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Abstract.– We examine the physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium,

to demonstrate that the mirror mode is the analogue of a superconducting effect in a classical anisotropic-pressure space plasma.

Two different spatial scales are identified which control the behaviour of its evolution. These are the ion inertial scale λim(τ)

based on the excess density Nm(τ) generated in the mirror mode, and the Debye scale λD(τ). The Debye length plays the role

of the correlation length in superconductivity. Their dependence on the temperature ratio τ = T‖/T⊥ < 1 is given, with T⊥ the5

reference temperature at critical magnetic field. The mirror mode equilibrium structure under saturation is determined by the

Landau-Ginzburg ratio κD = λim/λD, or κρ = λim/ρ, depending on whether the Debye length or the thermal-ion gyroradius

ρ – or possibly also an undefined turbulent correlation length `turb – serve as correlation lengths. Since in all space plasmas

κD� 1, plasmas with λD as relevant correlation length always behave like type II superconductors, naturally giving rise to

chains of local depletions of the magnetic field of the kind observed in the mirror mode. In this way they would provide the10

plasma with a short scale magnetic bubble texture. The problem becomes more subtle when ρ is taken as correlation length.

In this case the evolution of mirror modes is more restricted. Their existence as chains or trains of larger scale mirror bubbles

implies that another threshold, VA > υ⊥th, is exceeded. Finally, in case that the correlation length `turb instead results from low

frequency magnetic/magnetohydrodynamic turbulence, the observation of mirror bubbles and the measurement of their spatial

scales sets an upper limit on the turbulent correlation length. This might be important in the study of magnetic turbulence in15

plasmas.

1 Introduction

Under special conditions high-temperature collisionless plasmas may develop properties which resemble those of supercon-

ductors. This is the case with the mirror mode when the anisotropic pressure gives rise to local depletions of the magnetic field

similar to the Meissner effect in metals where it signals the onset of superconductivity (Kittel, 1963; Fetter & Walecka, 1971;20

Huang, 1987; Lifshitz & Pitaevskii, 1998), i.e. the suppression of friction between the current and the lattice. In collisionless

plasmas there is no lattice, the plasma is frictionless, thus it already is ideally conducting which, however, does not mean that

it is superconducting! For being superconducting, additional properties are required. These, as we show below, are given in the

saturation state of the mirror mode.

The mirror mode is a non-oscillatory plasma instability (Chandrasekhar, 1961; Hasegawa, 1969; Gary, 1993; Southwood25

& Kivelson, 1993; Kivelson & Southwood, 1996) which evolves in anisotropic plasmas (for a recent review see Sulem, 2011,

1



and references therein). It has been argued that it should readily saturate by quasilinear depletion of the temperature anisotropy

(cf., e.g. Noreen et al., 2017, and references therein). Observations do not support this conclusion. In fact, we recently ar-

gued (Treumann & Baumjohann, 2018a) that the large amplitudes of mirror-mode oscillations observed in the Earth’s magne-

tosheath, magnetotail and elsewhere, like other planetary magnetosheaths, in the solar wind and generally in the heliosphere,

(see., e.g. Tsurutani et al., 1982, 2011; Czaykowska et al., 1998; Zhang et al., 1998; Constantinescu et al., 2003; Zhang et al.,5

2008, 2009; Lucek et al., 1999a, b; Volwerk et al., 2008, and many others) are a sign of the impotence of quasilinear theory

of limiting the growth of the mirror instability. Instead, mirror modes should be subject to weak kinetic turbulence theory

(Sagdeev & Galeev, 1969; Davidson, 1972; Tsytovich, 1977; Yoon, 2007, 2018; Yoon & Fang, 2007) which allows them to

evolve until becoming comparable in amplitude to the ambient magnetic field long before any dissipation can set on.

This is not unreasonable, because all those plasmas where the mirror instability evolves are ideal conductors on the scales10

of the plasma flow. On the other hand, no weak turbulence theory of the mirror mode is available yet as it is difficult to identify

the various modes which interact to destroy quasilinear quenching. The frequent claim that whistlers (lion roars) excited in the

trapped electron component would destroy the bulk (global) temperature anisotropy is erroneous, because whistlers (Thorne

& Tsurutani, 1981; Baumjohann et al., 1999; Maksimovic et al., 2001; Zhang et al., 1998) grow on the expense of a small

component of anisotropic resonant particles only (Kennel & Petschek, 1966). Depletion of the resonant anisotropy does by no15

means affect the bulk temperature anisotropy that is responsible for the evolution of the mirror instability. On the other hand,

construction of a weak turbulence theory of the mirror mode poses serious problems. One therefore needs to refer to other

means of description of its final saturation state.

Since measurements suggest that the observed mirror modes are about stationary phenomena which are swept over the space-

craft at high flow speeds (called Taylor’s hypothesis though, in principle, just refers to the Galilei transformation), it seems20

reasonable to tackle them within a thermodynamic approach, i.e. assuming that in the observed large amplitude saturation state

they can be described as the stationary state of interaction between the ideally conducting plasma and magnetic field. This can

be most efficiently done when the free energy of the plasma is known which, unfortunately, is not the case. Magnetohydrody-

namics does not apply, and the formulation of a free energy in the kinetic state is not available. For this reason we refer to some

phenomenological approach which is guided by the phenomenological theory of superconductivity. There we have the similar25

phenomenon that the magnetic field is expelled from the medium due to internal quantum interactions, known as the Meissner

effect. This resembles the evolution of the mirror mode though in our case the interactions are not in the quantum domain.

This is easily understood if considering the thermal length λ~ =
√

2π~2/meT and comparing it to the shortest plasma scale,

viz. the inter-particle distance dN ∼N−
1
3 . The former is, for all plasma temperatures T , in the atomic range while the latter in

space plasmas for all densities N is at least several orders of magnitude larger. Plasmas are classical. In their equilibrium state30

classical thermodynamics applies to them.

In the following we boldly ask for the thermodynamic equilibrium state of a mirror unstable plasma. (For other non-

thermodynamical attempts of modelling the equilibrium configuration of magnetic mirror modes and application to multi-

spacecraft observations, the reader may consult Constantinescu, 2002; Constantinescu et al., 2003). Such an approach is rather

2



alien to space physics. It follows the path prescribed in solid state physics but restricts itself to the domain of classical thermo-

dynamics only.

2 Properties of the mirror instability

The mirror instability evolves whence the magnetic field B in a collisionless magnetised plasma with an internal pres-

sure/temperature anisotropy T⊥ > T‖, where the subscripts refer to the directions perpendicular and parallel to the ambient5

magnetic field, drops below a critical value

B <Bcrit ≈
√

2µ0NTi⊥

(
Θi +

√
Te⊥
Ti⊥

Θe

) 1
2 ∣∣sin θ∣∣ (1)

where Θj =
(
T⊥/T‖− 1

)
j
> 0 is the temperature anisotropy of species j = e, i (for ions and electrons) and θ is the angle of

propagation of the wave with respect to the ambient magnetic field (cf., e.g., Treumann & Baumjohann, 2018a). Here any

possible temperature anisotropy in the electron population has been included but will be dropped below as it seems (Yoon &10

López, 2017) that it does not provide any further insight into the physics of the final state of the mirror mode.

The important observation is that the existence of the mirror mode depends on the temperature difference T⊥−T‖ and the

critical magnetic field. Commonly only the temperature anisotropy is reclaimed as being responsible for the growth of the

mirror mode. Though this is true, it also implies the above condition on the magnetic field. To some degree this resembles the

behaviour of magnetic fields under superconducting conditions. To demonstrate this, we take T⊥ as reference – or critical –15

temperature. The critical magnetic field becomes a function of the temperature ratio τ = T‖/T⊥. Once τ < 1 and B <Bcrit

the magnetic field will be pushed out of the plasma to give space to an accumulated plasma density and also weak diamagnetic

surface currents on the boundaries of the (partially) field-evacuated domain.

The τ -dependence of the critical magnetic field can be cast into the form

Bcrit(T‖)

B0
crit

=
[
τ−1

(
1− τ

)] 1
2

=

(
T⊥
T‖

) 1
2
(

1−
T‖

T⊥

) 1
2

(2)20

which indeed resembles that in the phenomenological theory of superconductivity. Here

B0
crit =

√
2µ0NTi⊥

∣∣sin θ∣∣ (3)

and the critical threshold vanishes for τ = 1 where the range of possible unstable magnetic field values shrinks to zero; the

limits T‖ = 0 or T⊥ =∞ make no physical sense.

Though the effects are similar to superconductivity, the temperature dependence is different from that of the Meissner effect25

in metals in their isotropic low-temperature super-conducting phase. In contrast, in an anisotropic plasma the effect occurs in

the high-temperature phase only while being absent at low temperatures. Nevertheless, the condition τ < 1 indicates that the

mirror mode, concerning the ratio of parallel to perpendicular temperatures, is a low-temperature effect in the high-temperature

plasma phase. This may suggest that even in metals high-temperature superconductivity might be achieved more easily for

anisotropic temperatures, a point we will follow elsewhere (Treumann & Baumjohann, 2018b).30
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Since the plasma is ideally conducting, any quasi-stationary magnetic field is subject to the penetration depth, which is the

inertial scale λim = c/ωim, with ω2
im = e2Nm/ε0mi based on the density Nm of the plasma component involved into the

mirror effect. The mirror instability is a slow purely growing instability with real frequency ω ≈ 0. On these low frequencies

the plasma is quasi-neutral. In metallic superconductivity this length is the London penetration depth which refers to electrons

as the ions are fixed to the lattice. Here, in the space plasma, it is rather the ion scale because the dominant mirror effect is5

caused by mobile ions in the absence of any crystal lattice. Such a “magnetic lattice” structure is ultimately provided under

conditions investigated below by the saturated state of the mirror mode, where it collectively affects the trapped ion component

on scales of an internal correlation length.

3 Free energy

In the thermodynamic equilibrium state the quantity which describes the matter in the presence of a magnetic field B is the10

Landau-Gibbs free energy density

GL = FL−
1

2µ0
δB ·B (4)

where FL is the Landau free energy density (Kittel & Kroemer, 1980) which, unfortunately, is not known. In magnetohydro-

dynamics it can be formulated but becomes a messy expression which contains all stationary, i.e. time-averaged, nonlinear

contributions of low-frequency electromagnetic plasma waves and thermal fluctuations. The total Landau-Gibbs free energy is15

the volume integral of this quantity over all space. In thermodynamic equilibrium this is stationary, and one has

d

dt

∫
d3x GL = 0 (5)

In order to restrict to our case we assume that FL in the above expression, which contains the full dynamics of the plasma

matter, can be expanded with respect to the normalised density Nm < 1 of the plasma component which participates in the

mirror instability:20

FL = F0 + aNm +
1

2
bN2

m + · · · (6)

with F0 the Helmholtz free energy density, which is independent of Nm corresponding to the normal (or mirror stable) state.

Normalisation is to the ambient density N0, thus attributing the dimension of energy density to the expansion coefficients a,b.

An expansion like this one is always possible in the spirit of a perturbation approach as long as the total densityN/N0 = 1+Nm

with
∣∣Nm∣∣< 1. It is thus clear that Nm is not the total ambient plasma density N0 which is itself in pressure equilibrium with25

the ambient field B0 under static conditions expressed by N0T =B2
0/2µ0 under the assumption that no static current J0 flows

in the medium. Otherwise its Lorentz force J0×B0 =−T∇N0 is compensated by the pressure gradient force already in

the absence of the mirror mode and includes the magnetic stresses generated by the current. This case includes a stationary

contribution of the free energy F0 around which the mirror state has evolved.

What concerns the presence of the mirror mode, we know that it must as well be in balance between the local plasma30

gradient∇Nm of the fluctuating pressure and the induced magnetic pressure (δB)2/2µ0. Note that all quantities are stationary;
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the prefix δ refers to deviations from “normal” thermodynamic equilibrium, not to variations. Moreover, we have Maxwell’s

equations which in the stationary state reduce to

∇× δB = µ0δJ , and δB =∇×A (7)

accounting for the vanishing divergence by introducing the fluctuating vector potential A (where we drop the δ-prefix on the

vector potential). This enables writing the kinetic part of the free energy of the particles involved in the canonical operator form5

p2

2m
=

1

2m

∣∣∣− iα∇− qA∣∣∣2 (8)

referring to ions of positive charge q > 0, and the constant α naturally has the dimension of a classical action. (There is a little

problem to what is meant by the mass m in this expression, to which we will briefly return below.) In this form the momentum

acts on a complex dimensionless “wave function” ψ(x) whose square10 ∣∣ψ(x)
∣∣2 = ψ∗(x)ψ(x) =Nm (9)

we below identify with the above used normalised excess in plasma density known to be present locally in any of the mirror

mode bubbles.

Unlike quantum theory, ψ(x) is not a single particle wave function, it rather applies to a larger compound of trapped particles

(ions) in the mirror modes which behave similar and are bound together by some correlation length (a very important parameter,15

which is to be discussed later). It enters the expression for the free energy density thus providing the units of energy density to

the expansion coefficients a,b. In the quantum case (as for instance in the theory of superconductivity) we would have α= ~;

in the classical case considered here, α remains undetermined until a connection to the mirror mode is obtained. Clearly, α� ~

cannot be very small because the gradient and the corresponding wave vector k involved in the operation∇ are of the scale of

the inverse ion gyro-radius in the mirror mode. Hence, we suspect that α∝ T/ωp where T is a typical plasma temperature (in20

energy units), and ωp is a typical frequency of collective ion oscillations in the plasma. Any such oscillations naturally imply

the existence of correlations which bind the particles (ions) to exert a collective motion and which gives rise to the fieldA and

density fluctuations δN . Such frequencies can be either plasma ωp = ωi = e
√
N/ε0m, cyclotron ωc = eB/m frequencies or

some unknown average turbulent frequency
〈
ωturb

〉
on turbulence scales shorter than the typical average mirror mode scale.

For the ion mirror mode the choice is that q ∝+e, and m∝mi.25

Inspecting Eq. (8) we will run into difficulties when assuming q = e and m=mi because with a large number of particles

collectively participating each contributing a charge e and mass m the ratio q2/m will be proportional to the number of

particles. In superconductivity this provides no problem because pairing of electrons tells that mass and charge just double

which is compensated in Eq. (8) by m→ 2m. Similarly, in the case of the mirror mode we have for the normalised density

excess Nm = δN/N ≡ ζ < 1, where N is the total particle number, and δN its excess. We thus identify an effective mass30

m∗ ≡∆mi, where ∆ = 1 + ζ. Because of the restriction on ζ < 1 this yields for the effective mass in mirror modes the

preliminary range

mi <m∗ < 2mi (10)
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which is similar to the mass in metallic superconductivity. However, each mirror bubble contains a different number δN of

trapped particles. Hence ζ(x) becomes a function of space x which varies along the mirror chain, and ∆(x) then becomes a

function of space. The restriction on ζ < 1 makes this variation weak. For an observed chain of mirror modes one defines some

mean effective mass meff by

meff ≡
〈
m∗(x)

〉
=
〈
∆(x)

〉
mi (11)5

Averaging reduces ∆, making the effective mass closer to the lower bound mi, which is to be used below for m→meff

wherever the mass appears.

Retaining the quantum action and dividing by the charge q, the factor of the Nabla operator becomes ~/q = Φ0e/2πq. Hence,

α is proportional to the number ν = Φ/Φ0 of elementary flux elements in the ion-gyro cross section, which in a plasma is a

large number due to the high temperature T⊥. This makes α� ~.10

With these assumptions in mind we can write for the free energy density up to second order in Nm

F = F0 + a
∣∣ψ∣∣2 +

1

2
b
∣∣ψ∣∣4 +

1

2m

∣∣∣(− iα∇− qA)ψ∣∣∣2 +
δB ·B0

2µ0
(12)

Inserted into the Gibbs free energy density, the last term is absorbed by the Gibbs potential. Applying the Hamiltonian pre-

scription and varying the Gibbs free energy with respect to A and ψ,ψ∗ yields (for arbitrary variations) an equation for the

“wave function” ψ(x)15 [
1

2m

(
− iα∇− qA

)2
+ a + b

∣∣ψ∣∣2]ψ = 0 (13)

which is recognised as a nonlinear complex Schrödinger equation. Such equations appear in plasma physics whence waves

undergo modulation instability and evolve towards the general family of solitary structures.

It is known that the nonlinear Schrödinger equation can be solved by inverse scattering methods and, under certain condi-

tions, yields either single solitons or trains of solitary solutions. To our knowledge, the nonlinear Schrödinger equation has not20

yet been derived for the mirror instability because no slow wave is known which would modulate its amplitude. Whether this

is possible is an open question which we will not follow up here. Hence the quantity α remains undetermined for the mirror

mode. Instead, we chose a phenomenological approach which is suggested by the similarity of both, the mirror mode effect in

ideally conducting plasma and the above obtained nonlinear Schrödinger equation to the phenomenological Landau-Ginzburg

theory of metallic superconductivity.25

In the thermodynamic equilibrium state the above equation does not describe the mirror mode amplitude itself. Rather it

describes the evolution of the “wave function” of the compound of particles trapped in the mirror mode magnetic potential A

which it modulates. This differs from superconductivity where we have pairing of particles, escape from collisions with the

lattice and superfluidity of the paired particle population at low temperatures. In the ideally conducting plasma we have no

collisions but, under normal conditions, also no pairing and no superconductivity though, in the presence of some particular30

plasma waves, attractive forces between neighbouring electrons can sometimes evolve (Treumann & Baumjohann, 2014). In

superconductivity the pairing implies that the particles become correlated, an effect which in plasma must also happen whence
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the superconducting mirror mode Meissner effect occurs, but it happens in a completely different way via correlating large

numbers of particles, as we will exemplify farther below.

The wave function ψ(x) describes only the trapped particle component which is responsible for the maintenance of the

pressure equilibrium between the magnetic field and plasma. In a bounded region one must add boundary conditions to the

above equation which imply that the tangential component of the magnetic field is continuous at the boundary and the normal5

components of the electric currents vanish at the boundary because the current has no divergence. The current, normalised to

N0, is then given by

δJ =
iqα

2m

(
ψ∗∇ψ−ψ∇ψ∗

)
− q2

m

∣∣ψ∣∣2A (14)

which shows that the main modulated contribution to the current is provided by the last term, the product of the mirror particle

density
∣∣ψ∣∣2 =Nm times the vector potential fluctuation A, which is the mutual interaction term between the density and10

magnetic fields. One may note that the vector potential from Maxwell’s equations is directly related to the magnetic flux Φ in

the wave flux tube of radius R through its circumference A= Φ/2πR.

One also observes that under certain conditions in the last expression for the current density the two gradient terms of the ψ

function partially cancel. Assuming ψ =
∣∣ψ(x)

∣∣e−ik·x the current term becomes

δJ =
qα

m
k
∣∣ψ∣∣2− q2

m

∣∣ψ∣∣2A (15)15

The first term is small in the long wavelength domain kα� 1. Assuming that this is the case for the mirror mode, which

implies that the first term is important only at the boundaries of the mirror bubbles where it comes up for the diamagnetic effect

of the surface currents, the current is determined mainly by the last term which can be written

δJ ≈−q
2N0

m
NmA=−ε0ω2

imA (16)

This is to be compared to µ0δJ =−∇2A thus yielding the penetration depth20

λim(τ) = c/ωim(τ) (17)

which is the ion inertial length based on the relevant temperature dependence of the particle density Nm(τ) for the mirror

mode, where we should keep in mind that the latter is normalised to N0. Thus, identifying the reference temperature as

T⊥, we recover the connection between the mirror mode penetration depth and its dependence on temperature ratio τ from

thermodynamic equilibrium theory in the long wavelength limit with main density N0 constant on scales larger than the mirror25

mode wavelength.

4 Magnetic penetration scale

So far we considered only the current. Now we have to relate the above penetration depth to the plasma, the mirror mode.

What we need, is the connection of the mirror mode to the nonlinear Schrödinger equation. Because treating the nonlinear
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Schrödinger equation is very difficult even in two dimensions, this is done in one dimension, assuming for instance that the

cross section of the mirror structures is circular with relevant dimension the radius. In the presence of a magnetic wave field

A 6= 0 Eq. (13) under homogeneous or nearly homogeneous conditions, with the canonical gradient term neglected, has the

thermodynamic equilibrium solution

Nm =
∣∣ψ∣∣2 =−a

b
− q2N0

2mb
A2 > 0 (18)5

which implies that either a or b is negative. In addition there is the trivial solution ψ = 0 which describes the initial stable

state when no instability evolves. The Helmholtz free energy density in this state is F = F0. Equation (12) tells that the

thermodynamic equilibrium has free energy density

F = F0−
q2aN0

2mb
A2− a2

2b
= F0−

q2aN0

2mb
A2− B2

crit

2µ0
(19)

where the last term is provided by the critical magnetic field which is the external magnetic field. Thus b > 0 and a < 0, and10

the dependence on temperature τ can be freely attributed to a. Comparison with Eq. (2) then yields that

a(τ) =−B0
crit

√
b

µ0
τ−

1
2

(
1− τ

) 1
2 (20)

At critical field one still hasA= 0. Hence the density at critical field is

Nm(τ) =
|a(τ)|
b

=
B0

crit√
bµ0

τ−
1
2

(
1− τ

) 1
2 (21)

which shows that the distortion of the density vanishes for τ = 1 as it should be. This expression can be used in the magnetic15

penetration depth to obtain its critical temperature dependence

λim(τ) =

[
m2b

µ0q4
(
N0B0

crit

)2 τ(
1− τ

)] 1
4

m (22)

which suggests that the critical penetration depth vanishes for τ = 0. However, τ = 0 is excluded by the argumentation follow-

ing (2) and Eq. (21), because it would imply infinite trapped densities. In principle, τ ≥ τmin cannot become smaller than a

minimum value which must be determined by other methods referring to measurements of the maximum density in thermo-20

dynamic equilibrium. One should, however, keep in mind that B0
crit(θ)∝

∣∣sinθ∣∣ still depends on the angle θ which enters the

above expressions.

The last two expressions still contain the undetermined coefficient b. This can be expressed through the minimum value of

the anisotropy τmin at maximum critical density Nm . 1 as

b=

(
B0

crit

)2
µ0

τ−1min

(
1− τmin

)
(23)25

(Note that for Nm > 1 the above expansion of the free energy F becomes invalid. It is not expected, however, that the mirror

mode allows the evolution of sharp density peaks which locally double the density.) With this expression the inertial length
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becomes

λim(τ)

λi0
=

[
τ

τmin

(
1− τmin

1− τ

)] 1
4

(24)

When the mirror mode saturates away from the critical field, the magnetic fluctuation grows until it saturates as well, and

one hasA 6= 0. The increased fractional density Nm is in perpendicular pressure equilibrium with the magnetic field distortion

δB through5

NsatT⊥ =
1

2µ0N0

(
B0− δBsat

)2− B2
0

2µ0N0

=
1

2µ0N0

[
∇2
(
A2
)
−
(
∇A

)2]
sat
− B0 · ∇×A

µ0N0
(25)

≈−q
2a(τsat)

2mb
A2

sat

There is also a small local contribution from the magnetic stresses which results from the surface currents at the mirror bound-

aries in which only a minor part of the trapped particles is involved. This is indicated by the approximate sign.10

The last two lines yield for the macroscopic penetration depth the expression (22). We thus conclude that Eq. (22) is also valid

at saturation with τ = τsat . Measuring the saturation wavelength λsat and saturation temperature anisotropy τsat determines

the unknown constant b through (23) with τmin replaced with τsat . Clearly

τmin ≤ τsat < 1 (26)

as the mirror mode might saturate at temperature anisotropies larger than the permitted lowest anisotropy. Moreover, measure-15

ment of τsat at saturation, the state in which the mirror mode is actually observed, immediately yields the normalised saturation

density excess Nm(τsat) from Eq. (21) which then from pressure balance yields the magnetic decrease, i.e. the mirror ampli-

tude. To some extent this completes the theory of the mirror mode in as far as is relates the density at saturation to the saturated

normalised temperature anisotropy at given T⊥ and determines the scale λim and δB(τsat).

5 The equivalent action α20

Since observations always refer to the final thermodynamic state, when the mirror mode is saturated, the anisotropy at saturation

can be measured, and the value of the unknown constant α in the Schrödinger equation can also be determined. Expressed

through b and λim at τsat it becomes

α=
√

2mλsat =
m

q

√
b

µ0N0

∣∣a(τsat)
∣∣ (27)

What is interesting about this number is that it is much larger than the quantum of action ~ but at the same time is sufficiently25

small, which in retrospect justifies the neglect of the gradient term in the former section. It represents the elementary action in

a mirror unstable plasma, where the characteristic length is given by the inertial scale α/
√

2m= λsat respectively maximum
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of the normalised density Nm. One may note that α is not an elementary constant like ~. It depends on the critical reference

temperature T⊥, and it depends on τ . Its constancy is understood in a thermodynamic sense.

Our argument applies whenA 6= 0. In this case Eq. (13) reads

− α2

2ma

d2f(x)

dx2
− f(1− f2) = 0, where f(x) =

ψ(x)∣∣ψ∞∣∣ < 1 (28)

and
∣∣ψ∣∣∞ =

√
Nmax (x∞) is given by the maximum density excess in the centre x∞ of the magnetic field decrease. Clearly5

this equation defines a natural scale length which is given by

λα = α/
√

2m
∣∣a(T⊥, τ)

∣∣ (29)

which, identifying it with λsat , yields the above expression for α. For x∞ large the equation for f can be solved asymptotically

when df/dx= 0 for f2 = 1 corresponding to a maximum in Nm. It is then easy to show by multiplication with df/dx that

df(x)√
1− f2

=
√

2λαdx (30)10

which has the Landau-Ginzburg solution

f(x) = tanh

[
x√
2λα

]
(31)

This implies that the excess density assumes the shape

Nm =Nmax tanh2

[
x√
2λα

]
(32)

It approachesNmax for x→ x∞. The above condition on the vanishing gradient of f at x∞ warrants the flat shape of the excess15

density at maximum (x∞) and the equally flat shape of the magnetic field in its minimum. At x= 0 the amplitude f(x) starts

increasing with finite slope f ′(0) =
√

2λα. On the other hand, the initial slope of Nm is N ′m(0) = 0. The normalised excess

density has a turning point at xt ≈ 0.48λα with value Nm(xt)≈ 0.11Nmax . This behaviour is schematically shown in Figure

1. Of course, these considerations apply strictly only to the one-dimensional case. It is, however, not difficult to generalise them

to the cylindrical problem with radius r in place of x. The main qualitative properties are thereby retained. In the next section20

we will turn to the question of generation of chains of mirror mode bubbles, as this is the case which is usually observed in

space plasmas.

Since the quantum of action enters the magnetic quantum flux element Φ0 = 2π~/e we may also conclude that in a mirror

unstable plasma the relevant magnetic flux element is given by Φm = α/q.

Indentification of α is an important step. With its knowledge in mind the nonlinear Schrödinger equation for the hypothetical25

saturation state of the mirror mode is (up to the coefficient b which, however, is defined in (23) and can be obtained from

measurement) completely determined and thus ready for application of the inverse scattering procedure which solves it under

any given initial conditions for the mirror mode. It thus opens up the possibility to further investigate the final evolution of the

mirror mode. Executing this programme should, under various conditions, provide the different forms of the mirror mode in its
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final thermodynamic equilibrium state. This is left as a formally sufficiently complicated exercise which will not be treated in

the present communication. Instead, we ask for the conditions under which the mirror mode evolves into a chain of separated

mirror bubbles, which requires the existence of a microscopic though classical correlation length.

6 The problem of the correlation length

The present phenomenological theory of the final thermodynamic equilibrium state of the mirror mode is modelled after5

the phenomenological Landau-Ginzburg theory of superconductivity as presented in the cited textbook literature. From the

existence of λim we would conclude that, under mirror instability, the magnetic field inside the plasma volume should decay

to a minimum value determined by the achievable minimum τsat of the temperature ratio. This conclusion would, however,

be premature and contradicts observation where chains or trains (cf., e.g., Zhang et al., 2009, for examples) of mirror mode

fluctuations are usually observed (though also isolated “solitary mirror” modes have occasionally been reported, see e.g.,10

Luehr & Kloecker N, 1987; Treumann et al., 1990, where they were dubbed “magnetic cavities”), which presumably are in
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their saturated state having had sufficient time to evolve beyond quasilinear saturation times and reached saturation amplitudes

much in excess of any predicted quasilinear level. In fact, observations of mirror modes in their growth phase have to our

knowledge never yet been reported. On the other hand, in no case known to us a global reduction of the gross magnetic field in

an anisotropic plasma has been identified yet.

It is clear that in any real collisionless high temperature plasma neitherNm can become infinite, nor can τ drop to zero. Since5

it is not known how and on which way, i.e. by which exactly known process mirror modes saturate in their final thermodynamic

equilibrium state, their growth must ultimately become stopped when the particle correlation length comes into play. The nature

of such a correlation length is unknown, nor is it precisely defined. There are at least three types of candidates for an effective

correlation length, the Debye scale λD, the ion gyroradius ρ, and some turbulent correlation length `turb .

In a plasma the shortest natural correlation length is the Debye length λD which under all conditions is much shorter then10

the above estimated penetration length λim. Referring to the Debye length, the Landau-Ginzburg parameter, i.e. the ratio of

penetration to correlation lengths, in a plasma as function of τ becomes

κD ≡
λim(τ)

λD(τ)
≈ c

υ⊥th(τ)
� 1 (33)

a quantity that is large. Writing for the Debye length

λ2D(τ) = λ2D⊥
1 + τ/2

Nm(τ)
, λ2D⊥ =

4

3

T⊥/mi

ω2
i0

(34)15

the Landau-Ginzburg parameter can be expressed in terms of τ , exhibiting only a weak dependence on the temperature ratio

τ < 1:

κD(τ) =
λi0
λD⊥

√
2

1 + τ/2
� 1 (35)

Thus, κD is practically constant and about independent on the temperature anisotropy. Its value κD0 = λi0/λD at τ = 1,T‖ =

T⊥ refers to the isotropic case when no mirror instability evolves.20

This is an important finding because it implies that in a plasma the case that the magnetic field would be completely expelled

from the volume of the plasma cannot be realised. Different regions of extension substantially larger than λD are (electrostati-

cally) uncorrelated. They therefore behave separately lacking knowledge about their (electrostatically) uncorrelated neighbours

separated from them at distances substantially exceeding λD. Each of them experiences the penetration scale and adjusts itself

to it. This is in complete analogy to Landau-Ginzburg theory. Thus, once the main magnetic field in an anisotropic plasma25

drops below threshold, the plasma will necessarily evolve into a chain of nearly unrelated mirror bubbles which interact with

each other because each occupies space. In superconductivity this corresponds to a type II superconductor. Mirror unstable

plasmas in this sense behave like type II superconductors. They decay into regions of normal magnetic field strength and

embedded domains of spatial scale λm(τ) with reduced magnetic field. These regions contain an excess plasma population

which is in pressure and stress balance with the magnetic field. Its diamagnetism (perpendicular pressure) keeps the magnetic30

field partially out and causes weak diamagnetic currents to flow along the boundaries of each of the partially field-evacuated

domains. This trapped plasma behaves analogously to the pair plasma in metallic superconductivity, this time however at the

12
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The parameter κρ refers to the thermal gyroradius as the short-scale correlation length, as explained in the text. It maximises at saturation

anisotropy τ = τsat and vanishes for τ = 1 when no instability sets on. For any given ratio τ the value of κρ lies on a curve like the one

shown. There is a threshold for the mirror mode to evolve into bubbles which it must overcome. It is given by the ratio κρ,sat > 1 of the

critical Alfvén speed to perpendicular thermal velocity.

high plasma temperature being bound together not by pairing potentials but – in the case of the Debye length playing the role

of the correlation length – by the Debye potential over the Debye correlation length.

However, the Debye length is a very short scale, in fact the shortest collective scale in the plasma, and though it must have

an effect on the collective evolution of particles in plasmas, it should be doubted that, on the mirror mode saturation scale, it

would have a substantial or even decisive effect. Instead, there could also be larger scales on which the particles are correlated.5

Such a scale is, for instance, the thermal ion gyroradius ρ(τ). For the low frequencies of the mirror mode, the magnetic

moment µ(τ) = T⊥/B(τ) = const of the particles is conserved in their dynamics, which implies that all particles with same

magnetic moment µ(τ) behave about collectively, at least in the sense of a gyro-kinetic theory.

However, though µ(τ) is a constant of motion, it still is a function of the anisotropy through the dependence of the magnetic

field on τ . Expressing the thermal gyroradius through the magnetic moment10

ρ(τ) =

√
2µ(τ)

eωci(τ)
= ρ0

√
τ

1− τ
, ρ0 =

√
2mT⊥

e2
(
B0

crit

)2 (36)

it can be taken as another kind of collective correlation scale as on scales larger than ρ it collectively binds particles of same

magnetic moment which, in particular, are magnetically trapped like those which are active in the mirror instability. Below the

gyroradius charged particles are magnetically free. ρ is the scale where the particles magnetise, start feeling the magnetic field

effect and collectively enter another phase in their dynamics. This scale is much larger than the Debye length and may be more15
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appropriate for describing the saturated behaviour of the mirror mode. Thus one may argue that, as long as the penetration depth

(inertial sale) exceeds ρ, the thermal gyroradius is the relevant correlation length. Only when it drops below the gyroradius, the

Debye length takes over. The Landau-Ginzburg parameter then becomes

κρ(τ) =
λim(τ)

ρ(τ)
=
λi0
ρ0

[
τsat

τ

1− τ
1− τsat

] 1
4

(37)

This ratio depends on the temperature anisotropy τ = T‖/T⊥, which is a measurable quantity and the important parameter,5

while it saturates at κρ,sat = λi0/ρ0, the ratio of inertial length to gyroradius at critical field. This ratio is not necessarily large.

It can be expressed by the ratio of Alfvén velocity VA to perpendicular ion thermal velocity υ⊥th

κρ,sat =
λi0
ρ0

=
VA
(
B0

crit

)
υ⊥th

> 1 (38)

Hence, when referring to the thermal ion gyroradius as correlation length, the mirror mode would evolve and saturate into a

chain of mirror bubbles only, when the Alfvén speed VA > υ⊥th exceeds the perpendicular thermal velocity of the ions. [Since10

B0
crit ∝

∣∣sinθ∣∣, highly oblique angles are favoured. The range of optimum angles has recently been estimated (Treumann &

Baumjohann, 2018a).] This is to be multiplied with the τ -dependence, of which Figure 2 gives an example. The value of this

function is always smaller than one. For a chain of mirror bubbles to evolve in a plasma, the requirement κρ > 1 can then be

written as

1≤ τ

τsat
<

κ4ρ,sat

1 +
(
κ4ρ,sat − 1

)
τsat

(39)15

which is always satisfied for τsat < 1 and κρ,sat > 1, i.e. the Alfvén speed exceeding the perpendicular thermal speed, which

indeed is the crucial condition for mirror modes to evolve into chains and become observable, with the gyroradius playing

the role of a correlation length. Mirror mode chains in the present case are restricted to comparably cool anisotropic plasma

conditions, a prediction which can be checked experimentally to decide whether or not the gyroradius serves as correlation

length.20

Otherwise, when the above condition is not satisfied and τ < 1 is below threshold, a very small and thus probably not sus-

ceptible reduction in the overall magnetic field is produced in the anisotropic pressure region over distances L� ρ, much

larger than the ion gyroradius. Observation of such domains of reduced magnetic field strengths under anisotropic pres-

sure/temperature conditions would indicate the presence of a large-scale typ I classical Meissner effect in the plasma. Such

a reduction of the magnetic field would be difficult to explain otherwise and could only be understood as confinement of25

plasma by discontinuous boundaries of the kind of tangential discontinuities.

The relative rarity of observations of mirror-mode chains or trains seems to support the case that the gyroradius, not the

Debye length, plays the role of the correlation length in a magnetised plasma under conservation of the magnetic moments

of the particles. From basic theory it cannot be decided which of the two correlation lengths, the Debye length λD or the ion

gyroradius ρ, dominates the dynamics and saturation of the mirror mode. A decision can only be established by observations.30

However, the thermal ion gyroradius, though being the statistical average of the distribution of gyroscales, is itself just a

plasma parameter which officially lacks the notion of a genuine correlation length. For this reason one would rather refer to

14



the third possibility, a turbulent correlation length `turb which evolves as the result of either high-frequency plasma or – in the

case of mirror modes probably better suited – magnetic turbulence in the plasma.

It is well known that, for instance, the solar wind or the magnetosheath carry a substantial level of turbulence which mixes

plasmas of various properties and obeys a particular spectrum. In the solar wind such spectra have been shown to exhibit

approximate Kolmogorov-type properties, at least in certain domains of frequencies respectively wave numbers. Similarly in5

the magnetosheath, where the conditions are more complicated because of the boundedness of the magnetosheath and the

resulting spatial confinement of the plasma and its streaming. Such spectra imply that particles and waves are not independent

but bear some knowledge about their behaviour in different spatial and frequency domains, in other words they are correlated.

Unfortunately, the turbulent correlation length is imprecisely defined. No analytical expressions have been provided yet

which would allow to refer to it in the above determination of the Landau-Ginzburg parameter. This inhibits predicting the10

range and parameter dependences of the turbulent Landau-Ginzburg ratio. Nonetheless, turbulent correlation scales might

dominate the development of the mirror mode. The observation of a spectrum of mirror modes that is highly peaked around a

certain wavelength not very much larger than the ion gyroradius may tell something about its nature. The above theory should

open a way of relating a turbulent correlation length to the properties of a mirror unstable plasma. The condition is simply that

the turbulent Landau-Ginzburg parameter15

κturb(τ) =

〈
λim(τ)

〉
`turb(τ)

> 1 (40)

is large, depending on the anisotropy parameter τ and the average transverse scales of the mirror bubbles. This expression

yields an upper limit for the turbulent correlation length

`turb(τ)<
〈
λim(τ)

〉
(41)

where
〈
λim(τ)

〉
is known as function of τ and the plasma parameters. Investigating this in further detail both observationally20

and theoretically should throw additional light on the nature of magnetic turbulence in high temperature plasmas like those

of the solar wind and magnetosheath. It would even contribute to a more profound understanding of magnetic turbulence in

general as well as in view of its application to astrophysical problems.

7 Conclusions

The mirror mode is a particular zero frequency mesoscale plasma instability which provides some mesoscopic structure to an25

anisotropic plasma. It has been observed surprisingly frequently under various conditions in space, in the solar wind, cometary

environments, near other planets and, in particular behind the bow shock (Czaykowska et al., 1998) such that one also believes

that they occur in shocked plasmas if the shock causes a temperature anisotropy τ < 1 (cf., e.g., Balogh & Treumann, 2013,

Chpt. 4). Since mirror modes are long-scale, they provide the plasma a very particular spatial texture. Mirror unstable plasmas

are apparently built of a large number of magnetic bottles which contain a trapped particle population. This makes mirror30

modes most interesting even in magnetohydrodynamic terms as kind of a long wavelengths source of turbulence. In addition
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their boundaries are surfaces which separate the bottles and thus have the character or tangential discontinuities or surfaces of

diamagnetic currents which are produced by the internal interaction between the plasma and magnetic field. We have shown

above that such an interaction resembles superconductivity, i.e. a classical Meissner effect.

Mirror modes in the anisotropic collisionless space plasma apparently represent a classical thermodynamic analogue to a

“superconducting” equilibrium state. One should, however, not exaggerate this analogy. This equilibrium state is no macro-5

scopic quantum state. It is a classical effect. The analogy is just formal, even though it allows to conclude about the final mirror

equilibrium. Sometimes such an analogue helps understanding the underlying physics1 like here where it paves the way to a

global understanding of the final saturation state of the mirror mode even though this does not release us from understanding

on which way this final state is dynamically achieved.

In contrast to metallic superconductivity which is described by the Landau-Ginzburg theory to which we refer here or, on10

the microscopic quantum level, by BCS-pairing theory, the problem of circumventing friction and resistance is of no interest

in ideally conducting space plasmas which evolve towards mirror modes. High temperature plasmas are classical systems in

which no pairing occurs and BCS theory is not applicable. Those plasmas are already ideally conducting. In contrast, there is

a vital interest in the opposite problem, how a finite sufficiently large resistance can develop under conditions when collisions

and friction among the particles are negligible. This is the problem of generating anomalous resistivity which may develop15

from high-frequency kinetic instabilities or turbulence and is believed to be urgently needed for instance causing dissipation in

reconnection. In the zero-frequency mirror mode it is of little importance even asymptotically, in the long term thermodynamic

limit, where such an anomalous resistance may contribute to decay of the mirror-surface currents which develop and flow

along the boundaries of the mirror bubbles. The times when this happens are very long compared with the saturation time of

the mirror instability and transition to the thermodynamic quasi-equilibrium which has been considered here.20

The more interesting finding concerns the explanation why at all, in an ideally conducting plasma, mirror bubbles can

evolve. Fluid and simple kinetic theory demonstrate that mirror modes occur in the presence of temperature anisotropies

thereby identifying the linear growth rate of the instability. Trapping of large numbers of charged particles (ions, electrons) in

accidentally forming magnetic bottles/traps cause the mirror instability to grow. The present theory contributes to clarification

of this mechanism and its final thermodynamic equilibrium state as a nonlinear effect which is made possible by the available25

free energy which leads to a particular nonlinear Schrödinger equation. The perpendicular temperature in this theory plays the

role of a critical temperature. When the parallel temperature drops below it, which means that 1> τ > τmin , mirror modes can

evolve. Interestingly the anisotropy is restricted from below. The parallel temperature cannot drop below a minimum value.

This value is open to determination by observations.

1In a recent paper (Treumann & Baumjohann, 2018c) we have shown that a classical Higgs mechanism is responsible for bending the free space O-L and

X-R electromagnetic modes in their long-wavelength range away from their straight vacuum shape when passing a plasma. The plasma in that case acts like a

Higgs field and attributes a tiny mass to the photons making them heavy. This is interesting because it shows that any bosons become heavy only in permanent

interaction with a Higgs field and only in a certain energy-momentum-wavelength range. It also shows that earlier attempts of measuring a permanent photon

mass by observing scintillations of radiation (and also by other means) have just measured this effect. Their interpretations as upper limits for a real permanent

photon mass are incorrect because they missed the action of the plasma as a classical Higgs field.
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The observation of chains of mirror bubbles, for instance in the magnetosheath, which provide the mirror-unstable plasma

a particular intriguing magnetic texture, suggests that the plasma, in addition to being mirror unstable, is subject to some

correlation length which determines the spatial structure of the mirror texture in the saturated thermodynamic quasi-equilibrium

state. This correlation length can be either taken as the Debye scale λD, which then naturally makes it plausible that many such

mirror bubbles evolve, because in all magnetised plasmas the magnetic penetration depth by far exceeds the Debye length and5

makes the Landau-Ginzburg parameter based on the Debye length κD� 1. This, however, should lead to rather short scale

mirror bubbles. Otherwise, the role of a correlation length could also be played by the thermal ion gyroradius ρ. In this case

the conditions for the evolution of the mirror mode with the many observed bubbles become more subtle, because then κρ & 1

occurs under additional restrictions implying that the Alfvén speed exceeds the perpendicular thermal speed. This prediction

has to be checked and possibly verified experimentally. A particular case of the dependence of the gyroradius based Landau10

Ginzburg parameter κρ is shown graphically in Fig. 2.

It may be noted that the Debye length and the ion gyroradius are fundamental plasma scales. Correlations can of course also

be provided by other means, in particular by any form of turbulence. In that case a turbulent correlation length would play

a similar role in the Landau-Ginzburg parameter, whether shorter or larger than the above identified penetration scale. What

concerns mirror modes in the magnetosheath to which we referred (Treumann & Baumjohann, 2018a), it is well known that the15

magnetosheath hosts a broad turbulence spectrum in the magnetic field as well as in the dynamics of the plasma (fluctuations

in the velocity and density).

Though this makes it highly probable that turbulence intervenes and affects the evolution of mirror modes, any “turbulent

correlation length” is, unfortunately, rather imprecisely defined as some average quantity. To our knowledge, though when

referring to multi-spacecraft missions not impossible, it has even not yet been precisely identified in any observations of turbu-20

lence in space plasmas. Even when identified, its functional dependence on temperature and density is required for application

in our theory. If these functional dependencies are not available, it becomes difficult to include any turbulent correlation length.

In addition, one expects that its turbulent nature would make the theory nonlocal. Attempts in that direction must, at this stage

of the investigation, be relegated to future efforts.

Finally, it should be noted that the magnetic penetration depth λm which lies at the centre of our investigation is rather25

different from the ordinary inertial length scale of the plasma. It is based on the excess density Nm < 1 less than the bulk

plasma density N0. It thus gives rise to a enhanced (excess) plasma frequency ωm = ωi
√
Nm + 1 = ωi

√
1 + ζ .

√
2ωi which

implies that L > c/ωi > λm is shorter than the typical scale of the volume L and (slightly) shorter than the bulk inertial length

c/ωi. This becomes clear when recognising that the mirror mode evolves inside the plasma from some thermal fluctuation (cf.,

Yoon & López, 2017, for the calculation of low-frequency thermal magnetic fluctuation levels in a stable isotropic plasma;30

similar calculations in stable anisotropic plasmas have not yet been performed) which causes the magnetic field locally to drop

below its critical value Eq. (2). Then λm identifies the local perpendicular scale of a mirror bubble after it has saturated and

is in thermodynamic equilibrium. One expects that the transverse diameter of a single mirror bubble in the ideal case would

be roughly 2λm. However, since each bubble occupies real space, in a mirror saturated plasma state the bubbles compete

for space and distort each other (cf., e.g., Treumann & Baumjohann, 1997, for a sketch) thereby providing the plasma an35
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irregular magnetic texture of some, probably narrow, spectrum of transverse scales which peaks around some typical transverse

wavelength and resembles a strongly distorted crystal lattice that is elongated along the ambient magnetic field.

It also relates the measurable saturated magnetic amplitudes of mirror modes to the saturated anisotropy τsat and the Landau-

Ginzburg parameter κ, transforming both into experimentally accessible quantities. These should be of use in the development

of a weak-kinetic turbulence theory of magnetic mirror modes as the result of which mirror modes can grow to the observed5

large amplitudes which are known to by far exceed the simple quasilinear saturation limits. It also paves the way to the

determination of a (possibly turbulent) correlation length in mirror unstable plasmas of that so far no measurements have been

provided.

To the space plasma physicist the present investigation may look a bit academic. However, it provides some physical under-

standing of how mirror modes do really saturate, why they assume such large amplitudes, evolve into chains of many bubbles10

or magnetic holes, and what the conditions are that this happens. Moreover, since the mirror mode to some sense resembles

superconductivity, which also implies that some population of particles involved behave like a superfluid, so it would be of

interest to infer whether such a population exhibits properties of a superfluid. One suggestion is that the untrapped ions and

electrons which escape from the magnetic bottles along the magnetic field resemble such a superfluid population. This also

suggests that other high-temperature plasma effects like the formation of purely electrostatic electron holes in beam-plasma15

interaction may exhibit superfluid properties. In conclusion, the unexpected working of the thermodynamic treatment in the

special case of the magnetic mirror mode shows once more the enormous explanatory power of thermodynamics.
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