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Abstract—Tropospheric delay is an important error source in space geodetic techniques. 10 

The temporal and spatial variations of the zenith wet delay (ZWD) are very large, and 11 

thus limit the accuracy of tropospheric delay modelling. Thus it is worthwhile 12 

undertaking research aimed at constructing a precise ZWD model. Based on the 13 

analysis of vertical variations of ZWD, we divided the troposphere into three height 14 

intervals: below 2 km, 2 km to 5 km, and 5 km to 10 km, and determined the fitting 15 

functions for the ZWD within these height intervals. The global empirical ZWD model 16 

HZWD, which considers the periodic variations of ZWD with a spatial resolution of 5° 17 

× 5°, is established using the ECMWF ZWD profiles from 2001 to 2010. Validated by 18 

the ECMWF ZWD data in 2015, the precisions of the ZWD estimation in the HZWD 19 

model over the three height intervals are improved by 1.4 mm, 0.9 mm, and 1.2 mm, 20 

respectively, compared to that of the currently best GPT2w model (23.8 mm, 13.1 mm, 21 

and 2.6 mm). The test results from ZWD data from 318 radiosonde stations show that 22 

the root mean square (RMS) error in the HZWD model over the three height intervals 23 

was reduced by 2% (0.6 mm), 5% (0.9 mm), and 33% (1.7 mm), respectively, compared 24 

to the GPT2w model (30.1 mm, 15.8 mm, and 3.5 mm) over the three height intervals. 25 

In addition, the spatial and temporal stabilities of the HZWD model are higher than 26 

those of GPT2w and UNB3m. 27 

 28 
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Index Terms—Tropospheric delay, zenith wet delay, vertical variations, height dividing, 29 

HZWD model. 30 

 31 

1 Introduction 32 

The radio waves experience propagation delays when passing through the neutral 33 

atmosphere (primarily the troposphere), which are known as the tropospheric delays. 34 

The tropospheric delay is one of the main error source in space geodetic techniques. In 35 

the processing of the space geodetic data, the tropospheric delay along the propagation 36 

path is generally expressed as the product of zenith tropospheric delay (ZTD) and 37 

mapping function (MF). The ZTD is divided into a zenith hydrostatic delay (ZHD) and 38 

a zenith wet delay (ZWD) (Davis et al., 1985), and the ZHD can be accurately 39 

determined using pressure observations. Unlike the ZHD, the ZWD is difficult to 40 

calculate accurately due to the high spatio-temporal variation in water vapour. Its spatial 41 

distribution is characterized with a near-zonal dependency, with values varying from 42 

about 2 cm at high latitudes to about 35 cm near the equator (Fernandes et al., 2013). 43 

The temporal variation pattern of ZWD is mainly characterized by the seasonal 44 

variability including annual and semi-annual components (Jin et al., 2007; Nilsson et 45 

al., 2008). The high variabilities in ZWD make itself the main factor influencing 46 

tropospheric delay correction. 47 

Various methods and models are developed to estimate the ZWD. Ray-tracing uses 48 

the observations from radiosonde profile (Davis et al., 1985; Niell, 1996) or numerical 49 

weather models (Hobiger et al., 2008; Nafisi et al., 2012) to calculate the ZWD. It can 50 

provide the most accurate ZWD corrections. Models such as those developed by Bevis 51 

et al. (1992, 1994) make use of single layer parameters from atmospheric models, such 52 

as total column water vapour (TCWV) and temperature. While Stum et al. (2011) 53 

proposed a model that only uses TCWV. These models provide similar results to the 54 

Davis et al. (1985) (that uses 3D parameters) but only at the level of the model 55 

orography to which the meteorological parameters refer to. As this orography may 56 

depart significantly from the actual surface and the vertical variation of the ZWD is not 57 
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well known, at a different elevation they possess errors associated with the uncertainty 58 

in the modelling of the ZWD height variation (Fernandes et al., 2013, 2014; Vieira et 59 

al., 2018). The traditional Saastamoinen model (1972) and Hopfield model (1971) 60 

approximate the ZWD with surface observations as temperature and water vapour 61 

pressure observations. Without the information about the vertical distribution of water 62 

vapour, the stability and reliability of their ZWD estimates are poor. Moreover, both 63 

models are highly dependent on meteorological data. The aforementioned models have 64 

the limitations of application in wide area augmentation and real-time navigation and 65 

positioning. Therefore, the empirical climatological models were proposed as practical 66 

conditions required. The RTCA-MOPS (2016), designed by the US Wide Area 67 

Augmentation System (Collins et al., 1996), estimates ZWD by using the latitude band 68 

parameters table. The modified RTCA-MOPS model – called UNB3m (Leandro, 2006) 69 

– uses relative humidity as a parameter instead of the water vapour pressure to calculate 70 

the ZWD, effectively improving the precision of ZWD estimation to 5.5 cm (Möller et 71 

al., 2014), but the model deviation is increased when the height exceeds 2 km (Leandro, 72 

2006). The TropGrid model (Krueger et al., 2004, 2005) provides the meteorological 73 

parameters needed to calculate tropospheric delay in the form of 1° × 1° grid. The 74 

improved TropGrid2 model (Schüler, 2014) enhances the efficiency of ZWD 75 

calculation by directly modelling ZWD with the exponential function. Based on the 76 

GPT2 model (Lagler et al., 2013), the GPT2w model (Böhm et al., 2015) adds weighted 77 

mean temperature and a vapour pressure decrease factor realised as a global grid to 78 

estimate ZWD by using the Askne and Nordius formula (Askne & Nordius, 1987). The 79 

GPT2w model has the best precision of ZWD estimation (3.6 cm) compared to other 80 

commonly used models (Möller et al., 2014). 81 

The water vapour changes rapidly with respect to height, and the trends in water 82 

vapour at different heights vary, so the wet delay with direct relation to water vapour 83 

has complex spatio-temporal variations in the vertical direction. Kouba (2008) 84 

proposed an empirical exponential model to account for the height dependency of ZWD, 85 

but it will only be applicable within the height below 1000 m. The aforementioned 86 

empirical models are all based on a fixed height (average sea level or surface height) 87 
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and use only a single decrease factor to describe the variation of water vapour or wet 88 

delay with respect to height, which makes it difficult to allow for the vertical 89 

distribution differences in water vapour (or wet delay) in the upper troposphere. In the 90 

course of aircraft dynamic navigation and positioning, the zenith delay error will result 91 

in two times errors in the station height estimate (Böhm and Schuh, 2013). Thus it is 92 

necessary to correct the wet delay at different heights, which is clearly difficult for the 93 

aforementioned models. Based on the analysis of the characteristics of the ZWD profile, 94 

an empirical ZWD model, named HZWD, is established based on three functions 95 

applicable within corresponding height intervals, and the model precision is verified by 96 

European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis data as 97 

well as radiosonde data. 98 

 99 

2 Vertical variations of ZWD 100 

ZWD is defined as the integral of the wet refractivity along the vertical profile 101 

above the station: 102 
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In equation (1), wN  is the wet refractivity; e is the water vapour pressure in hPa; 104 

T is the temperature in Kelvin; 2k   is 22.1 K/hPa and 3k  is 373900 K2/hPa (Bevis et 105 

al., 1994). It can be seen from equation (1) that ZWD changes with height, vapour 106 

pressure and temperature. The ZWD will decrease with increasing height due to the 107 

shorter integral length. With the profiles of water vapour pressure and temperature, one 108 

can obtain the accurate ZWD by ray tracing method. However, in practical applications 109 

(e.g., aircraft navigation and positioning, wide area augmentation), we usually use 110 

empirical models for ZWD corrections due to the unavailability of meteorological data 111 

profiles. Therefore, it is necessary to develop an empirical ZWD model with high 112 

precision. The temperature roughly decreases linearly with increasing height in the 113 

troposphere, while the change in water vapour is more variable, so the water vapour is 114 

the main determinant of vertical variation of ZWD. In the following content, we used 115 
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the meteorological data profile of ERA-Interim pressure levels provided by ECMWF 116 

to analyse the vertical variation characteristics of ZWD and explore a suitable fitting 117 

function capable of describing the changes in ZWD with respect to height. 118 

ERA-Interim can provide data at 0:00, 6:00, 12:00, and 18:00 UTC daily with a 119 

spatial resolution of not more than 0.75° × 0.75° and 37 pressure levels (Dee et al., 120 

2011). The highest level data come from a height of approximately 50 km, covering 121 

almost the entire troposphere and stratosphere. We used the temperature, the 122 

geopotential height, and the specific humidity provided by the ERA-Interim pressure 123 

levels data, and the discretised form of equation (1), to calculate the ZWD for each level 124 

height (Böhm and Schuh, 2013): 125 
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 (2) 126 

In equation (2), q is the specific humidity in g/g; P is the pressure in hPa; 2k   and 3k127 

are empirical constants same as equation (1); h is the geopotential height in meters. 128 

From equation (2), we can see that the ZWD at specific level height is the sum of the 129 

ZWD portions in all layers above the specific level height. Figure 1 shows the water 130 

vapour pressure and ZWD profiles at a grid point (0° N, 0° E) at 12:00 UTC on 1 131 

January, 2010. From Figure 1, it can be seen that the downward trend in the water 132 

vapour pressure varies significantly with height, and the decrease factor is different 133 

across different height intervals. The changes in ZWD with respect to height are similar 134 

to that of the water vapour pressure with respect to height: the decay is fastest up to a 135 

few kilometres height and slows down with increasing height; the ZWD values are close 136 

to zero after 10 km. Zhao et al. (2014) showed that about 50% of the water vapour 137 

content is concentrated within 1.5 km of the surface and less than 10% of the water 138 

vapour content remains above 5 km, leading to different ZWD decay rates within 139 

different height intervals. These results are basically consistent with our experiment 140 
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results. Further, the derivative of the ZWD with respect to height (i.e., ZWD vertical 141 

gradient) is analyzed to better understand the characteristic of the ZWD vertical 142 

distributions. Figure 2a shows the variation of ZWD vertical gradients with respect to 143 

height at the same grid point to Figure 1. From Figure 2a, it can be seen that the trends 144 

in ZWD vertical gradients at different height intervals are clearly different. Specifically, 145 

the linear fit of the ZWD gradients with height below 2 km shows a great agreement 146 

with an R square value of 0.99 (Figure 2b). Thus we can come to a conclusion: ZWD 147 

gradients roughly change linearly below 2 km; and from 2 km to 5 km, and 5 km to 10 148 

km, the ZWD gradients vary non-linearly. 149 

 150 

Figure 1 Water vapour pressure profile (a) and ZWD profile (b) at a grid point (0° N, 0° E) at 151 

12:00 UTC on 1 January, 2010. 152 

 153 

Figure 2 ZWD vertical gradients profile (a) and linear fit with height below 2 km (b) at a grid 154 

point (0° N, 0° E) at 12:00 UTC on 1 January, 2010. 155 

Figure 3 shows the ZWD vertical gradients with respect to height at grid points in 156 

different latitude bands. Figure 4 shows the similar ZWD vertical gradients as Figure 3 157 
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but for different season. The variations are similar to those in Figure 2a, which show 158 

trend changes at about 2 km and 5 km. It is worth noting that the ZWD gradients at low 159 

latitudes are much larger and water vapour is more variable than at high latitudes, 160 

resulting from the fact that the water vapour at low latitude is more variable. In addition, 161 

the ZWD gradient trends in the southern hemisphere are significant. In contrast, the 162 

ZWD gradients in the northern hemisphere are slightly complicated with respect to 163 

height: the reason for this may be that the southern hemisphere is mostly oceanic while 164 

the northern hemisphere has many seacoasts. The terrain complexity in the northern 165 

hemisphere contributes to the disturbances in the ZWD gradient in specific areas. 166 

According to the vertical variation characteristics of ZWD, we divided the troposphere 167 

into three height intervals: below 2 km, 2 km to 5 km, and 5 km to 10 km, and assumed 168 

10 km as the empirical tropopause beyond which the ZWD is assumed to be zero. For 169 

ZWD fitting with respect to height, TropGrid2 and GPT2w use exponential functions, 170 

while some scholars have also used a polynomial to describe the tropospheric delay 171 

with respect to height (Song et al., 2011). We used both polynomial and exponential 172 

functions to fit the variation trend of the ZWD with respect to height in the three 173 

selected intervals, respectively. The results showed that the quadratic polynomial used 174 

under 2 km, and exponential functions between 2 km and 5 km, and 5 km to 10 km 175 

gave the best fits. The combination of the quadratic polynomial and exponential 176 

functions for different height intervals is termed piecewise height functions. Table 1 177 

summarises the global fitting statistics of different fit functions, demonstrating the 178 

superiority of piecewise height functions to the single polynomial function and single 179 

exponential function used for the whole troposphere. 180 
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 181 

Figure 3 ZWD gradients profiles at grid points in different latitude bands (12:00 UTC, 1 January, 182 

2010). 183 

 184 

Figure 4 ZWD gradients profiles at grid points in different latitude bands (12:00 UTC, 1 July, 185 

2010). 186 
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 187 

Table 1. Fitting RMS of piecewise height functions, single quadratic polynomial function, and 188 

single exponential function (unit: mm). 189 

 < 2 km 2 km to 5 km 5 km to 10 km 

Piecewise height functions 0.2 

23.8 

1.0 

13.1 

0.2 

2.6 
Quadratic polynomial 5.9 

25.2 

3.8 

14.0 

6.5 

3.8 
Exponential 2.3 

41.4 

2.2 

22.7 

1.0 

5.8 
 190 

3 The HZWD model 191 

   From the above analysis of ZWD vertical variation and fitting, the piecewise height 192 

functions of the proposed HZWD model are: 193 
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 (3) 194 

In equation (3), B is the latitude in degrees; L is the longitude in degrees; H is the 195 

height in meters; function coefficients 1z , 2z  and 3z  can be regarded as the ZWD at 196 

the height of 0 km, 2 km and 5 km, respectively. We used the monthly mean profiles of 197 

ERA-Interim pressure levels from 2001 to 2010 with a horizontal resolution of 5° × 5° 198 

for ZWD modelling. The ZWD profiles calculated for each grid point are fitted by 199 

equation (3) to obtain the time series of the corresponding function coefficients: 1z , 200 

1a , 2a , 2z , 2 , 3z , and 3 . It is worth noting that the ERA-Interim-derived ZWD 201 

data indicate that the averaged ZWD values at the three height intervals (i.e., below 2 202 

km, 2 km to 5 km, and 5 km to 10 km) are 0.126 m, 0.0489 m, and 0.0111 m, 203 

respectively. Jin et al. (2007) found that the tropospheric delay has notable seasonal 204 

variations, mainly on annual and semi-annual cycles. Song et al. (2011) and Zhao et al. 205 

(2014) considered the temporal features of function coefficients in their troposphere 206 

models. We used the ten-year time series of those coefficients obtained to analyse their 207 
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temporal variations. Figure 5 shows the time series and cycle fitting results of the 208 

function coefficients 1z , 2z , and 3z  at grid point (0° N, 0° E). Figure 5 shows that 209 

the time series of the function coefficients 1z , 2z , and 3z  have a significant 210 

characteristic annual cycle, and the semi-annual cycle is small but nevertheless evident. 211 

 212 

Figure 5 Decadal time series and cycle fitting results of function coefficients 1z (a), 2z (b), and 213 

3z (c) at a grid point (0° N, 0° E) from 2001 to 2010. 214 

Therefore, taking the annual, and semi-annual cycles into consideration, we used 215 

equation (4) to fit the function coefficients derived from equation (3) to temporal 216 

parameters for each grid point (Böhm et al., 2015): 217 
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 (4) 218 

In equation (4), 0A  is the annual mean; 1A and 1B  are the annual cycle 219 

parameters; 2A  and 2B  are the semi-annual cycle parameters; and doy is the day of 220 

the year. The fittings show that the annual means, and annual, and semi-annual 221 

amplitudes of 1z , 2z  and 3z  are distinct. For instance, the cycle fitting results at a 222 

grid (0° N, 0° E) (Figure 5) indicate that the temporal parameters (i.e., 0A , 1A , 1B , 2A , 223 

and 2B ) of 1z  are 0.2911 m, 0.0237 m, 0.0312 m, -0.0006 m, and -0.0227 m, 224 

respectively; the temporal parameters of 2z  are 0.1215 m, 0.0118 m, 0.0203 m, 0.0004 225 

m, and -0.0146 m, respectively; the temporal parameters of 3z  are 0.0255 m, 0.00031 226 

m, 0.0070 m, -0.0019 m, and -0.0044 m, respectively. It should be noted that the fitting 227 

results of coefficients 2a , 2 , and 3  show that all their annual means, and annual, 228 

and semi-annual amplitudes are small. However, below 2 km, the lack of cycle terms 229 

in 2a  would cause centimetre level error in the ZWD estimates, so these terms have 230 

been retained. For 2  and 3 , ZWD itself is small at heights above 2 km, so the 231 

annual mean suffices for a desirable ZWD estimate. The experiment reveals that the 232 

loss of accuracy due to the lack of annual and semi-annual terms in 2  and 3  for 233 

the ZWD estimates is less than 0.1 mm. Therefore, only the annual means are retained 234 

for these two coefficients. 235 

Figure 6 shows the global distributions of annual means of model coefficients 1z , 236 

2z , and 3z . From Figure 6 we can see that the extremum of ZWD annual means at 0 m 237 

height occur near the equator and the maximum exceeds 0.36 m. The ZWD annual 238 

means decrease with increasing latitude. The distributions of ZWD annual means at 2 239 

km and 5 km heights are similar to that at 0 m, but the areas with the large values near 240 



12 

 

the equator decrease in extent and the ZWD distributions tend to be uniform, indicating 241 

that the water vapour content near the equator is greater than that in other regions, and 242 

the ZWD value is also larger in low altitude regions. As the height increases, the 243 

difference in water vapour content or ZWD, between the equator and other areas begins 244 

to decrease, but remains significant. Overall, there are some differences in the ZWD 245 

distribution at different heights, and it is necessary to model the spatio-temporal 246 

variations of ZWD at different heights. 247 

 248 

Figure 6 Global distributions of annual means of HZWD model coefficients 1z  (a), 2z  (b), 249 

and 3z  (c). 250 

After the fitting processes involving equations (3) and (4), the global ZWD model 251 

HZWD, using piecewise height functions, is established. The spatial resolution of the 252 

HZWD model is 5° × 5°. Each grid point contains 7 primary coefficients: 1z , 1a , 2a , 253 
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2z , 2 , 3z , and 2 . Among these coefficients, 1z , 2z , 3z , 1a , and 2a  are further 254 

expressed by equation (4) with 5 temporal parameters, respectively. Therefore, there 255 

are 27 parameters for each grid point and total 68094 parameters for the HZWD model. 256 

As a comparison, the GPT2w model has a number of 77760 parameters, which is 14% 257 

more than that of the HZWD model. It is worth noting that the UNB3m model only has 258 

50 parameters due to its coarse spatio-temporal resolution. When the HZWD model is 259 

applied, the four grid points surrounding the station are determined according to the 260 

horizontal position (latitude and longitude) of the station, and then the model 261 

coefficients of the corresponding height intervals at the four selected points are 262 

calculated according to equation (4). The ZWD of the four grid points are extrapolated 263 

to the station height by using equation (3), and finally the ZWD at the station location 264 

is obtained by using bilinear interpolation. The HZWD model only needs time, latitude, 265 

longitude, and height as input parameters. It can calculate ZWD without meteorological 266 

data, and can provide wet delay correction products for navigation and positioning at 267 

different heights. 268 

 269 

4 Validation and analysis of the HZWD model 270 

To test the precision of HZWD model and analyse the model correction 271 

performance compared to other troposphere models, we used the ERA-Interim pressure 272 

levels data and radiosonde data from the year 2015 as external data sources, and 273 

compared the results with the commonly used models UNB3m and GPT2w. The 274 

parameters used for the validation are bias and root mean square (RMS) error expressed 275 

as: 276 
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In equation (5) and (6), M

iZWD  is the value estimated by the HZWD model 279 

developed in this study and 0

iZWD  is the reference value. 280 

For the UNB3m model, the ZWD at mean sea level (MSL) is first calculated, then 281 
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a vertical correction is applied to transform the ZWD to the target height. The formulae 282 

are (Leandro et al., 2006): 283 
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 (7) 284 

where 0e , 0T , and 0ZWD  are the water vapour pressure, temperature and ZWD at 285 

MSL, respectively; dR  is the specific gas constant for dry air (278.054 J kg-1 K-1);   286 

and   are the temperature lapse rate and water vapour decrease factor, respectively;  287 

mg  is the gravity acceleration at the mass centre of the vertical column of the 288 

atmosphere and can be computed with geodetic latitude   and height h  by: 289 

  69.784 1 0.00266cos2 0.28 10mg h       (8) 290 

mT  is the weighted mean temperature computed by: 291 
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  (9) 292 

For the GPT2w model, the modelled meteorological parameters at the four grid 293 

points surrounding the target location are extrapolated vertically to the desired height, 294 

then the Askne and Nordius formula (10) is used to calculate the wet delays at those 295 

base points: finally the wet delays are interpolated to the observation site in horizontal 296 

direction to get the target ZWD.  297 
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    In GPT2w model, mT  is an empirical parameter modelled with seasonal 299 

components and mg  is simplified to a constant (9.80665 m s-2). It should be noted that 300 

the GPT2w model provides both 1° × 1° and 5° × 5° resolution versions. Since the 301 

horizontal resolution of HZWD model is 5° × 5°, we used the GPT2w model with the 302 

same resolution for validation. 303 
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4.1 Validation with ECMWF data 304 

Modelling of the HZWD model is based on the monthly mean profiles of ERA-305 

Interim pressure levels data from 2001 to 2010, while we used the ERA-Interim 306 

pressure levels data with the full time resolution of 6 hours in 2015 for the model 307 

validation. This is to validate the model performance on the daily scale. Regarding the 308 

ZWD profiles calculated from these data as reference values, we calculated the global 309 

annual average bias and RMS error of the ZWD for three models (HZWD, GPT2w, and 310 

UNB3m) within the three height intervals: below 2 km, 2 km to 5 km, and 5 km to 311 

10 km (Table 2). 312 

Table 2 Error statistics for the three models compared to the 2015 ECMWF data (unit: mm). 313 

 < 2 km 2 km to 5 km 5 km to 10 km 

 bias RMS bias RMS bias RMS 

HZWD -2.0 23.8 -1.4 13.1 0.0 2.6 

GPT2w -0.1 25.2 2.5 14.0 2.2 3.8 

UNB3m 16.6 41.4 10.9 22.7 3.5 5.8 

From Table 2, it can be seen that the HZWD model is the most accurate model 314 

across all three intervals, followed by the GPT2w model, and the UNB3m model has 315 

the worst performance. The annual average biases of the HZWD model are lower than 316 

that of the GPT2w model and the UNB3m model except below 2 km. Compared with 317 

the RMS errors in the GPT2w model, those of the HZWD model are decreased by 1.4 318 

mm, 0.9 mm, and 1.2 mm within the three height intervals, corresponding to 319 

improvements of about 6%, 6%, and 32%, respectively. The improvements of HZWD 320 

model over GPT2w model will result in precision improvements of 2.8 mm, 1.8 mm, 321 

and 2.4 mm respectively in height estimates in real-time aircraft positioning. The 322 

correction performance improvement from 5 km to 10 km height is particularly evident. 323 

Figure 7a shows the ECMWF ZWD profile and the ZWD profiles of the three models 324 

at 12:00 UTC on 1 January, 2015 at a representative grid point (0° N, 20° E). More 325 

clearly, Figure 7b shows the differences between the ZWD profiles of the three models 326 

and ECMWF ZWD profile at different heights. It can be seen that HZWD is the most 327 
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stable model, showing the best agreement with the ECMWF ZWD data, which is 328 

superior to both the GPT2w, and the UNB3m, models. 329 

 330 

 331 

Figure 7 The ZWD profiles (a) of ECMWF and the three models (HZWD, GPT2w, and UNB3m) 332 

and corresponding biases (b) at a grid point (0° N, 20° E) at 12:00 UTC on 1 January, 2015. 333 

The variation of the troposphere has a strong correlation with latitude. To analyse 334 

the correction performances of the three models in different regions around the world, 335 

we calculated the three models’ errors in different latitude bands (10° intervals). Figures 336 

8 and 9 show the correction performances at different latitudes. It can be seen from 337 

Figure 8 that the bias of the UNB3m model is basically positive in the three height 338 

intervals, indicating that its ZWD estimates are relatively large compared to the 339 

ECMWF data. Moreover, the bias in the southern hemisphere is significantly larger than 340 

that in the northern hemisphere, indicating systematic deviations in the southern 341 

hemisphere. Both the GPT2w model and the HZWD model have large biases in the low 342 

latitudes. The biases of the GPT2w model are positive from 2 km to 5 km and 5 km to 343 

10 km height, indicating that the ZWD is overestimated by the GPT2w model with 344 

increasing height. For the HZWD model, the bias in each latitude band is relatively 345 

small with few exceptions, resulting in a global average bias close to zero (see Table 2). 346 

Figure 9 shows the RMS errors of the three models. It can be seen from Figure 9 347 

that the precision of HZWD model is significantly better than that of the UNB3m model 348 
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across the three height intervals and all latitude bands, which is better than GPT2w 349 

model in general. The precision of the three models declines with decreasing latitude, 350 

because the active change of water vapour in these areas limits the precision of the 351 

model. Corresponding to Figure 8, the errors in UNB3m are asymmetric: the main 352 

reason for this is that the meteorological parameters of UNB3m are interpolated from 353 

the coarse look-up table with a latitude interval of 15° and UNB3m does not consider 354 

the longitudinal variations of any meteorological elements. It should be pointed out that 355 

the UNB3m model is based on the simple symmetric assumption of the northern and 356 

southern hemispheres, and its modelling data source only comes from the atmospheric 357 

data collected over North America, which leads to poor precision in the southern 358 

hemisphere, especially in the high latitudes thereof. 359 

Summarising the distributions of bias and RMS error across different latitude 360 

bands, we can see that the HZWD model performs best with the ECMWF data as 361 

reference values. Compared with the models GPT2w and UNB3m, the HZWD model 362 

basically eliminates systematic error in the 5 km to 10 km height interval and the 363 

correction performance is stable at all heights and regions. To investigate the model’s 364 

performance over time, Figure 10 shows the time series of RMS for the three models at 365 

6-hour intervals throughout the year 2015 at grid point (0° N, 20° E). We can see that 366 

the HZWD model has the best overall performances within the three height intervals 367 

over the year 2015. We noticed the significantly large RMS for all three models across 368 

all three height intervals around the doy 19 and doy 195 of 2015. This can be attributed 369 

to the sharp short-term ZWD variations in the equator area. The short-term variations 370 

are hardly accounted for by all three models which only consider the seasonal variations 371 

of ZWD. Moreover, the GPT2w model has the worst performance from 5 km to 10 km 372 

height, which is also identified by Figure 8 and Figure 9. 373 
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 374 

Figure 8 Bias comparisons between the three models (HZWD, GPT2w, and UNB3m) in different 375 

latitude bands over the year 2015. 376 

 377 

Figure 9 RMS error comparisons between the three models (HZWD, GPT2w, and UNB3m) in 378 

different latitude bands over the year 2015. 379 

 380 
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 381 

Figure 10 RMS errors in ZWD estimates of the three models (HZWD, GPT2w, and UNB3m) 382 

compared to the ECMWF data over the year 2015 at grid point (0° N, 20° E). 383 

 384 

4.2 Validation with radiosonde data 385 

A radiosonde is used in a sounding technique that regularly releases balloons to 386 

collect atmospheric meteorological data at different heights: it can obtain profiles of 387 

various meteorological data with high accuracy. At present, the Integrated Global 388 

Radiosonde Archive (IGRA) website (ftp://ftp.ncdc.noaa.gov/pub/data/igra/) provides 389 

free downloads of global radiosonde data. We used radiosonde data from 318 stations 390 

collected in 2015 to test the HZWD model. After data pre-processing, the data with 391 

gross errors have been removed and a total of 163,671 radiosonde data epochs remained. 392 

With the provided profiles of geopotential height, temperature, and water vapour 393 

pressure, the data form of the radiosonde data are very similar to the ECMWF pressure 394 

level data, thus the radiosonde ZWDs can be calculated using the same method by 395 

equation (2). Before the validation, we conducted an assessment of the uncertainty of 396 

ZWD derived from radiosonde data. Rozsa (2014) showed that the uncertainty of ZWD 397 

is ±1.5 mm in case of the Vaisala RS-92 radiosondes in Central and Eastern Europe. 398 

However, this uncertainty is only valid for the ZWD calculated from the height of 399 
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lowest layer and is limited to Europe area. Using the same uncertainties of radiosonde 400 

meteorological data given by the technical specification of the radiosonde and the 401 

algorithm proposed by Rozsa (2014), we calculated the ZWD uncertainty for all heights 402 

in all radiosonde stations. Figure 11 shows the uncertainty of ZWD with respect to the 403 

height for radiosonde station 01241 located in Orland, Norway (63.70°N/9.60°E/10 m). 404 

We can see that the uncertainty of ZWD is less than ±1.5 mm near height of 0 m and 405 

decrease quickly with increasing height. The global mean uncertainties of ZWD of all 406 

stations in the three height intervals are ±1.3 mm, ±0.7 mm and ±0.2 mm, 407 

respectively, indicating the high accuracy of ZWD derived from radiosonde data. 408 

 409 

 410 

Figure 11 Uncertainty of ZWD with respect to height at station 01241 (63.70°N/9.60°E/10 m) 411 

at 11:00 UTC on January 1, 2015. 412 

Taking the radiosonde ZWDs as reference ZWD values, we validated the ZWDs 413 

from models HZWD, GPT2w and UNB3m. Table 3 shows the statistical results of the 414 

three models. It can be seen from Table 3 that the HZWD model has the best overall 415 

stability of the average bias and RMS error indicating the best precision, and the 416 

UNB3m model is the worst. Compared with the GPT2w model, the RMS errors in 417 

HZWD in the three height intervals are reduced by 0.6 mm, 0.9 mm, and 1.7 mm, which 418 

equates to precision improvements of 2%, 5%, and 33%, respectively. Moreover, these 419 

improvements correspond to an error reduction of 1.2 mm, 1.8 mm, and 3.4 mm 420 

respectively in height estimates in geodetic techniques. Taking the uncertainty of 421 
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radiosonde ZWD into account, the improvement of HZWD model over GPT2w model 422 

below 2 km seem to be insignificant. Nevertheless, we can reasonably think that the 423 

ZWD predicted by HZWD is closer to true ZWD due to its smaller RMS error. It is 424 

worth noting that the bias and RMS error of the HZWD model and the GPT2w model 425 

are both larger than those of the results from ECMWF data in Table 2. The reason is 426 

that the HZWD model and the GPT2w model are based on ECMWF data, thus the test 427 

results with radiosonde data are slightly worse than those using ECMWF data. On the 428 

contrary, the bias of the UNB3m model decreases, and the RMS error between 2 km 429 

and 5 km, and 5 km and 10 km, are less than those in Table 2. It may be due to the fact 430 

that most of the radiosonde stations are in the northern hemisphere, accounting for more 431 

than 60% (192/318) of the total, which has a positive impact on the test results for 432 

UNB3m model based on North American meteorological data. 433 

Figure 12 shows the global distributions of bias for the three models within the 434 

three height intervals, and Figure 13 shows the global distributions of RMS error for 435 

the three models. As can be seen from Figure 12, the three models show a poorer 436 

performance in low-latitude areas than in mid- and high-latitude areas for all height 437 

intervals, similar to the results of in Section 4.1. Within the 5 km to 10 km interval, the 438 

bias of the GPT2w model is large and positive in the equatorial region, indicating that 439 

the ZWD of the GPT2w in this height is significantly overestimated, and the global bias 440 

of the UNB3m model in this height interval is positive, also indicating an overestimate 441 

of the ZWD in the UNB3m model. The bias of the HZWD model does not show obvious 442 

regional differences with respect to height, and the overall distribution of HZWD model 443 

bias has no tendency to either the positive or negative. Figure 13 further illustrates the 444 

precision of the HZWD model. The global RMS error distributions of HZWD model 445 

are similar to that of GPT2w model below 2 km and between 2 km and 5 km, but the 446 

precision of the HZWD model is slightly better. Combining this with the bias 447 

distribution of the GPT2w model in Figure 12, the GPT2w model also has a large RMS 448 

error near the equator in the 5 km to 10 km interval, which shows that the GPT2w model 449 

is unstable at high height in low-latitude areas. The precision of the UNB3m model is 450 

poorer than that of both the HZWD, and GPT2w, models. Below 2 km, the UNB3m 451 
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model reaches decimetre-level precision near the equator, and even exceeds 12 cm in 452 

some areas: the distribution of north-south heterogeneity remains obvious. 453 

Table 3 Error statistics for the three models validated by 2015 radiosonde data (unit: mm). 454 

 < 2 km 2 km to 5 km 5 km to 10 km 

 bias RMS bias RMS bias RMS 

HZWD -3.6 30.1 -2.0 15.8 0.1 3.5 

GPT2w -3.2 30.7 3.5 16.7 3.3 5.2 

UNB3m 5.9 46.0 6.2 23.1 2.6 5.7 

 455 

 456 

Figure 12 Global distributions of bias for the three models (HZWD, GPT2w, and UNB3m) 457 

compared to 2015 radiosonde data. 458 
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 459 

Figure 13 Global distributions of RMS error for the three models (HZWD, GPT2w, and UNB3m) 460 

compared to 2015 radiosonde data. 461 

These results validate the spatial stability of the precision of the HZWD model, 462 

furthermore the temporal stability of the model precision is verified next. Figure 14 463 

shows the results of ZWD corrections of the three models for the radiosonde station 464 

01241 for the whole of 2015. It can be seen from Figure 14 that the HZWD model and 465 

the GPT2w model are relatively stable throughout the year, while the correction 466 

performance of the UNB3m model in 2015 is worse than those of the HZWD and 467 

GPT2w models. The probable reason for this is that the UNB3m model only takes into 468 

account the annual variations in the metrological elements with a fixed phase, resulting 469 

in precision instability throughout the year. The improvement performance arising from 470 

use of the HZWD model, compared to that arising from use of the GPT2w model, is 471 

more apparent with increasing height: this shows that modelling ZWD piecewise with 472 

height can effectively approximate the real ZWD profile and improve the precision of 473 

ZWD estimation. 474 

 475 
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 476 

Figure 14 RMS errors in ZWD estimates of the three models (HZWD, GPT2w, and UNB3m) 477 

for radiosonde station 01241 over the year 2015. 478 

 479 

5 Conclusions 480 

The complexity of spatio-temporal variations makes the modelling of tropospheric 481 

ZWD difficult. In this paper, the characteristics of vertical variation of wet delay are 482 

analysed. The troposphere is divided into three height intervals: below 2 km, 2 km to 5 483 

km, and 5 km to 10 km according to different trends (10 km is assumed to represent the 484 

empirical tropopause). A quadratic polynomial and two exponential functions are used 485 

to describe the variation of wet delay within each of the three intervals. Based on the 486 

monthly mean data of ECMWF ZWD from 2001 to 2010, a global ZWD model with 487 

spatial resolution of 5° × 5° was established with height fitting followed by periodic 488 

fitting. Using the ECMWF ZWD data for 2015, the annual average RMS errors in the 489 

HZWD model are 23.8 mm, 13.1 mm, and 2.6 mm in the below 2 km, 2 km to 5 km, 490 

and 5 km to 10 km height intervals, respectively, which is far superior to the 491 

performance of the UNB3m model. Compared to the currently most accurate wet delay 492 

empirical model (the GPT2w model), the precisions within the three height intervals 493 
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improved by 6% (1.4 mm), 6% (0.9 mm), and 32% (1.2 mm), respectively. The 494 

improvements will result in precision improvements of 2.8 mm, 1.8 mm, and 2.4 mm 495 

respectively in height estimates in real-time aircraft positioning. The testing results of 496 

radiosonde data from 318 stations in 2015 show that the annual average RMS errors of 497 

the HZWD model are 30.1 mm, 15.8 mm, and 3.5 mm, which are 2% (0.6 mm), 5% 498 

(0.9 mm), and 33% (1.7 mm) better than those of the GPT2w model, respectively, 499 

corresponding to height error reduction of 1.2 mm, 1.8 mm, and 3.4 mm in real-time 500 

aircraft positioning. Considering the ZWD fields (0.126 m, 0.0489 m, and 0.0111 m) in 501 

the three height intervals, the precision improvements at the top layer are especially 502 

significant, which accounts for about 15% of the corresponding ZWD field. Moreover, 503 

compared with the GPT2w, and UNB3m, models, the HZWD model offers the highest 504 

spatio-temporal stability. With higher precision of ZWD estimates and less model 505 

parameters, the HZWD model is more efficient than the GPT2w model.  506 

The HZWD model offers good precision stability in the vertical direction and can 507 

meet the requirements of ZWD correction at different heights within the troposphere; 508 

however, it can be seen that neither the HZWD, nor the GPT2w models, i.e., those non-509 

meteorological parameter-based models, performed well in the lowest region of the 510 

troposphere. In addition, compared with GPT2w, HZWD model is a closed model with 511 

a limitation to facilitate on-site meteorological observations. Further research is 512 

required to assess the variation and factors influencing of the wet delay and explore the 513 

possibility of incorporation of on-site meteorological data. 514 
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