature and
244 meridional neutral winds, we calculate the 630-nm airglow intensity by integrating the
245 volume emission rate along the altitude. Figure 4(a) and 4(b) show how the integrated
246 emission rates vary with the increasing neutral temperature and neutral winds,
247 respectively. Fig. 4(a) shows the result regarding the integrated emission rate as
248 affected by neutral temperature (at -5° geomagnetic latitude on February 1, 2007). The
249 curve in red is fitted as 2nd-order polynomial :

$$250 \quad S = (0.1354 \pm 0.0069)(\Delta T) - (4.6835 \pm 0.2652) \times 10^{-4}(\Delta T)^2,$$

251 where S ($km/(cm^3 * s)$) is the change in integrated emission rate and ΔT (K) is
252 the increase in neutral temperature, compared with the standard conditions of 650 K
253 neutral temperature and zero neutral wind. Fig. 4(b) shows the result regarding the
254 integrated emission rate as affected by neutral wind. The results are obtained based on

255 the same standard conditions as those considered in Fig. 4(a). The curve in red fits an
256 exponential function :

257
$$S = (64.8883 \pm 0.7772) \times \{1 - \exp[-(0.0885 \pm 0.0041)(\Delta W)]\},$$

258 where S (km/(cm³ * s)) is the change in integrated emission rate and ΔW (m/s)
259 is the change in neutral wind velocity. Therefore, we combine the results of the two
260 fitting functions to approximate the overall change in the integrated emission rate due
261 to the two effects:

262
$$S = 0.1354(\Delta T) - 4.6835 \times 10^{-4}(\Delta T)^2 + 64.8883[1 - \exp(-0.0885(\Delta W))],$$

263 Based on the function, we can quantitatively compare the neutral temperature effect
264 with the neutral wind effect. In Fig. 4(a), the maximum change of the integrated
265 emission rate by increasing the neutral temperature is 9.7859 (km/(cm³ * s)) at 145
266 K. To get the same changes of the emission rate by varying the neutral wind, it just
267 requires a neutral wind velocity of 1.85 m/s. Above such a velocity, the neutral wind
268 effect would certainly be larger than that of the neutral temperature for this case.

269 Figure 5 shows a plot of T_t versus the emission rate I_{630} at specific altitudes. The
270 results include all the cases shown in Fig. 2 with different symbols indicating different
271 altitudes. Two kinds of tendencies can be seen from the plot: firstly, T_t decreases with
272 I_{630} for the same altitude; secondly, for approximately the same emission rate, T_t
273 increases with the altitude. This is the first result to show these tendencies of the

274 turning temperature.

275 Observations have found cases that are consistent with our simulation results
276 regarding the influence of the neutral wind. Figure 6 shows four cases observed by
277 ISUAL in the Asian region at 23:00 local time during the two months considered in
278 our studies: two cases in February shown on the left side and two cases in August
279 shown on the right side. Figure 6(a) would be for the condition of no wind or weak
280 wind while Fig. 6(b) would correspond to the normal wind condition. We can see
281 from Fig. 6(a) that a bright spot of nightglow was observed at the geomagnetic
282 equator during both months. As the volume emission rate, according to Eq. (4), is
283 proportional to the O^+ density, the observations were supportive of the simulation
284 results of density variations in Fig. 1(a). Similarly, the two cases in Fig. 6(b), which
285 featured nightglow bright spots in the winter hemisphere, suggested that the density
286 variations shown in Fig. 1(b) are realistic.

287 Previously, Chiang et al. [2013] examined the occurrence rates of global
288 midnight brightness observed by ISUAL. In order to verify the enhancement of the
289 emission intensity in the winter hemisphere by the neutral wind, we examined the
290 ISUAL data that correspond to the specific regions and seasons considered in our
291 simulations and the results are shown in Fig. 7(a) and (b). We found that among the
292 22 valid observation days during January and February, ~77% of the days featured the

293 appearance of nightglow bright spots in the low-latitude region of the winter
294 hemisphere (Fig. 7(a)). Furthermore, ~83% of the 30 valid observation days during
295 July-August also featured nightglow bright spots at low latitudes in the corresponding
296 winter hemisphere (Fig. 7(b)). Thus, statistical results regarding the location of
297 nightglow bright spots agree with the simulation results that demonstrate the crucial
298 role of the neutral wind in affecting the location of high-intensity nightglow regions.

299 *Rajesh et al. [2014]* showed their simulation results and claimed that using
300 merely the background meridional winds could reproduce the observed brightness.
301 They selected a few cases of ISUAL image data and compared those data with the
302 simulation results by the SAMI2 model. Nevertheless, using such a method by Rajesh
303 et al. [2014], one should be very careful about the details when it comes to physical
304 insights or conclusions drawn from the study. This is because ISUAL only provided
305 optical data and there was not any instrument on the satellite to directly observe the
306 relevant conditions (temperature, wind field, etc.) in the environment. Without such
307 observations to provide constraints for modeling, one can easily reproduce
308 similar-looking results of selected short-period data by adjusting modeling parameters
309 in simulations. However, images seemingly similar to that of an ISUAL observation
310 could be produced from simulation results using considerably different parameter
311 values, which may correspond to different dominant mechanisms. Thus, when there

312 are few constraints for the parameter values, roughly comparing a short-period case of
313 ISUAL image data with simulation results without paying attention to details may
314 lead to an interpretation of brightness production mechanisms that is different from
315 the real situation.

316 Observations of the movement of MTM temperature bulge and that of nightglow
317 have led to postulations of an association between pressure bulge and nightglow
318 intensity [*Colerico et al.*, 1996; *Colerico and Mendillo*, 2002; *Meriwether et al.*,
319 2008]. However, the high intensities of the observed nightglow have not been
320 successfully reproduced using existing models incorporating the MTM effect, such as
321 the NCAR thermosphere-ionosphere-electrodynami general circulation model
322 (TIEGCM), as pointed out by *Colerico and Mendillo* [2002] and *Meriwether et al.*
323 [2008]. Note that temperature was not included as a varying quantity in traditional
324 ionospheric models. Thus the simulation study of temperature effect upon nightglow
325 intensity is lacking. Our simulation results have demonstrated the unexpectedly
326 non-monotonic dependence of the intensity of nightglow on the neutral temperature,
327 with the turning temperature T_t that arises from the dependence implying a limitation
328 for the growth of the emission rates. As the temperature increases above T_t , the
329 emission rates do not continue to grow. In fact, temperature change such as in the case
330 of heat transfer is affected by the density, which controls the heat capacity. At the

331 same time, temperature change may generate pressure difference and lead to transport
332 that changes density profiles. As nightglow intensity depends also on particle densities,
333 its non-monotonic variations with temperature are in fact due to the combination of
334 temperature and density. While our study suggests that neutral wind is the dominant
335 **driver** of the I_{630} variation, its influence, however, is via transportation of plasma and
336 neutral particles, in which case consideration of the effect of temperature on the
337 density is essential. Moreover, it has not been established that MTM is affected by the
338 wind primarily. The combination of temperature and density, which has shown to
339 cause non-monotonic results in this study, may very well be an important factor in the
340 study of MTM. Thus, if one wants to fully reproduce the observation results, we
341 suggest other extra factors associated with temperature variations should also be
342 considered, such as different tidal modes from lower atmosphere [Akmaev *et al.*,
343 2009]. Our findings of the turning temperature tendencies can help as a guide for
344 choosing the background temperature in future modeling attempts to obtain intensities
345 of nightglow brightness comparable to those observed from ground or from space.
346 *Shepherd* [2016] investigates the possible extent of the MTM at $\sim 20^{\circ}\text{N}$ – 40°N ,
347 considering O(1D) airglow volume emission rates, Doppler temperatures, and neutral
348 **wind** (zonal and meridional) observations by the Wind Imaging Interferometer
349 (WINDII) experiment on board the Upper Atmosphere Research Satellite (UARS).

350 Their results provide us the relations of the zonal wind to the O(1D) emission rate and
351 of the meridional wind to the temperature. Such relations potentially guide us to
352 design a more extensive future study in simulation so as to reproduce the observation
353 and statistical results by *Shepherd [2016]*.

354

355 **5. Conclusion**

356 Previous studies of the MTM effect have pointed out that the temperature
357 anomaly influences the nighttime behavior of the thermosphere. And the neutral wind
358 also plays a key role to cause the intensity variations in the nighttime ionosphere.
359 Based on our simulation results, both temperature change and meridional neutral wind
360 could cause the 630.0 nm nightglow intensity to vary while the latter is more effective.

361 And the simulation results may successfully explain most of the observational results
362 by ISUAL. An unexpected aspect of the results is the non-monotonic dependence of
363 the emission rate on temperature, featuring a turning point as the temperature changes.
364 The temperature T_t at which the turning point occurs corresponds to a balanced
365 condition between the production and loss of O(1D). Thus, our results help understand
366 how the overall chemical process of nightglow is affected by the variations of neutral
367 temperature and neutral wind. Two kinds of tendencies can be seen regarding the
368 turning temperature T_t . One is the higher T_t corresponding to higher altitude at the

369 same emission rate, the other is the higher T_t corresponding to lower emission rate at
370 the same altitude. Our findings of these turning temperature tendencies can guide
371 future modeling attempts to match the observed nightglow brightness intensities.

372

373 **Acknowledgements**

374 The authors acknowledge the FORMOSAT-2/ISUAL science and operator team
375 to provide image data (<http://sprite.phys.ncku.edu.tw/en/about-cdf-distribution>). The
376 work by C. Y. Chiang and S. W. Y. Tam is supported by Taiwan's Ministry of Science
377 and Technology grants MOST105-2111-M-006-007. T. F. Chang acknowledges
378 support by the Ministry of Education, Taiwan R.O.C., from The Aim for the Top
379 University Project to National Cheng Kung University.

380

381

382

383

384

385

386

387

388 **References**

389 Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.-C. Hsiao, A. B. Chen,
390 and R.-R. Hsu (2010), Midnight latitude-altitude distribution of 630-nm airglow
391 in the Asian sector measured with FORMOSAT-2/ISUAL, *J. Geophys. Res.*,
392 doi:10.1029/2009JA015147.

393 Akmaev, R. A., F. Wu, T. J. Fuller-Rowell, and H. Wang (2009), Midnight
394 temperature maximum (MTM) in Whole Atmosphere Model (WAM)
395 simulations, *Geophys. Res. Lett.*, 36, L07108, doi:10.1029/2009GL037759.

396 Burnside, R. G., F. A. Herrero, J. W. Meriwether Jr., and J. C. G. Walker (1981),
397 Optical observations of thermospheric dynamics at Arecibo, *J. Geophys. Res.*,
398 86, 5532.

399 Chang, T. F., C. Z. Cheng, C. Y. Chiang, and A. B. Chen (2012), Behavior of substorm
400 auroral arcs and Pi2 waves: Implication for the kinetic ballooning instability,
401 *Ann. Geophys.*, 30, 911–926, doi:10.5194/angeo-30-911-2012.

402 Chiang, C. Y., T. F. Chang, S. W.-Y. Tam, T. Y. Huang, A. B.-C. Chen, H. T. Su, and R.
403 R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of
404 brightness measured by ISUAL. *Terr. Atmos. Ocean. Sci.*, 24, 283-293, doi:
405 10.3319/TAO.2012.12.13.01(SEC)

406 Colerico, M., M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick,

407 B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi (1996), Coordinated
408 measurements of F region dynamic related to the thermospheric midnight
409 temperature maximum, *J. Geophys. Res.*, 101, 26,783–26,793.

410 Colerico, M. J., and M. Mendillo (2002), The current state of investigations regarding
411 the thermospheric midnight temperature maximum (MTM), *J. Atmos. Sol. Terr.
412 Phys.*, 64, 1361– 1369.

413 Dyson, P. L., T. P. Davies, M. L. Parkinson, A. J. Reeves, P. G. Richards, and C. E.
414 Fairchild (1997), Thermospheric neutral winds at southern mid-latitudes: A
415 comparison of optical and ionosonde hmF2 methods, *J. Geophys. Res.*,
416 102(A12), 27189–27196, doi:10.1029/97JA02138.

417 Frey, H. U., et al. (2016), The Imager for Sprites and Upper Atmospheric Lightning
418 (ISUAL), *J. Geophys. Res. Space Physics*, 121, 8134–8145,
419 doi:10.1002/2016JA022616.

420 Froese-Fischer, C., and H. P. Saha (1983), Multiconfiguration Hartree-Fock results
421 with Breit-Pauli corrections for forbidden transitions in the 2p4 configuration,
422 *Phys. Rev. A*, 28, 3169– 3178.

423 Harper, R. M. (1973), Nighttime meridional neutral winds near 350 km at low to
424 mid-latitudes, *J. Atmos. Terr. Phys.*, 35, 2023– 2034.

425 Hedin, A.E., E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J.

426 Franke, G.J. Fraser, T. Tsuda, F. Vial, and R.A. Vincent (1996), Empirical wind
427 model for the upper, middle, and lower atmosphere, *J. Atmos. Terr. Phys.*, 58,
428 1421-1447.

429 Herrero, F. A., and J. W. Meriwether Jr. (1980), 6300 airglow meridional intensity
430 gradients, *J. Geophys. Res.*, 85, 4191.

431 Herrero, F. A., N. W. Spencer, and H. G. Mayr (1993), Thermosphere and F-region
432 plasma dynamics in the equatorial region, *Adv. Space Res.*, 13(1), 201–220.

433 Huba, J. D., G. Joyce, and J. A. Fedder (2000), Sami2 is another model of the
434 ionosphere (SAMI2): A new low-latitude ionosphere model, *J. Geophys. Res.*,
435 105, 23,035–23,053.

436 Kelley, M. C., J. J. Makela, B. M. Ledvina, and P. M. Kintner (2002), Observations of
437 equatorial spread F from Haleakala, Hawaii, *Geophys. Res. Lett.*, 29(20), 2003,
438 doi:10.1029/2002GL015509.

439 Langford, A. O., V. M. Bierbaum, and S. R. Leone (1986), Branching ratios for
440 electronically excited oxygen atoms formed in the reaction of N+ with O2 at
441 300 K, *J. Chem. Phys.*, 84, 2158– 2166.

442 Link, R., and L. L. Cogger (1988), A reexamination of the OI 6300 Å nightglow, *J.*
443 *Geophys. Res.*, 93(A9), 9883-9892.

444 Meriwether, J., Faivre, M., Fesen, C., Sherwood, P., and Veliz, O (2008), New results

445 on equatorial thermospheric winds and the midnight temperature maximum,
446 *Ann. Geophys.*, 26, 447–466.

447 Mukherjee, G. K., N. Parihar, K. Niranjan, and G. Manju (2006), Signature of
448 midnight temperature maximum (MTM) using OI 630 nm airglow, *Indian J.*
449 *Radio Space Phys.*, 35, 14–21.

450 Nelson, G. J., and L. L. Cogger (1971), Dynamical behavior of the nighttime
451 ionosphere at Arecibo, *J. Atmos. Terr. Phys.*, 33, 1711 – 1726,
452 doi:10.1016/0021-9169(71)90219-4.

453 Otsuka, Y., T. Kadota, K. Shiokawa, T. Ogawa, S. Kawamura, S. Fukao, and S.-R.
454 Zhang (2003), Optical and radio measurements of a 630-nm airglow
455 enhancement over Japan on 9 September 1999, *J. Geophys. Res.*, 108(A6), 1252,
456 doi:10.1029/2002JA009594.

457 Peterson, V. L., T. E. Van Zandt, and R. B. Norton (1966), F-region nightglow
458 emissions of atomic oxygen, 1. Theory, *J. Geophys. Res.*, 71, 2255–2265.

459 Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00
460 empirical model of the atmosphere: Statistical comparisons and scientific issues,
461 *J. Geophys. Res.*, 107(A12), 1468, doi:10.1029/2002JA009430

462 Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C.
463 H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee (2009), First results of the limb

464 imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper
465 Atmospheric Lightnings, J. Geophys. Res., 114, A10302,
466 doi:10.1029/2009JA014087.

467 Rajesh, P. K., C. H. Chen, C. H. Lin, J. Y. Liu, J. D. Huba, A. B. Chen, R. R. Hsu, and
468 Y. T. Chen (2014), Low-latitude midnight brightness in 630.0 nm limb
469 observations by FORMOSAT-2/ISUAL, J. Geophys. Res. Space Physics,
470 4894–4904, 119, doi:10.1002/2014JA019927.

471 Rishbeth, H., and C. S. G. K. Setty (1961), The F layer at sunrise, *J. Atmos. Terr.
472 Phys.*, 20, 263-267.

473 Rishbeth, H. (1972), Thermospheric winds and the F-region – A review, *J. Atmos. Terr.
474 Phys.*, 34, 1.

475 Sastri, J. H., H. N. R. Rao, V. V. Somayajulu, and H. Chandra, Thermospheric winds
476 associated with equatorial midnight temperature maximum (MTM), *Geophys.
477 Res. Lett.*, 21, 825, 1994.

478 Shepherd, M. G. (2016), WINDII observations of thermospheric O(1D) nightglow
479 emission rates, temperature, and wind: 1. The northern hemisphere midnight
480 temperature maximum and the wave 4, *J. Geophys. Res. Space Physics*, 121,
481 doi:10.1002/2016JA022703.

482 Sobral, J. H.A., H. Takahashi, M. A. Abdu, P. Muralikrishna, Y. Sahai, C. J. Zamlutti,

483 E. R. de Paula, and P. P. Batista (1993), Determination of the quenching rate of
484 the O(¹D) by O(³D) from rocket-borne optical (630 nm) and electron density
485 data, *J. Geophys. Res.*, 98, 7791-7798.

486 Spencer, N. W., C. R. Carignan, H. G. Mayr, H. B. Niemann, R. F. Theis, and L. E.
487 Wharton (1979), The midnight temperature maximum in the Earth's equatorial
488 thermosphere, *Geophys. Res. Lett.*, 6, 444.

489 St. Maurice, J. P., D. G. Tort, Nonthermal rate coefficients in the ionosphere: The
490 reactions of O₂⁺ with N₂, O₂, and NO, *J. Geophys. Res.*, 83, 969, 1978.

491 Streit, G. E., C. J. Howard, A. L. Schmeltekopf, J. J. A. Davidson, and H. I. Schiff
492 (1976), Temperature dependence of O(1D) rate constants for reactions with O₂,
493 N₂, CO₂, O₃ and H₂O, *J. Chem. Phys.*, 65, 4761– 4764.

494 Sun, Y., and A. Dalgarno (1992), Collisional excitation of metastable O(1D) atoms, *J.*
495 *Chem. Phys.*, 96, 5017– 5019.

496 Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble (2002), Photochemistry
497 and dynamics in thermospheric intertropical arcs measured by the WIND
498 Imaging Interferometer on board UARS: A comparison with TIE-GCM
499 simulations, *J. Atmos. Sol. Terr. Phys.*, 64, 405– 415,
500 doi:10.1016/S1364-6826(01)00109-2.

501 Torr, M. R. and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the

502 ionosphere, *J. Atmos. Terr. Phys.*, 35, 2237.

503 Torr, M. R. and D. G. Torr (1982), The role of metastable species in the

504 thermosphere, *Rev. Geophys. and Space Phys.*, **20**, 91–144.

505 Vlasov, M. N., M. J. Nicolls, M. C. Kelley, S. M. Smith, N. Aponte, and S. A.

506 Gonzalez (2005), Modeling of airglow and ionospheric parameters at Arecibo

507 during quiet and disturbed periods in October, 2002, *J. Geophys. Res.*, 110,

508 A07303, doi:10.1029/2005JA011074.

509

510

511

512

513

514

515

516

517

518

519

520

521 Table 1. Reactions and rate coefficients related to the volume emission rate of the
 522 630.0 nm airglow

Reactions	Rate Coefficients (cm ³ s ⁻¹ , s ⁻¹)
O ⁺ + O ₂ → O ₂ ⁺ + O	$\gamma = 2.82 \times 10^{-11} - 7.74 \times 10^{-12} (T_{\text{eff}}/300) + 1.07 \times 10^{-12} (T_{\text{eff}}/300)^2 - 5.17 \times 10^{-14} (T_{\text{eff}}/300)^3 + 9.65 \times 10^{-16} (T_{\text{eff}}/300)^4$
O(¹ D) + N ₂ → O + N ₂	$k_1 = 2 \times 10^{-11} \exp(107.8/T_n)$
O(¹ D) + O ₂ → O + O ₂	$k_2 = 2.9 \times 10^{-11} \exp(67.5/T_n)$
O(¹ D) + O → O + O	$k_3 = (3.73 + 1.1965 \times 10^{-1} T_n^{0.5} - 6.5898 \times 10^{-4} T_n) \times 10^{-12}$
O(¹ D) → O + hν(630.0nm)	$A_{1D} = 7.1 \times 10^{-3}$
O(¹ D) → O + hν(634.4nm)	$A_{2D} = 2.2 \times 10^{-3}$

523 Note: $T_{\text{eff}} = 0.67T_i + 0.33T_n$ (T_{eff} : effective temperature, T_i : ion temperature, T_n : neutral
 524 temperature) [St.-Maurice and Torr, 1978]

525

526

527

528

529

530

531

532

533

534

535

536

537

538 **Figure Captions**

539 Figure 1. Oxygen ion density plotted in the latitude-altitude plane at 23:00 LT on
540 February 1, 2007 (left panels) and August 1, 2007 (right panels) in the Asian
541 region (100°E longitude) from the SAMI-2 model: (a) without neutral wind; (b)
542 with the effect of normal neutral wind, whose strength and directions are
543 indicated by the arrows.

544 Figure 2. The results of 630.0 nm emission rate at 23 LT at different temperatures and
545 under different neutral wind conditions for (a) February 1, 2007 and (b) August
546 1, 2007: left and right panels respectively for -5° and +5° geomagnetic latitude;
547 the letters, A, B, C, D and E, for the altitudes of 220 km, 230 km, 240 km, 250
548 km and 260 km, respectively; for normal neutral wind effect (black dotted lines)
549 and windless conditions (red solid lines). The neutral wind conditions of Fig. 2
550 are the same as those shown in Fig. 1.

551 Figure 3. Profiles of the terms in Eq. (4) that are associated with neutral and charged
552 species versus temperature, based on 230 km altitude and -5° geomagnetic
553 latitude on February 1, 2007, with and without neutral wind: (a) the loss-rate
554 terms associated with [O], [N₂] and [O₂]; (b) the production-rate term γ
555 [O⁺][O₂].

556 **Figure 4.** Quantitative results for how (a) the neutral temperature and (b) the neutral

557 wind affect the 630-nm airglow intensity.

558 Figure 5. Plots of the emission rates against the turning temperature between 220-260

559 km altitudes.

560 Figure 6. Four observation cases by ISUAL in February 2007 and August 2007 (the

561 same periods as shown in Fig. 1).

562 Figure 7. ISUAL data in the specific regions and seasons considered in the

563 simulations: the nightglow bright spots in valid observation days during (a)

564 January-February and (b) July-August.

565

566

567

568

569

570

571

572

573

574

575

576 **Figure 1**

577

578

579

580

581

582

583

584

585

586

587

588 Figure 2

589

590

591

592

593

594

595

596

597

598

599 Figure 3

615 **Figure 4**

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630 Figure 5

631

632

633

634

635

636

637

638

639

640

641

642

643 **Figure 6**

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659 **Figure 7**

660

661