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Abstract. A beam pulsed amplifier mechanism responsible for effective amplification of short VLF electromagnetic pulses is

proposed. Effective amplification near the magnetic equator outside the plasmasphere is considered. A conditional growth rate

of short electromagnetic pulses is calculated. Obtained results can explain some important features of the oblique electromag-

netic chorus emissions without hiss-like radiation background.

1 Introduction5

VLF chorus emissions are very intense electromagnetic plasma waves that are naturally excited near the magnetic equatorial

plane outside the plasmasphere (Burtis and Helliwell, 1969; Burton and Holzer, 1974; Tsurutani and Smith, 1974). Impressive

experimental results of the chorus emission study were obtained within the framework of the CLUSTER project. These results

have been presented in detail in many papers (e.g., Santolik, 2009). It is very important that chorus are a succession of discrete

emissions.10

For electromagnetic chorus with the wave vectors predominantly along the magnetic field significant theoretical results

were obtained. The usual kinetic cyclotron instability (Bespalov and Trakhtengerts, 1986) is sometimes possible for plasma

parameters in the excitation region, but this instability typically has not a sufficient growth rate to explain the rate of the chorus

emission modification. The theory of chorus excitation based on the so-called backward wave oscillator (BWO) mechanism

is now well known (see e.g. Trakhtengerts, 1995; Trakhtengerts et al., 2007; Nunn et al., 2009). The implementation of this15

mechanism is closely related to the hiss-like radiation background and its dynamics. However, the chorus emissions are often

recorded without the hiss-like radiation background. In (Omura et al., 2008; Fu et al., 2014) the generation process of the chorus

emissions is analyzed by both in theory and simulation assuming that the initial cyclotron wave growth is driven by the strong

temperature anisotropy of energetic electrons. To explain the chorus spectrogram, the authors take into account inhomogeneity

of the magnetic field and nonlinear wave decay, or the non monotonic energy spectrum of particles. At present, there are20

significant achievements in the theoretical study of generation electrostatic chorus with the wave vectors near the resonance

cone (see, e.g., (Li et al., 2016a)). There are extensive data on the wave normal angle measurements on board THEMIS (Li et

al., 2013) and Van Allen Probe (Li et al., 2016b).
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Some problems connected with the theoretical analysis of chorus formation remain unsolved, for example, the excitation

mechanism of oblique electromagnetic chorus has not been studied. In this paper, we introduce a possible mechanism of

oblique electromagnetic chorus excitation without hiss-like radiation background. This mechanism is related to the effective

amplification of short electromagnetic pulses from the noise level even in a stable plasma. The amplification takes place in a

suitable frequency band near the magnetic equator.5

2 Wave-particle interaction under special conditions

We consider small-scale wave processes near the local minimum of the magnetic field, which typically is close to the magnetic

equator where the plasma is almost homogeneous. We use a linearized Vlasov equation for the disturbed distribution function

of energetic non-relativistic electrons f∼ in a quasineutral cool background plasma
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where e is the absolute value of the electron charge, m is the electron mass, c is the speed of light in free space, vz = dz/dt10

and v⊥ = dr⊥/dt are the components of electron velocity v along and across to the ambient magnetic field B, f◦(v) is the

undisturbed distribution function, E∼ and B∼ are the electric and magnetic field disturbances.

Let a short VLF electromagnetic pulse propagate in a homogeneous plasma along the z axe directed along the magnetic

field. We assume that the short electromagnetic pulse has an envelope determined by the function A(ξ) with a nearly step-like

form, finite duration and a unit value in the main body of the pulse15

E∼ =A(ξ)E[∼](t,r) , B∼ =A(ξ)B[∼](t,r) , (2)

where ξ = z− vgzt , vgz is the component of the group velocity along the magnetic field. The chosen pulse shape is modeled

and corresponds to the shot noise well known in electronics (see, e.g., (Rytov et al., 1989)). It is convenient to replace f∼ in

Eq. (1) by an expression similar to Eq. (2):

f∼ =A(ξ)f[∼](t,r,v) . (3)

Upon substitution of Eqs. (2) and (3) in Eq. (1) we obtain
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We restrict ourselves to the considering the energetic electrons for which20
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vz ' vgz . (5)

For these particles, the first term in Eq. (4) is absent because the disturbed distribution function is nonzero only in a small

vicinity of the velocity which satisfies to the condition (5). So, under condition (5) the interaction of a short electromagnetic

pulse with energetic electrons is described by Vlasov equation (4) without the first term. It is very important that the reduced

equation (4) (without the first term) is identical to Vlasov equation for wave-particle interaction in a homogeneous plasma.

Note that the particles which do not satisfy to Eq. (5) exist in the plasma, but their interaction with a short electromagnetic5

pulse is often not important, and we do not take this interaction into account.

Now we point the condition favorable for the existence of a short electromagnetic pulse that propagates along the magnetic

field at a constant velocity without the additional phase modulation and smallest dispersion distortion of the pulse front. The

solution of this problem is known. According to electrodynamics (see, e.g., (Jacson, 1962; Sommerfeld, 1914)) this takes place

under condition vphz = vgz . This relationship agrees with Eq. (5), if the following two equalities are valid simultaneously:10

vphz = vgz = vz , (6)

where vphz is the component of the phase velocity along the magnetic field. The particles interact with short electromagnetic

pulse under condition (6) as in a homogeneous plasma.

If the ion motion in a relatively dense background plasma is not important, then the dispersion equation of electromagnetic

waves for the frequency band ωLHF < ω < ωB (where ωLHF is the lower-hybrid frequency and ωB is the absolute value of the

electron cyclotron frequency) in the quasi-longitudinal approximation (Ginzburg, 1970; Helliwell, 1965) takes the well-known15

form

ω = ωw(kz,k⊥)≡ ωB |kz|(k2z + k2⊥)
1/2

k2z + k2⊥+ (ωp/c)
2 . (7)

Here, kz and k⊥ are the whistler wave vector components along and across the magnetic field, respectively, and ωp is the

electron plasma frequency at the magnetic equator.

Note the first key point of our analysis. It is known (Helliwell, 1995) that according to the dispersion equation (7) the

conditions (6) are fulfilled independent of k⊥ for two selected velocities along the magnetic field20

ω

kz
=
∂ω

∂kz
= vz =±uG , uG =

cωB
2ωp

, (8)

where uG is the Gendrin velocity. We will take into account only one positive velocity in the intermediate calculations.
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Figure 1. The resonance beam of energetic electrons (stars) and the short electromagnetic pulse (sine) move together in the domain along

the corridor between the start and finish lines.

3 The beam pulsed amplifier mechanism of the oblique electromagnetic chorus excitation due to the conditional

instability of a short electromagnetic pulse

On the plane z, t, the specific features of particles and wave, which satisfy Eqs. (8), are explained in Fig. 1. Here z is the axis

along the magnetic field, the start and finish lines correspond to the wave-particle interaction region boundaries, t is the time

counted from the pulse crossing the start line. The resonance particles (3) and the short electromagnetic pulse (2) are situated5

in the domain which moves along a narrow corridor between two parallel dashed lines. The corridor width is determined by

the pulse duration. These particles and waves in the domain form a separated plasma subsystem.

Effective wave–particle interaction in a homogeneous plasma in the magnetic field takes place at the resonance conditions

ω− kzvz = sωB , where s is the integer. Such a resonance condition is part of the mentioned equalities (8) for the Čerenkov

resonance s= 0. We limit ourselves to this possibility only:10
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ω− kzvz = 0 . (9)

We expect that the following two simplifications are fulfilled: the radiation power of an individual energetic electron cor-

responds to the so-called dipole approximation; the specific kinetic effects like the Landau damping are not important. Both

of the mentioned simplifications take place for energetic electrons with a sufficiently small dispersion over the transverse and

longitudinal velocities (Ginzburg, 1970):

k2⊥v
2
⊥ < ω2

B , k2z(vz −uG)
2
< γ2 , (10)

where the overbar means averaging and γ is the instability growth rate. The first inequality makes it possible to expand5

the Bessel functions for small arguments (this so-called dipole approximation is used for obtaining the expressions of the

permittivity tensor). The second inequality makes it possible not to take into account the kinetic effects (like the Landau

damping) for instability with a large hydrodynamic growth rate.

Note the second key point for a qualitative calculation of short electromagnetic pulse amplification. According to the previous

comments, the electromagnetic field with suitable frequency in the short pulse changes its value as the electromagnetic wave10

field in a homogeneous plasma with electron beam described by the effective distribution function:

fb =
nb

2πv⊥
δ(v⊥)δ(vz −uG) , (11)

where nb is the density of the resonance electron beam. It can be shown that for the wave-particle interaction at the Čerenkov

resonance, the results of calculations do not depend on the actual form of the distribution function over perpendicular velocities

if the first unequality (10) takes place. We select the effective distribution function (11) with delta function over perpendicular

velocities to simplify the further algebra. On the other hand, the delta function over velocities along the magnetic field exactly15

follows from the condition (8) for the selected velocity.

We explain additionally the expression for the effective distribution function (11). Assume that a short non-spreading pulse

propagates at a constant velocity (vphz = vgz = uG) along the magnetic field in a plasma with an arbitrary undisturbed distribu-

tion function f◦(v). The wave-particle interaction within a short pulse is determined by the characteristic time of the electron

velocity variation τ . For correct accounting of the wave-particle interaction, it is necessary to know the distribution function20

averaged over the time scale τ . Let us consider the effective distribution function inside the pulse. Inside the pulse there is a

population of electrons which have flown into the interaction region together with the pulse and is fly together with it. The

contribution of these particles to the effective distribution function is proportional to nbδ(vz−uG). The suprathermal electrons

with other velocities or flight moments do not give an appreciable contribution to the effective distribution function within the

pulse since they cross the pulse in a narrow corridor in Fig. 1 too quickly on a time scale τ or do not have contact with the25

pulse. Thus, we take the effective distribution function (11) to analyze the evolution of a short electromagnetic pulse.

We expect that the quasineutral plasma consists of three fractions: unmoved protons; cool electrons; weak electron beam

along the magnetic field without thermal dispersion, described by the effective distribution function (11). So, the complicated
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geophysical problem is reduced to a typical problem of plasma physics (e.g., Akhiezer et al., 1975). We now consider the

permittivity tensor εαβ of such a medium taking into account that the resonance beam density is relatively small. The beam-

related terms in the permittivity tensor produce any effect only if they have a resonance pole at ω− kzuG = 0 (see Eq. (9)).

There is one such resonance term only in the component ε33. The permittivity tensor with mentioned resonance term has the

following non-zero components:5

ε11 = ε22 = 1−
ω2
p

ω2−ω2
B

,

ε12 =−ε21 = i
ωBω

2
p

ω(ω2−ω2
B)

, (12)

ε33 = 1−
ω2
p

ω2
−

nbω
2
p

np(ω− kzuG)
2 ,

where np is the background plasma density. The plasma dispersion equation (Ginzburg, 1970) for a plane electromagnetic

wave in which all the variables are proportional to exp{i(−ωt+ k⊥x+ kzz)}, takes the well-known form:

det
∥∥∥k2δαβ − kαkβ − (ω/c)

2
εαβ

∥∥∥= 0 . (13)

This determinant in the quasi-longitudinal approximation is reduced to the following dispersion equation (ω−ωw(kz,θ))(ω− kzuG)2 =

(nb/4np)ω
3sin2θ and finally, in accordions with Eqs. (7) and (8), we have

(ω−ωw(kz,θ))(ω− |kz|uG)2 =
nbω

3
B

32np
sin2θ|cosθ|3 , (14)

where the absolute value symboles take into account two selected velocities (8) along the magnetic field. Recall that the10

dispersion equation (7) was found in the same quasi-longitudinal approximation. Exactly in accordions with Eq. (7) we have

ωw(kz,θ) =
ωB(kzc/ωp)

2 |cosθ|
(kzc/ωp)

2
+ cos2θ

, (7a)

where cosθ = kz/(k
2
z + k2⊥)1/2, θ is the angle between the wave vector and the magnetic field.

The dispersion equation (14) is a cubic equation for the frequency ω. This equation has three roots, one of which (see Fig. 2)

for conditions close to optimal (8) corresponds to the short electromagnetic pulse instability with the conditional growth rate

γ =

√
3

4
(
nb

4np
sin2θ|cosθ|3)1/3ωB . (15)

According to Eq. (15), the conditional growth rate of the short electromagnetic pulse instability is maximum for cos2θBPA =15

0.6. So, according to Eqs. (8) and (15), it is easy to find the following optimal wave characteristics favorable to the maximum

conditional growth rate of a short electromagnetic pulse

θBPA '

 39◦ ;

141◦ ;

kzBPA '±0.8ωp/c ;

k⊥BPA ' 0.6ωp/c ;
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Figure 2. Numerical solution of the dispersion equation (14) for nb/np = 10−5 and θ = θBPA: (a) The frequencies (real part of frequencies)

dispersion behavior of the longitudinal wave number; (b) Conditional growth rate of a short electrostatic pulse as a function of the longitudinal

wave number.

ωBPA ' 0.39ωB , γBPA ' 0.15ωB(nb/np)
1/3 . (16)

Note, that the resonance beam density nb is significantly less than the density of energetic electrons but according to the

additional calculations, it is enough for explanation of the experimentally recored values of γ ∼ 102 s−1 in the chorus excitation

region. Now it is possible to estimate an electromagnetic pulse duration tp . The beam pulsed amplifier mechanism is effective

for electromagnetic pulses with the duration tp ≤ 10/γBPA ∼ 0.1 s at the linear stage of the pulse evolution.

4 Conclusions and discussion5

The proposed beam pulsed amplifier (BPA) mechanism produces effective amplification of short electromagnetic pulses with

frequency close to ωBPA in the VLF frequency band near the magnetic equator. The key conditions (8), (16) take place

outside the plasmasphere, where uG is close to the typical velocity of energetic non-relativistic electrons. In this region the

ratio (nb/np)
1/3 is not so small. This leads to the amplification of short electromagnetic pulses from the noise level and the

formation of discrete VLF emissions.10

The threshold of BPA mechanism is mainly determined by the kinetic Čerenkov damping (s= 0) of electromagnetic waves

in the epithermal background plasma. The magnitude of the decay rate is considerably less than the growth rate γBPA in the

chorus excitation region.

By the further analysis it is possible to explain the gap between the lower and upper chorus frequency bands which are well

known experimentally (e.g., (Bell et al., 2009). Actually, the short electromagnetic pulse excitation takes place for frequency15
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bands both below and above ωBPA because of the spectral pulse distortion and the resonance beam velocity decrease as the

pulse moves through the wave-particle interaction region.

Note that electromagnetic signals with a smooth envelope are not amplified due to BPA mechanism during their propagation

through the region near the magnetic equator. Therefore, it is possible to explain the excitation of chorus emissions without a

hiss-like background.5

BPA mechanism is not connected directly with the energetic electron precipitation into the ionosphere because this mecha-

nism is responsible for the distribution function modification in the velocity space only far enough from the loss cone. On the

other hand, exactly after the amplification, a strong electromagnetic pulse during its propagation to the ionosphere can interact

with more energetic electrons due to the cyclotron resonance (s= 1). Such an interaction produces precipitation of energetic

electrons into the ionosphere that is conjugate to the electromagnetic pulse.10
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