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Abstract.– We re-examine the physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equi-

librium, to demonstrate that the mirror mode is the analogue of a superconducting effect in a classical anisotropic-pressure

space plasma. Two different spatial scales are identified which control the behaviour of its evolution. These are the ion inertial

scale λim(τ) based on the excess density Nm(τ) generated in the mirror mode, and the Debye scale λD(τ). The Debye length

plays the role of the correlation length in superconductivity. Their dependence on the temperature ratio τ = T‖/T⊥ < 1 is5

given, with T⊥ the critical temperature. The mirror mode equilibrium structure under saturation is determined by the Landau-

Ginzburg ratio κD = λim/λD, or κρ = λim/ρ, depending on whether the Debye length or the thermal-ion gyroradius ρ serve

as correlation lengths. Since in all space plasmas κD� 1, plasmas with λD as relevant correlation length always behave like

type II superconductors, naturally giving rise to chains of local depletions of the magnetic field of the kind observed in the

mirror mode. In this way they provide the plasma with a magnetic bubble texture. The problem becomes more subtle when ρ10

is taken as correlation length. In this case the evolution of mirror modes is more restricted. Their existence as chains or trains

of mirror bubbles implies that another threshold, VA > υ⊥th, is exceeded.

1 Introduction

Under special conditions high-temperature collisionless plasmas may develop properties which resemble those of supercon-

ductors. This is the case with the mirror mode when the anisotropic pressure gives rise to local depletions of the magnetic field15

similar to the Meissner effect in metals where it signals the onset of superconductivity (Kittel, 1963; Fetter and Walecka, 1971;

Huang, 1987; Lifshitz and Pitaevskii, 1998), i.e. the exclusion of friction between the current and the lattice. In collisionless

plasmas there is no lattice, the plasma is frictionless, thus it already is ideally conducting which, however, does not mean that

it is superconducting! For being superconducting, additional properties are required. These, as we show below, are given in the

saturation state of the mirror mode.20

The mirror mode is a non-oscillatory plasma instability (Chandrasekhar, 1961; Hasegawa, 1969; Gary, 1993; Southwood

and Kivelson, 1993; Kivelson and Southwood, 1996) which evolves in anisotropic plasmas (for a recent review see Sulem,

2011, and references therein). It has been argued that it should readily saturate by quasilinear depletion of the temperature

anisotropy (cf., e.g. Noreen et al., 2017, and references therein). Observations do not support this conclusion. In fact, we

recently argued (Treumann and Baumjohann, 2018) that the large amplitudes of mirror-mode oscillations observed in the25

Earth’s magnetosheath, magnetotail and elsewhere, like other planetary magnetosheaths, in the solar wind and generally in the
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heliosphere, (see., e.g. Tsurutani et al., 1982, 2011; Zhang et al., 1998, 2008, 2009; Lucek et al., 1999a, b; Volwerk et al., 2008,

and others) are a sign of the impotence of quasilinear theory of limiting growth of the mirror instability. Instead, mirror modes

should be subject to weak kinetic turbulence theory (Sagdeev and Galeev, 1969; Davidson, 1972; Tsytovich, 1977; Yoon, 2007,

2018; Yoon and Fang, 2007) which allows them to evolve until becoming comparable in amplitude to the ambient magnetic

field long before any dissipation can set on.5

This is not unreasonable, because all those plasmas where the mirror instability evolves are ideal conductors on the scales

of the plasma flow. On the other hand, no weak turbulence theory of the mirror mode is available yet as it is difficult to identify

the various modes which interact to destroy quasilinear quenching. The frequent claim that whistlers (lion roars) excited in the

trapped electron component would destroy the temperature anisotropy is erroneous, because whistlers (Thorne and Tsurutani,

1981; Baumjohann et al., 1999; Maksimovic et al., 2001; Zhang et al., 1998) grow on the expense of a small component of10

anisotropic resonant particles only (Kennel and Petschek, 1966). Depletion of the resonant anisotropy does not affect the bulk

temperature anisotropy responsible for the mirror instability. On the other hand, construction of a weak turbulence theory of

the mirror mode poses serious problems. One therefore needs to refer to other means of description of its final saturation state.

Since measurements suggest that the observed mirror modes are about stationary phenomena it seems reasonable to tackle

them within a thermodynamic approach, i.e. assuming that they can be described as the stationary state of interaction between15

the ideally conducting plasma and the magnetic field. This can be most efficiently done when the free energy of the plasma

is known which, unfortunately, is not the case. Magnetohydrodynamics does not apply, and the formulation of a free energy

in the kinetic state is not available. For this reason we refer to some phenomenological approach which is guided by the

phenomenological theory of superconductivity. There we have the similar phenomenon that the magnetic field is expelled from

the medium due to internal quantum interactions, known as the Meissner effect. This resembles the evolution of the mirror20

mode though in our case the interactions are not in the quantum domain. This is easily understood if considering the thermal

length λh =
√

2π~2/meT and comparing it to the shortest plasma scale, viz. the inter-particle distance dN ∼ 1/ 3
√
N . The

former is, for all plasma temperatures T , in the atomic range while the latter in space plasmas for all densities N is many

orders of magnitude larger. Plasmas are classical. In their equilibrium state classical thermodynamics applies to them. In the

following we boldly ask for the thermodynamic equilibrium state of a mirror unstable plasma.25

2 Properties of the mirror instability

The mirror instability evolves whence the magnetic field B in a collisionless magnetised plasma with an internal pres-

sure/temperature anisotropy T⊥ > T‖, where the subscripts refer to the directions perpendicular and parallel to the ambient

magnetic field, drops below a critical value

B <Bcrit ≈
√

2µ0NTi⊥

(
Θi +

√
Te⊥
Ti⊥

Θe

) 1
2 ∣∣sin θ

∣∣ (1)30

where Θi =
(
T⊥/T‖− 1

)
j
> 0 is the temperature anisotropy of species j = e, i (for ions and electrons) and θ is the angle of

propagation of the wave with respect to the ambient magnetic field (cf., e.g., Treumann and Baumjohann, 2018). Here any
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possible temperature anisotropy in the electron population has been included but will be dropped below as it seems (Noreen et

al., 2017) that it does not provide any further insight into the physics of the final state of the mirror mode.

The important observation is that the existence of the mirror mode depends on the temperature difference T⊥−T‖ and the

critical magnetic field. To some degree this resembles the behaviour of magnetic fields under superconducting conditions. To

demonstrate this, we take T⊥ as reference – or critical – temperature. The critical magnetic field becomes a function of the5

temperature ratio τ = T‖/T⊥. Once τ < 1 and B <Bcrit the magnetic field will be pushed out of the plasma to give space to

an accumulated plasma density and surface currents on the boundaries of the (partially) field-evacuated domain.

The τ -dependence of the critical magnetic field can be cast into the form

Bcrit(T‖)
B0

crit

=
[
τ−1

(
1− τ

)] 1
2 =

(
T⊥
T‖

) 1
2
(

1− T‖
T⊥

) 1
2

(2)

which indeed resembles that in the phenomenological theory of superconductivity. Here10

B0
crit =

√
2µ0NTi⊥

∣∣sin θ
∣∣ (3)

and the critical threshold vanishes for τ = 1 where the range of possible unstable magnetic field values shrinks to zero; the

limits T‖ = 0 or T⊥ =∞ make no physical sense.

Though the effects are similar to superconductivity, the temperature dependence is different from that of the Meissner effect

in metals in their isotropic low-temperature super-conducting phase. In contrast, in an anisotropic plasma the effect occurs in15

the high-temperature phase only while being absent at low temperatures. Nevertheless, the condition τ < 1 indicates that the

mirror mode, concerning the ratio of parallel to perpendicular temperatures, is a low-temperature effect in the high-temperature

plasma phase. This may suggest that even in metals high-temperature superconductivity might be achieved more easily for

anisotropic temperatures, a point we will follow elsewhere.

Since the plasma is ideally conducting, any quasi-stationary magnetic field is subject to the penetration depth, which is the20

inertial scale λim = c/ωim, with ω2
im = e2Nm/ε0mi based on the density Nm of the plasma component involved into the

mirror effect. The mirror instability is a slow purely growing instability with real frequency ω ≈ 0. On these low frequencies

the plasma is quasi-neutral. In metallic superconductivity this length is the London penetration depth which refers to electrons

as the ions are fixed to the lattice. Here, in the space plasma, it is rather the ion scale because the dominant mirror effect is

caused by mobile ions in the absence of any crystal lattice. Such a “magnetic lattice” structure is ultimately provided under25

conditions investigated below by the saturated state of the mirror mode, where it collectively affects the trapped ion component

on scales of an internal correlation length.

3 Free energy

In the thermodynamic equilibrium state the quantity which describes the matter in the presence of a magnetic field B is the

Gibbs free energy density30

G= F − 1
2µ0

δB ·B (4)
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where F is the Helmholtz free energy density which, unfortunately, is not known. In magnetohydrodynamics it can be formu-

lated but becomes a messy expression which contains all contributions of magnetohydrodynamic waves. The total Gibbs free

energy is the volume integral of this quantity over all space. Since this is stationary, one has

d

dt

∫
d3x G= 0 (5)

In order to restrict to our case we assume that F in the above expression, which contains the full dynamics of the plasma5

matter, can be expanded with respect to the normalised density Nm of the plasma component which participates in the mirror

instability:

F = F0 + aNm +
1
2
bN2

m + · · · (6)

Normalisation is to the ambient density N0, thus attributing the dimension of energy density to the expansion coefficients a,b.

An expansion like this one is always possible in the spirit of a perturbation approach as long as the total densityN/N0 = 1+Nm10

with Nm < 1. It is thus clear that Nm is not the total ambient plasma density N0 which is itself in pressure equilibrium with

the ambient field B0 under static conditions expressed by N0T =B2
0/2µ0 under the assumption that no static current J0 flows

in the medium. Otherwise its Lorentz force J0×B0 =−T∇N0 is compensated by the pressure gradient force already in

the absence of the mirror mode and includes the magnetic stresses generated by the current. This case includes a stationary

contribution of the free energy F0 around which the mirror state has evolved.15

What concerns the presence of the mirror mode, we know that it must as well be in balance between the local plasma

gradient∇Nm of the fluctuating pressure and the induced magnetic pressure (δB)2/2µ0. Note that all quantities are stationary;

the prefix δ refers to deviations from “normal” thermodynamic equilibrium, not to variations. Moreover, we have Maxwell’s

equations which in the stationary state reduce to

∇× δB = µ0δJ , and δB =∇×A (7)20

accounting for the vanishing divergence by introducing the fluctuating vector potential A (where we drop the δ-prefix on the

vector potential). This enables to write the kinetic part of the free energy of the particles involved in the canonical operator

form

p2

2m
=

1
2m

∣∣∣− iα∇− qA
∣∣∣
2

(8)

referring to ions of positive charge q > 0, and the constant α naturally has the dimension of a classical action. In this form the25

momentum acts on a complex dimensionless “wave function” ψ(x) whose square

∣∣ψ(x)
∣∣2 =Nm (9)

we identify with the above used normalised density. Unlike quantum theory, ψ(x) is not a single particle wave function, it rather

applies to a large compound of trapped particles (ions) in the mirror mode which behave similarly and are bound together by

some correlation length which is to be discussed later. It enters the expression for the free energy density thus providing the30
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units of energy density to the expansion coefficients a,b. In the quantum case (as for instance in the theory of superconductivity)

we would have α= ~; in the classical case considered here, α remains undetermined until a connection to the mirror mode

is obtained. Clearly, α� ~ cannot be very small because the gradient and the corresponding wave vector k involved in the

operation ∇ are of the scale of the inverse ion gyro-radius in the mirror mode. Hence, we suspect that α∝ T/ωp where T is

a typical plasma temperature in energy units, and ωp is a typical frequency of collective ion oscillations in the plasma. Any5

such oscillations naturally imply the existence of some correlation length which binds the particles to exert a collective motion

of the ions which give rise to field and density fluctuations. Such frequencies can be either plasma ωp = ωi = e
√
N/ε0m or

cyclotron ωc = eB/m frequencies. For the ion mirror mode the choice is that q = +e, and m=mi.

Retaining the quantum action and dividing by the charge q, the factor of the Nabla operator becomes ~/q = Φ0e/2πq.

Hence, α is proportional to the number ν = Φ/Φ0 of elementary flux elements in the ion-gyro cross section, which in a plasma10

is a large number due to the high temperature T⊥. Let us now define the fluctuating normalised mirror density excess Nm > 1

through the “wave function” square |ψ(x)|2

Nm(x) =
∣∣ψ(x)

∣∣2 = ψ∗(x)ψ(x) (10)

With these assumptions in mind we can write for the free energy density up to second order in Nm

F = F0 + a
∣∣ψ
∣∣2 +

1
2
b
∣∣ψ
∣∣4 +

1
2m

∣∣∣
(
− iα∇− qA

)
ψ
∣∣∣
2

+
δB ·B0

2µ0
(11)15

This is to be inserted into the Gibbs free energy density and used in the Gibbs free energy. Then the last term is absorbed by

the Gibbs potential. As conventionally done, varying the Gibbs free energy with respect to A and ψ yields an equation for the

“wave function” ψ(x)
[

1
2m
(
− iα∇− qA

)2 + a + b
∣∣ψ
∣∣2
]
ψ = 0 (12)

which is recognised as a nonlinear Schrödinger equation. Such equations appear in plasma physics whence waves undergo20

modulation instability and evolve towards solitons.

It is known that the nonlinear Schrödinger equation can be solved by inverse scattering methods and, under certain condi-

tions, yields either single solitons or trains of solitary solutions. To our knowledge, the nonlinear Schrödinger equation has not

yet been derived for the mirror instability because no slow wave is known which would modulate its amplitude. Whether this

is possible is an open question which we will not follow up here. Hence the quantity α remains undetermined for the mirror25

mode. Instead, we chose a phenomenological approach which is suggested by the similarity of both, the mirror mode effect in

ideally conducting plasma and the above obtained nonlinear Schrödinger equation to the phenomenological Landau-Ginzburg

theory of metallic superconductivity.

In the thermodynamic equilibrium state the above equation does not describe the mirror mode amplitude itself. Rather it

describes the evolution of the “wave function” of the compound of particles trapped in the mirror mode magnetic potential A30

which it modulates. This differs from superconductivity where we have pairing of particles, escape from collisions with the

lattice and superfluidity of the paired particle population at low temperatures. In the ideally conducting plasma we have no
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collisions but, under normal conditions, also no pairing and no superconductivity though, in the presence of some particular

plasma waves, attractive forces between neighbouring electrons can sometimes evolve (Treumann and Baumjohann, 2014). In

superconductivity the pairing implies that the particles become correlated, an effect which in plasma must also happen whence

the superconducting mirror mode Meissner effect occurs, but it happens in a completely different way via correlating large

numbers of particles, as we will exemplify farther below.5

The wave function ψ(x) describes only the trapped particle component which is responsible for the maintenance of the

pressure equilibrium between the magnetic field and plasma. In a bounded region one must add boundary conditions to the

above equation which imply that the tangential component of the magnetic field is continuous at the boundary and the normal

components of the electric currents vanish at the boundary because the current has no divergence. The current, normalised to

N0, is then given by10

δJ =
iqα

2m
(
ψ∗∇ψ−ψ∇ψ∗

)
− q2

m

∣∣ψ
∣∣2A (13)

which shows that the main modulated contribution to the current is provided by the last term, the product of the mirror particle

density
∣∣ψ
∣∣2 =Nm times the vector potential fluctuation A, which is the mutual interaction term between the density and

magnetic fields. One may note that the vector potential from Maxwell’s equations is directly related to the magnetic flux Φ in

the wave flux tube of radius R through its circumference A= Φ/2πR.15

One also observes that under certain conditions in the last expression for the current density the two gradient terms of the ψ

function partially cancel. Assuming ψ =
∣∣ψ(x)

∣∣e−ik·x the current term becomes

δJ =
qα

m
k
∣∣ψ
∣∣2− q2

m

∣∣ψ
∣∣2A (14)

The first term is small in the long wavelength domain kα� 1. Assuming that this is the case for the mirror mode, which

implies that the first term is important only at the boundaries of the mirror bubbles whre it comes up for the diamagnetic effect20

of the surface currents, the current is determined mainly by the last term which can be written

δJ ≈−q
2Nm
m

A=−ε0ω2
imA (15)

This is to be compared to µ0δJ =−∇2A thus yielding the penetration depth

λim(τ) = c/ωim(τ) (16)

which is the ion inertial length based on the relevant temperature dependence of the particle density Nm(τ) for the mirror25

mode, where we should keep in mind that the latter is normalised to N0. Thus, identifying the reference temperature as

T⊥, we recover the connection between the mirror mode penetration depth and its dependence on temperature ratio τ from

thermodynamic equilibrium theory in the long wavelength limit with main density N0 constant on scales larger than the mirror

mode wavelength.
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4 Magnetic penetration scale

So far we considered only the current. Now we have to relate the above penetration depth to the plasma, the mirror mode.

What we need, is the connection of the mirror mode to the nonlinear Schrödinger equation. Because treating the nonlinear

Schrödinger equation is very difficult even in two dimensions, this is done in one dimension, assuming for instance that the

cross section of the mirror structures is circular with relevant dimension the radius. In the presence of a magnetic wave field5

A 6= 0 Eq. (12) under homogeneous or nearly homogeneous conditions, with the canonical gradient term neglected, has the

thermodynamic equilibrium solution

Nm =
∣∣ψ
∣∣2 =−a

b
− q2N0

2mb
A2 > 0 (17)

which implies that either a or b is negative. In addition there is the trivial solution ψ = 0 which describes the initial stable

state when no instability evolves. The Helmholtz free energy density in this state is F = F0. Equation (11) tells that the10

thermodynamic equilibrium has free energy density

F = F0−
q2aN0

2mb
A2− a2

2b
= F0−

q2aN0

2mb
A2− B2

crit

2µ0
(18)

where the last term is provided by the critical magnetic field which is the external magnetic field. Thus b > 0 and a < 0, and

the dependence on temperature τ can be freely attributed to a. Comparison with Eq. (2) then yields that

a(τ) =−B0
crit

√
b

µ0
τ−

1
2
(
1− τ

) 1
2 (19)15

At critical field one still hasA= 0. Hence the density at critical field is

Nm(τ) =
|a(τ)|
b

=
B0

crit√
bµ0

τ−
1
2
(
1− τ

) 1
2 (20)

which shows that the distortion of the density vanishes for τ = 1 as it should be. This expression can be used in the magnetic

penetration depth to obtain its critical temperature dependence

λim(τ) =
[

m2b

µ0q4
(
N0B0

crit

)2
τ(

1− τ
)
] 1

4

m (21)20

which suggests that the critical penetration depth vanishes for τ = 0. However, τ = 0 is excluded by the argumentation follow-

ing (2) and Eq. (20), because it would imply infinite trapped densities. In principle, τ ≥ τmin cannot become smaller than a

minimum value which must be determined by other methods referring to measurements of the maximum density in thermo-

dynamic equilibrium. One should, however, keep in mind that B0
crit(θ)∝

∣∣sinθ
∣∣ still depends on the angle θ which enters the

above expressions.25

The last two expressions still contain the undetermined coefficient b. This can be expressed through the minimum value of

the anisotropy τmin at maximum critical density Nm . 1 as

b=

(
B0

crit

)2

µ0
τ−1
min

(
1− τmin

)
(22)
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(Note that for Nm > 1 the above expansion of the free energy F becomes invalid. It is not expected, however, that the mirror

mode allows the evolution of sharp density peaks which locally double the density.) With this expression the inertial length

becomes

λim(τ)
λi0

=
[

τ

τmin

(
1− τmin

1− τ

)] 1
4

(23)

When the mirror mode saturates away from the critical field, the magnetic fluctuation grows until it saturates as well, and5

one hasA 6= 0. The increased fractional density Nm is in perpendicular pressure equilibrium with the magnetic field distortion

δB through

NsatT⊥ =
1

2µ0N0

(
B0− δBsat

)2− B2
0

2µ0N0

=
1

2µ0N0

[
∇2
(
A2
)
−
(
∇A

)2]
sat
− B0 · ∇×A

µ0N0
(24)

≈−q
2a(τsat)
2mb

A2
sat10

There is also a small local contribution from the magnetic stresses which results from the surface currents at the mirror bound-

aries in which only a minor part of the trapped particles is involved. This is indicated by the approximate sign.

The last two lines yield for the macroscopic penetration depth the expression (21). We thus conclude that Eq. (21) is also valid

at saturation with τ = τsat . Measuring the saturation wavelength λsat and saturation temperature anisotropy τsat determines

the unknown constant b through (22) with τmin replaced with τsat . Clearly15

τmin ≤ τsat < 1 (25)

as the mirror mode might saturate at temperature anisotropies larger than the permitted lowest anisotropy. Moreover, measure-

ment of τsat at saturation, the state in which the mirror mode is actually observed, immediately yields the normalised saturation

density excess Nm(τsat) from Eq. (20) which then from pressure balance yields the magnetic decrease, i.e. the mirror ampli-

tude. To some extent this completes the theory of the mirror mode in as far as is relates the density at saturation to the saturated20

normalised temperature anisotropy at given T⊥ and determines the scale λim and δB(τsat).

5 Determination of α

Since observations always refer to the final thermodynamic state, when the mirror mode is saturated, the anisotropy at saturation

can be measured, and the value of the unknown constant α in the Schrödinger equation can also be determined. Expressed

through b and λim at τsat it becomes25

α=
√

2mλsat =
m

q

√
b

µ0N0

∣∣a(τsat)
∣∣ (26)

What is interesting about this number is that it is much larger than the quantum of action ~ but at the same time is sufficiently

small, which in retrospect justifies the neglect of the gradient term in the former section. It represents the elementary action in
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a mirror unstable plasma, where the characteristic length is given by the inertial scale α/
√

2m= λsat respectively maximum

of the normalised density Nm. One may note that α is not an elementary constant like ~. It depends on the critical reference

temperature T⊥, and it depends on τ . Its constancy is understood in a thermodynamic sense.

Our argument applies whenA 6= 0. In this case Eq. (12) reads

− α2

2ma
d2f(x)
dx2

− f(1− f2) = 0, where f(x) =
ψ(x)∣∣ψ∞

∣∣ < 1 (27)5

and
∣∣ψ
∣∣
∞ =

√
Nmax (x∞) is given by the maximum density excess in the centre x∞ of the magnetic field decrease. Clearly

this equation defines a natural scale length which is given by

λα = α/
√

2m
∣∣a(T⊥, τ)

∣∣ (28)

which, identifying it with λsat , yields the above expression for α. For x∞ large the equation for f can be solved asymptotically

when df/dx= 0 for f2 = 1 corresponding to a maximum in Nm. It is then easy to show by multiplication with df/dx that10

df(x)√
1− f2

=
√

2λαdx (29)

which has the Landau-Ginzburg solution

f(x) = tanh
[
x−x∞√

2λα

]
(30)

This implies that the excess density assumes the shape

Nm =Nsat tanh2

[
x−x∞√

2λα

]
(31)15

The above condition on the vanishing gradient of f at x∞ warrants the flat shape of the excess density at maximum and

the equally flat shape of the magnetic field in its minimum. Of course, these considerations apply strictly only to the one-

dimensional case. It is, however, not difficult to generalise them to the cylindrical problem with radius r in place of x. The

main qualitative properties are thereby retained. In the next section we will turn to the question of generation of chains of

mirror mode bubbles, as this is the case which is usually observed in space plasmas.20

Since the quantum of action enters the magnetic quantum flux element Φ0 = 2π~/e we may also conclude that in a mirror

unstable plasma the relevant magnetic flux element is given by Φm = α/q.

Indentification of α is an important step. With its knowledge in mind the nonlinear Schrödinger equation for the hypothetical

saturation state of the mirror mode is (up to the coefficient b which, however, is defined in (22) and can be obtained from

measurement) completely determined and thus ready for application of the inverse scattering procedure which solves it under25

any given initial conditions for the mirror mode. It thus opens up the possibility to further investigate the final evolution of the

mirror mode. Executing this programme should, under various conditions, provide the different forms of the mirror mode in its

final thermodynamic equilibrium state. This is left as a formally sufficiently complicated exercise which will not be treated in

the present communication. Instead, we ask for the conditions under which the mirror mode evolves into a chain of separated

mirror bubbles, which requires the existence of a microscopic though classical correlation length.30
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6 The problem of the correlation length

The present phenomenological theory of the final thermodynamic equilibrium state of the mirror mode is modelled after

the phenomenological Landau-Ginzburg theory of superconductivity as presented in the cited textbook literature. From the

existence of λim we would conclude that, under mirror instability, the magnetic field inside the plasma volume should decay

to a minimum value determined by the achievable minimum τsat of the temperature ratio. This conclusion would, however,5

be premature and contradicts observation where chains or trains (cf., e.g., Zhang et al., 2009, for examples) of mirror mode

fluctuations are usually observed, which presumably are in their saturated state having had sufficient time to evolve. In fact,

observations of mirror modes in their growth phase have to our knowledge never yet been reported. On the other hand, in no

case known to us a global reduction of the gross magnetic field in an anisotropic plasma has been identified yet.

It is clear that in any real collisionless high temperature plasma neither Nm can become infinite, nor can τ drop to zero.10

Since it is not known how and on which way the mirror mode saturates, its growth must ultimately be stopped when the particle

correlation length comes into play. In a plasma the shortest natural correlation length is the Debye length λD which under all

conditions is much shorter then the above estimated penetration length. Referring to the Debye length, the Landau-Ginzburg

parameter, i.e. the ratio of penetration to correlation lengths, in a plasma as function of τ becomes

κD ≡
λim(τ)
λD(τ)

� 1 (32)15

a quantity that is large. Writing for the Debye length

λ2
D(τ) = λ2

D⊥
1 + τ/2
Nm(τ)

, λ2
D⊥ =

4
3
T⊥/mi

ω2
i0

(33)

the Landau-Ginzburg parameter can be expressed in terms of τ , exhibiting only a weak dependence on the temperature ratio

τ < 1:

κD(τ) =
λi0
λD⊥

√
1 + τ/2

2
� 1 (34)20

Thus, κD is practically constant and about independent on the temperature anisotropy. Its value κD0 = λi0/λD at τ = 1,T‖ =

T⊥ refers to the isotropic case when no mirror instability evolves.

This is an important finding because it implies that in a plasma the case that the magnetic field would be completely expelled

from the volume of the plasma cannot be realised. Different regions of extension longer than the correlation length λD are un-

correlated. They therefore behave separately lacking knowledge about their uncorrelated neighbours. Each of them experiences25

the penetration scale and adjust itself to it. This is in complete analogy to Landau-Ginzburg theory. Thus, once the main mag-

netic field in an anisotropic plasma drops below threshold, the plasma will necessarily evolve into a chain of nearly unrelated

mirror bubbles which interact with each other because each occupies space. In superconductivity this corresponds to a type II

superconductor. Mirror unstable plasmas in this sense behave like type II superconductors. They decay into regions of normal

magnetic field strength and embedded domains of spatial scale λm(τ) with reduced magnetic field. These regions contain an30

excess plasma population which is in pressure and stress balance with the magnetic field. Its diamagnetism (perpendicular
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Figure 1. The Landau-Ginzburg parameter κρ/κρ,sat as function of anisotropy ratio τ = T‖/T⊥ < 1 for the particular choice τsat = 1
4

.

The parameter κρ refers to the thermal gyroradius as the short-scale correlation length, as explained in the text. It maximises at saturation

anisotropy τ = τsat and vanishes for τ = 1 when no instability sets on. For any given ratio τ the value of κρ lies on a curve like the one

shown. There is a threshold for the mirror mode to evolve into bubbles which it must overcome. It is given by the ratio κρ,sat > 1 of the

critical Alfvén speed to perpendicular thermal velocity.

pressure) keeps the magnetic field partially out and causes weak diamagnetic currents to flow along the boundaries of each of

the partially field-evacuated domains. This trapped plasma behaves analogously to the pair plasma in metallic superconductiv-

ity, this time however at the high plasma temperature being bound together not by pairing potentials but by the Debye potential

over the Debye correlation length.

The Debye length is a natural scale in a plasma. Within a mutual distance of one Debye length, particles are not completely

independent. They are weakly bound together by their incompletely compensated electric charge fields. However, the Debye5

length is a very short scale, in fact the shortest collective scale in the plasma, and though it must have an effect on the collective

evolution of particles in plasmas, there could also be longer scales on which the particles are correlated.

Such a scale would, for instance, be the ion gyroradius. For the low frequencies of the mirror mode, the magnetic moment

µ(τ) = T⊥/B(τ) = const of the particles is conserved in their dynamics, which implies that all particles with same magnetic

moment µ(τ) behave about collectively, at least in the sense of a gyro-kinetic theory.10

However, though µ(τ) is a constant of motion, it still is a function of the anisotropy through the dependence of the magnetic

field on τ . Expressing the gyroradius through the magnetic moment

ρ(τ) =

√
2µ(τ)
eωci(τ)

= ρ0

√
τ

1− τ , ρ0 =

√
2mT⊥

e2
(
B0

crit

)2 (35)
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it can be taken as another kind of collective correlation scale as on scales longer than ρ it collectively binds particles of same

magnetic moment which, in particular, are magnetically trapped like those which are active in the mirror instability. Below the15

gyroradius charged particles are magnetically free. ρ is the scale where the particles magnetise, start feeling the magnetic field

effect and collectively enter another phase in their dynamics. This scale is much longer than the Debye length and may be more

appropriate for describing the saturated behaviour of the mirror mode. Thus one may argue that, as long as the penetration

depth (inertial sale) exceeds ρ, the gyroradius is the relevant correlation length. Only when it drops below the gyroradius, the

Debye length takes over. The Landau-Ginzburg parameter then becomes5

κρ(τ) =
λim(τ)
ρ(τ)

=
λi0
ρ0

[
τsat
τ

1− τ
1− τsat

] 1
4

(36)

This ratio depends on the temperature anisotropy τ = T‖/T⊥, which is a measurable quantity and the important parameter,

while it saturates at κρ,sat = λi0/ρ0, the ratio of inertial length to gyroradius at critical field. This ratio is not necessarily large.

It can be expressed by the ratio of Alfvén velocity VA to perpendicular ion thermal velocity υ⊥th

κρ,sat =
λi0
ρ0

=
VA
(
B0

crit

)

υ⊥th
> 1 (37)10

Hence, when referring to the ion gyroradius as correlation length, the mirror mode would evolve and saturate into a chain

of mirror bubbles only, when the Alfvén speed VA > υ⊥th exceeds the perpendicular thermal velocity of the ions. [Since

B0
crit ∝

∣∣sinθ
∣∣, highly oblique angles are favoured. The range of optimum angles has recently been estimated (Treumann and

Baumjohann, 2018).] This is to be multiplied with the τ -dependence, of which Figure 1 gives an example. The value of this

function is always smaller than one. For a chain of mirror bubbles to evolve in a plasma, the requirement κρ > 1 can then be15

written as

1≤ τ

τsat
<

κ4
ρ,sat

1 +
(
κ4
ρ,sat − 1

)
τsat

(38)

which is always satisfied for τsat < 1 and κρ,sat > 1, i.e. the Alfvén speed exceeding the perpendicular thermal speed, which

indeed is the crucial condition for mirror modes to evolve into chains and become observable, with the gyroradius playing

the role of a correlation length. Mirror mode chains in the present case are restricted to comparably cool anisotropic plasma20

conditions, a prediction which can be checked experimentally to decide whether or not the gyroradius serves as correlation

length.

Otherwise, when the above condition is not satisfied and τ < 1 is below threshold, a very small and thus probably not sus-

ceptible reduction in the overall magnetic field is produced in the anisotropic pressure region over distances L� ρ, much

larger than the ion gyroradius. Observation of such domains of reduced magnetic field strengths under anisotropic pres-25

sure/temperature conditions would indicate the presence of a large-scale typ I classical Meissner effect in the plasma. Such

a reduction of the magnetic field would be difficult to explain otherwise and could only be understood as confinement of

plasma by discontinuous boundaries of the kind of tangential discontinuities.

The relative rarity of observations of mirror-mode chains or trains seems to support the case that the gyroradius, not the

Debye length, plays the role of the correlation length in a magnetised plasma under conservation of the magnetic moments
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of the particles. From basic theory it cannot be decided which of the two correlation lengths, the Debye length λD or the ion

gyroradius ρ, dominates the dynamics and saturation of the mirror mode. A decision can only be established by observations.

7 Conclusions

Mirror modes in the anisotropic collisionless space plasma apparently represent a classical thermodynamic analogue to a5

superconducting equilibrium state. In contrast to metallic superconductivity which is described by the Landau-Ginzburg theory

to which we refer here or, on the microscopic quantum level, by BCS-pairing theory, the problem of circumventing friction

and resistance is of no interest in space plasmas which evolve towards mirror modes. High temperature plasmas are classical

systems in which no pairing occurs and BCS theory is not applicable. Those plasmas are already ideally conducting with the

possible exception that some anomalous resistance may develop from high-frequency kinetic instabilities or turbulence but10

is of little importance in the zero frequency mirror mode even asymptotically, in the long term thermodynamic limit, where

anomalous resistance may contribute to decay of the mirror-surface currents which develop and flow along the boundaries of

the mirror bubbles. The times when this happens are very long compared with the saturation time of the mirror instability and

transition into the thermodynamic quasi-equilibrium which has been considered here.

The more interesting finding concerns the explanation why at all, in an ideally conducting plasma, mirror bubbles can evolve.15

Fluid and simple kinetic theory demonstrate that mirror modes occur in the presence of temperature anisotropies thereby

identifying the linear growth rate of the instability. The present theory contributes to clarification of the mechanism and its

final thermodynamic equilibrium as a nonlinear effect driven by the available free energy. The perpendicular temperature in this

theory plays the role of a critical temperature. When the parallel temperature drops below it, which means that 1> τ > τmin ,

mirror modes evolve. Interestingly the anisotropy is restricted from below. The parallel temperature cannot drop below a20

minimum value. This value is open to determination by observations.

The observation of chains of mirror bubbles, which provide the mirror-unstable plasma a particular magnetic texture, sug-

gests that the plasma, in addition to being mirror unstable, is subject to another correlation length which determines the spatial

structure of the mirror texture in the saturated thermodynamic quasi-equilibrium state. This correlation length can be either

taken as the Debye scale λD, which then naturally makes it plausible that many such mirror bubbles evolve, because in all25

magnetised plasmas the magnetic penetration depth by far exceeds the Debye length and makes the Landau-Ginzburg param-

eter based on the Debye length κD� 1. Otherwise the role of a correlation length could also be played by the thermal ion

gyroradius ρ. In this case the conditions for the evolution of the mirror mode with the many observed bubbles become more

subtle, because then κρ & 1 occurs under additional restrictions implying that the Alfvén speed exceeds the perpendicular ther-

mal speed. This prediction has to be checked and possibly verified experimentally. A particular case of the dependence of the30

gyroradius based Landau Ginzburg parameter κρ is shown graphically in Fig. 1.

To the space plasma physicist the present investigation may look a bit academic. However, it provides a physical understand-

ing of how mirror modes saturate, why they evolve into chains of many bubbles or magnetic holes, what the conditions are that

this may happen.
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It also relates the measurable saturated magnetic amplitudes of mirror modes to the saturated anisotropy τsat and the Landau-

Ginzburg parameter κ, transforming both into experimentally accessible quantities. These should be of use in the development

of a weak-kinetic turbulence theory of magnetic mirror modes as the result of which mirror modes can grow to the observed

large amplitudes which are known to by far exceed the simple quasilinear saturation limits.5
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