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Abstract: As an innovative use of Global Navigation Satellite System (GNSS), GNSS water vapor 13 

tomography technique shows great potential in monitoring three-dimensional water vapor variation. Most 14 

of the previous studies employ the pixel-based method, i.e., dividing the troposphere space into finite voxels 15 

and considering water vapor in each voxel as constant. However, this method cannot reflect the variations 16 

in voxels and breaks the continuity of the troposphere. Moreover, in the pixel-based method, each voxel 17 

needs a parameter to represent the water vapor density, which means huge numbers of parameters are 18 

needed to represent the water vapor field when the interested area is large and/or the expected resolution is 19 

high. In order to overcome abovementioned problems, in this study, we propose an improved pixel-based 20 

water vapor tomography model, which uses layered optimal polynomial functions obtained from the 21 

European Centre for Medium-Range Weather Forecasts (ECMWF) by adaptive training for water vapor 22 

retrieval. Tomography experiments were carried out using the GNSS data collected from the Hong Kong 23 

Satellite Positioning Reference Station Network (SatRef) from March 25 to April 25, 2014 under different 24 

scenarios. The tomographic results are compared to the ECMWF data and validated by the radiosonde. 25 

Results show the new model outperforms the traditional one by reducing the Root Mean Square Error 26 

(RMSE) and this improvement is more pronounced by 5.88% in voxels without the penetration of GNSS 27 

rays. The improved model also has advantages in expression with more convenience. 28 

 29 
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1. Introduction 31 

As the most active component in the troposphere, water vapor is one of the most difficult parameters 32 

to monitor and describe (Rocken et al., 1997). A good understanding of the spatial-temporal variation of 33 

water vapor is very helpful for improving weather forecasting and early warning of disastrous weather 34 

(Weckwerth et al., 2004). 35 

The GNSS technique can not only retrieve the precipitable water vapor (Bevis et al., 1994; Emardson 36 

et al., 1998; Baltink et al., 2002; Bock et al., 2005) but also monitor the three-dimensional water vapor 37 

distribution by using the GNSS tomography method (Flores et al., 2000; Seko et al., 2000; Macdonald et 38 

al., 2002). 39 

Braun et al. (1999) first proposed the concept of reconstructing the tropospheric water vapor structure 40 

using 20 GPS stations in a regional observational network. Flores et al. (2000) first applied the tomography 41 

technique to obtain wet refractivity from the GNSS slant wet delay (SWD). In the same year, Hirahara 42 

(2000) used a different method to conduct GNSS tomography experiments, which also successfully 43 

obtained three-dimensional water vapor fields. Since then, many scientists proposed new methods and 44 

applied them to GNSS water vapor tomography experiments (Rohm et al., 2014; Yao et al., 2016; Zhang et 45 

al., 2017; Ding et al., 2018; Zhao et al., 2018). 46 

Hirahara (2000) conducted a four-dimensional tomography experiment and solved the tomography 47 

equations using the damping least square method. Braun et al. (2003, 2004) overcame the sensitivity 48 

problem in GNSS tomography by using the extended sequential filtering method. Perler et al. (2011) 49 

presented a new parametric method for the water vapor retrieval. Nilsson and Gradinarsky (2006) obtained 50 

the wet refractivity directly from the GNSS phase observations using the Kalman filter method. Rohm and 51 

Bosy (2009) used the Moore-Penrose pseudo-inverse of variance-covariance to solve the linear equations 52 

and emphasized the ill-posed tomography equation. Yao et al. (2016) obtained good tomographic results by 53 

using the optimal grid-making method. Zhao and Yao (2017) proposed a method of using the side-54 

penetrating signals for tomography and improved the utilization rate of the GNSS rays. Aghajany and 55 

Amerian (2017) obtained the tomography results of water vapor profiles from ERA-I numerical weather 56 

prediction data by applying 3D ray tracing technique. Dong and Jin (2018) reconstructed the water vapor 57 

density using  multi-GNSS systems and showed that the accuracy of GNSS tomography results are 58 

improved by 5% from the GPS-only system to the dual-systems (GPS+GLONASS). Besides, the virtual 59 

reference station approach (Marel, 1998; Vollath et al., 2013), an effective method to attenuate the effects 60 

of atmospheric errors in long-distance dynamic positioning, was also used in GNSS tropospheric 61 

tomography. 62 

In previous studies, most of the GNSS tomography methods divided the interested troposphere into 63 

finite voxels and the water vapor density in each voxel is considered as constant, these methods with the 64 

above assumptions are defined as the pixel-based method. Apparently, this kind of method cannot retrieve 65 

the variations in voxels and breaks the continuous nature of the troposphere as well. Moreover, the pixel-66 

based method requires each voxel to have a parameter to represent the water vapor density in it, which may 67 

lead to the situation that we have to use huge numbers of parameters when the research area is large and 68 

the expected resolution is high. Last, over-parametrization may cause mathematical problems when we use 69 

limited observations to invert for the parameters that may be correlated. Therefore, this paper analyzes the 70 

limitations of the traditional pixel-based water vapor tomography method and proposes an improved model. 71 

The improved model uses the water vapor density obtained from the traditional model as the input value 72 

and outputs the fitting water vapor density by the layered optimal polynomial functions. This new model 73 
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has the advantages of reflecting the variations in voxels and keeping the continuity of water vapor in 74 

troposphere. 75 

2. An improved pixel-based water vapor tomography model 76 

2.1. Establishment of the traditional pixel-based water vapor tomography model  77 

2.1.1. Retrieval of SWV 78 

For tropospheric tomography, the most important observation is the slant water vapor (SWV), which 79 

is related to the water vapor density and can be defined by 80 

        
V

S

SWV ds    (1) 81 

where s represents the path of the satellite signal ray, and V  is the water vapor density (units: g/m3). 82 

SWV can be obtained by the following method: 83 
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where 
'

2k =16.48 K hPa-1, k3=3.776 105 K2 hPa-1, and R =461 J kg-1 K-1, which represent the specific 85 

gas constants for water vapor. mT  is the weighted mean tropospheric temperature, calculated from an 86 

empirical equation proposed by Liu et al. (2001) using the meteorological measurements. SWD is the slant 87 

wet delay, which may be given as 88 

  , ( ) ( ) cot( ) ( cos sin )w w

elv wet wet NS EWSWD m elv ZWD m elv elv G G R             (3) 89 

where elv is the satellite elevation, φ is the azimuth, wetm  is the wet mapping function, 
w

NSG and 
w

EWG  90 

are the wet delay gradient parameters in the north-south and east-west directions, respectively. R refers to 91 

the unmodeled zero difference residuals that may involve unmodeled influence on the three-dimensional 92 

spatial water vapor distribution, which can make up for the lack of tropospheric anisotropy using only the 93 

gradient term (Bi et al., 2006). Since the GAMIT software only provides the double difference residuals, 94 

the zero difference residuals in this paper are obtained from the double difference residuals according to 95 

the method proposed by Alber et al. (2000). ZWD is the zenith wet delay, which is extracted from the zenith 96 

tropospheric delay (ZTD) by separating the zenith hydrostatic delay (ZHD) using equation ZWD=ZTD-97 

ZHD. ZHD can be calculated precisely using surface pressure based on the Saastamoinen model 98 

(Saastamoinen, 1972): 99 
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where sP  is the surface pressure (unit: hPa),   is the latitude of the station, and H  is the geodetic 101 

height (unit: km). The unit of ZHD is meter. 102 

Since the SWV is obtained, the tomographic area can be discretized into a number of voxels, in which 103 

the water vapor density is a constant during a given period of time. Therefore, a linear equation relating the 104 

SWV and the water vapor density can be established as follows (Chen and Liu, 2014): 105 
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where pSWV  is the slant water vapor of  th signal path (unit: mm). i, j, and k are the positions of 108 

discrete tomographic voxels in the longitudinal, latitudinal and vertical directions, respectively. 
p

ijkD  is 109 

the distance of the  th signal in voxel (i, j, k) (unit: km). ijk  is the water vapor density in a given voxel 110 

(i, j, k) (unit: g/m3). A matrix form of this observation equation can be rewritten as follows (Flores et al., 111 

2000; Chen and Liu, 2014): 112 

       1 1m m n ny A      (6) 113 

where m is the number of total SWVs, and n is the number of voxels in the tomographic area. y is the 114 

observed value here as the SWV, which penetrates the whole interest area, A is the coefficient matrix of the 115 

signal transit distances through the voxels, and   is the column vector of the unknown water vapor 116 

density. 117 

2.1.2. Constraint equations of the tomography modeling 118 

Solving for the unknown water vapor density in Eq. (6) is actually an inversion algorithm issue as the 119 

design matrix A is a large sparse matrix, whose normal equation is singular, leading to numerical problems 120 

when using a direct inversion method (Bender et al., 2011). To overcome this rank deficiency problem, 121 

constraint equations are often introduced to the tomography equation (Flores et al., 2000; Troller et al., 122 

2002; Rohm and Bosy, 2009; Bender et al., 2011). In our study, the horizontal constraint equation is imposed 123 

by the Gauss-weighted functional method (Guo et al., 2016) and the vertical constraint equation is imposed 124 

by the functional relationship of the exponential distribution (Cao, 2012), respectively. The final 125 

tomography model is then obtained as  126 
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  (7) 127 

where H and V are the coefficient matrices of horizontal and vertical constrains, respectively. In order to 128 

obtain the inverse matrix shown in Eq. (7), singular value decomposition is used in this paper (Flores et al., 129 

2000). 130 

2.2. An improved pixel-based water vapor tomography model 131 

The improved pixel-based water vapor tomography model proposed in this paper can take advantage 132 

of facilitating the continuity of water vapor expression efficiently in spatial-temporal distribution and 133 

calculating the water vapor density conveniently. The improved tomography model firstly obtains the water 134 

vapor density from voxels penetrated by GNSS rays using the traditional pixel-based tomography model, 135 

then obtains the optimal polynomial function of each layer through adaptive training. With known 136 

coefficients of the layered optimal polynomial functions, the water vapor density can finally be calculated 137 

by given the latitude, longitude and the altitude. Specific steps are as follows: 138 

First, use the traditional pixel-based water vapor tomography model to obtain the initial water vapor 139 

density from voxels penetrated by GNSS rays as the observation values for obtaining the optimal 140 
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polynomial function coefficients of each layer. 141 

Second, normalize the coordinates of each voxel center in the tomographic area. Since the polynomial 142 

fitting of the water vapor at each tomographic layer is in essence to establish the relationship between the 143 

latitude as well as the longitude of the tomographic region and the water vapor density. The general 144 

expression is: 145 

    
2 2 2

0 1 2 3 4 5 6dV a a B a L a BL a B a L a B L         (8) 146 

where B is the latitude, L is the longitude, and dV
 represents the water vapor density. Polynomial 147 

coefficients such as ia
 are obtained via the least squares method. In the process of data solving, the 148 

numerical values of the latitude and longitude may not be small, then the magnitude of multiple power may 149 

be larger than 104, which will lead to the ill-posed problem of the design matrix in the inversion process 150 

and eventually affect the reliability of the estimated coefficients. To ensure the design matrix will be 151 

relatively stable in the inversion process, the latitude and longitude coordinates B and L need to be 152 

normalized. The specific methods are as follows: 153 
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  (9) 154 

where B
 and L  are the normalized latitude and longitude, respectively, and B  and L  are the 155 

latitude and longitude in the initial region range. 


 is the average value of the latitude or longitude, and 156 

  is the standard deviation of the latitude or longitude. 157 

Third, determine the layered optimal polynomial functions of the improved model through adaptive 158 

training. 159 

 First, based on the size of the selected tomographic region, determine the highest 160 

polynomial fit order. In this paper, the highest polynomial fit order chosen as 5 turns out to 161 

be generally sufficient. 162 

 Then set the water vapor density from voxels penetrated by GNSS signal rays as the input 163 

value and keep trying out new polynomial functions, the optimal polynomial function of 164 

each layer is obtained by adaptive training. What needs to be noted here is the number of 165 

estimated coefficients need to be less than that of the voxels penetrated by GNSS rays in 166 

each layer. Otherwise the over-fitting problem would happen. 167 

 Finally, after comparing training results of multi-group polynomial functions at different 168 

levels, the polynomial function with the minimum RMSE value obtained from the water 169 

vapor density of the post-fitting layer and that of the ECMWF is the best fitting equation 170 

for this layer. Each layer could have the individual optimal polynomial function in general. 171 

Fourth, after finding the optimal polynomial function of each layer in different heights, taking the 172 

latitude, longitude and altitude information into the function could obtain the three-dimensional water vapor 173 

distribution in the tomographic region. The continuous water vapor density can be easily described by 174 

broadcasting the estimated coefficients of the layered optimal polynomial functions. 175 
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2.3. The optimal polynomial selection based on adaptive training 176 

Since the polynomial form can well reflect the continuity of water vapor and has the advantage of 177 

high-efficiency computing as well as easy expression, this paper chooses the polynomial form as the layered 178 

fitting function. Based on adaptive training, the selection process of the layered optimal polynomial 179 

function is as follows: 180 

First, construct a polynomial equations training library, which contains a wide variety of polynomial 181 

function forms of the latitude and longitude as independent variables while of the water vapor density in 182 

the voxels as the dependent variable. After many experiments, the maximum power of the latitude and 183 

longitude found as 5 is sufficient to describe the water vapor changes. Therefore, the maximum power of 184 

the fitting function part is adopted as 5 in the training library. 185 

Second, according to the water vapor density observations from the voxels penetrated by the GNSS 186 

signals at each level, the form of the candidate polynomial function of each layer is automatically 187 

determined from the polynomial function training library, ensuring that the number of observations at all 188 

levels is always greater than that of estimated coefficients of candidate polynomials. 189 

Third, calculate the water vapor variation index (WVVI) of each layer in both east-west and north-190 

south directions using the traditional water vapor tomography results as shown in Eq. (10).  191 

 EW

NS

wv
WVVI

wv





  (10) 192 

where 
EWwv  and 

NSwv  are the water vapor density in east-west and north-south direction, separately.  193 

The WVVI is a changing rate indicator of the water vapor density in a given direction. According to 194 

the water vapor variation index of each layer in the east-west and north-south direction, it can be determined 195 

whether the water vapor exists mainly in the east-west distribution or the north-south distribution. As an 196 

aid, WVVI can decide the main body of the alternative polynomial function with higher order whether in 197 

longitude or latitude and then efficiently find the layered optimal polynomial function. If the water vapor 198 

density of a layer indicates a horizontal gradient of east-west distribution, the polynomial function with 199 

higher-order term of the longitude should be given the priority. It suggests that when the water vapor shows 200 

an east-west gradient distribution there is a better correlation between the longitude and the water vapor 201 

variation, furthermore the high-order term in longitude can better reflect the nuanced water vapor variation. 202 

A simple example of the polynomial function with a higher-order term in longitude is shown in Eq. (11): 203 

    
2 2 3

0 1 2 3 4 5 6dV a a B a L a BL a L a BL a L         (11) 204 

Otherwise, when the water vapor density of a layer indicates a horizontal gradient of north-south 205 

distribution, the polynomial function with higher-order term of the latitude should be given the priority. A 206 

simple example is shown in Eq. (12): 207 

    
2 2 3

0 1 2 3 4 5 6dV a a B a L a BL a B a B L a B         (12) 208 

While the distribution regularities of the water vapor density gradient are not clear or obvious, the 209 

polynomial function with the same order of the latitude and longitude can be considered as the example 210 

shown in Eq. (13): 211 

     
2 2

0 1 2 3 4 5dV a a B a L a BL a B a L        (13) 212 
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Fourth, the candidate polynomials of all levels screened by the WVVI gradient auxiliary information 213 

are used as the next comparative polynomials, and the required estimated coefficients of the comparative 214 

polynomial are solved according to the principle of least squares through Eq. (14) and automatically 215 

recorded into the coefficients data set. M is the matrix of the longitude and latitude, and the vector x 216 

comprises the unknown coefficients of the comparative polynomial functions as shown in Eq. (15). 217 

        
dV Mx   (14) 218 
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  (15) 219 

Fifth, through the comparative polynomials with the estimated coefficients in each layer, the whole-220 

voxel water vapor fitting of each layer is automatically fit with the information of the latitude and longitude. 221 

In order to obtain the RMSE, the fitting result would be compared with the ECMWF water vapor density 222 

of each layer in this period. The results are then saved to the accuracy data sets of each layer. The 223 

comparative polynomials with the estimated coefficients are constantly selected to train the fitting of the 224 

layered water vapor density and then compared with the water vapor density of ECMWF at each layer. 225 

Thus, large accuracy data sets of RMSE can be obtained, where the smallest RMSE value of the 226 

comparative polynomial form can be chosen, and then the optimal polynomial of each layer could come 227 

into being. It is noteworthy that the optimal polynomial of each layer might be different. With the layered 228 

optimal polynomial, the continuous three-dimensional water vapor density in the tomographic region can 229 

be expressed conveniently by transmitting the estimated coefficients information. 230 

3. Experiment 231 

3.1. Experimental description and data-processing strategy 232 

To study whether the accuracy and stability of the improved water vapor tomography model are better 233 

than that of the traditional model, the following experiment is designed. 234 

Tomographic data is obtained from the SatRef Network for Hong Kong from 25 March 2014 to 25 235 

April 2014. Two epochs are taken each day (0:00 and 12:00 UTC). The corresponding meteorological data 236 

is also used to calculate the PWV. The tomographic area ranges between latitude 22.24°N to 22.54°N and 237 

longitude 113.87°E to 114.29°E. Taking the mean sea level as the height of the base level, the vertical 238 

resolution is 0.8 km, and total grid number is 5 × 7 × 13. In the selected area, a total of 11 GNSS stations 239 

and 1 radiosonde station (located at King’s Park, Hong Kong) are selected, and the ECMWF grid data are 240 

extracted twice daily at 00:00 and 12:00 UTC from 25 March 2014 to 25 April 2014 (grid resolution of 241 

0.125 × 0.125). See Fig. 1 for details. 242 
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 243 

 244 

Figure 1. The GNSS stations (11 black rhombuses) and the radiosonde station (1 red star) and the ECMWF comparative 245 

points (12 ochre circles) in Hong Kong. The grid lines display tomography grids. 246 

According to the official website of the Hong Kong Observatory 247 

(http://www.weather.gov.hk/contentc.htm) for the weather review, Hong Kong had a total of 15 days of 248 

rainy weather from 25 March 2014 to 25 April 2014, as shown in Table 1. 249 

Table 1. Rainfall information for March and April 2014. 250 

Date Rainfall situation 

3.29 Thunderstorms turn to heavy rain 

3.30 Thunderstorms turn to heavy rain 

3.31 Thunderstorms turn to heavy rain 

4.1 Showers accompanied by wind, thunderstorms 

4.2 Showers, reports of hail in some areas 

4.3 Showers, some parts of the rain are quite large 

4.6 Cloudy showers, low temperature 

4.7 Heavy showers, low temperature 

4.8 Showers, low temperature 

4.14 Showers 

4.21 Cloudy turns to the showers 

4.22 Showers and foggy 

4.23 Showers turn to the rain 

4.24 Showers turn to the cloudy 

4.25 Cloudy turns to the rain 

In this paper, GAMIT (v10.50) (Herring et al., 2010) software was used for processing the GPS 251 

observations based on the double-differenced model at a sampling interval of 30 s, and the global mapping 252 

function was adopted. The zenith total delay (ZTD) and wet horizontal gradient intervals were estimated at 253 

0.5 h and 2 h, respectively. Based on the surface pressure obtained from observed meteorological 254 
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parameters, the ZHD could be obtained by the Saastamoinen model, and ZWD was isolated from ZHD. 255 

Via GMF projection, the SWD could be obtained by transforming the observed SWV. 256 

3.2. Experimental introduction and comparison 257 

The RMSE and bias of the improved tomography model residuals were calculated by subtracting the 258 

ECMWF water vapor density from the water vapor density of the improved pixel-based water vapor 259 

tomography model (hereinafter referred to as the improved model). In a similar way, the RMSE and bias of 260 

the traditional tomography model residuals can also be obtained from the difference between the ECMWF 261 

water vapor density and the water vapor density obtained by the traditional pixel-based water vapor 262 

tomography model (hereinafter referred to as the traditional model). 263 

In order to evaluate the improved model, this paper investigates 6 scenarios, comprising the spatial 264 

distribution scenario, the everyday distribution scenario, the rainy scenario and the non-rainy scenario. 265 

Moreover the scenarios of residuals of the water vapor density in voxels with and without penetrating GNSS 266 

rays are inspected. The definitions of 6 scenarios abovementioned are as follows: 267 

The spatial distribution scenario is investigated by obtaining the RMSE and bias of the residuals from 268 

all ECMWF comparative points at all time intervals. 269 

The everyday distribution scenario is found by obtaining the RMSE and bias of the residuals from all 270 

ECMWF comparative points in two epochs each day. Besides the overall accuracy of 32 days between 25 271 

March 2014 and 25 April 2014 was calculated. 272 

The rainy scenario is based on 15 rainy days between 25 March and 25 April, 2014, as referred to in 273 

Table 1. The RMSE and bias of the residuals are obtained from all ECMWF comparative points in all the 274 

epochs during rainy days. Similarly, the non-rainy scenario is found with the accuracy analysis of the 275 

non-rainy days. 276 

The scenario of residuals of the water vapor density in voxels without GNSS rays penetration is found 277 

by obtaining the RMSE and bias of the residuals from ECMWF comparative points without rays passing 278 

through in all the epochs each day. Conversely, the scenario with GNSS rays penetration is found by 279 

obtaining the RMSE and bias of the residuals from ECMWF comparative points with rays penetrating in 280 

all the epochs each day. 281 

According to the above classifications, the accuracy of the improved model residuals and the 282 

traditional model residuals were calculated, and the accuracy of the improved model was compared with 283 

the traditional one to find out which one is better. Furthermore, the water vapor comparison with radiosonde 284 

data was designed to show if the improved model would be more efficient than the traditional one. 285 

4. Interpretation of 6 scenario results 286 

4.1. Accuracy information of the spatial distribution scenario 287 

To verify whether the accuracy of the improved model is better than that of the traditional model, the 288 

layered RMSE and bias of the residuals are obtained from the tomography results (using both the optimal 289 

polynomial function of each layer and the traditional way) and the ECMWF data in all ECMWF 290 

comparative points (shown in Table 2). The calculation of RMSE improvement percentage involved in the 291 

following tables is shown in Eq. (16). 292 

 % / 100%trad impr tradRMSE RMSE RMSE RMSE      (16) 293 

where imprRMSE  is the RMSE value of the residuals calculated from the improved model, and 294 
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tradRMSE  is the RMSE value of the residuals obtained from the traditional model. 295 

Table 2 shows that RMSE and bias values obtained by the improved model are smaller than those of 296 

the traditional model, and the RMSE improvement percentage is positive, which indicates that the improved 297 

model has a higher accuracy than the traditional model in general. The reason of the appreciable RMSE 298 

improvement percentage in the upper region is that the value of the water vapor density in high altitudes is 299 

very small (see Fig. 2 for details), even small water vapor changes could cause a large percentage fluctuation. 300 

In addition, the bias and RMSE in the bottom from Table 2 are not as good as those of the other higher 301 

layers, regardless of which model is used. These results could be mainly ascribed to a certain system 302 

deviation between the comparison data of ECMWF and the GNSS tomographic data. Besides, due to less 303 

voxels with GNSS rays penetration in the lower layers, the observations are too insufficient to get good 304 

accuracy. Figure 2 also shows that the water vapor content in the bottom region is so abundant and 305 

changeable that tomography results from models could not reflect it accurately. These above reasons lead 306 

to large bias and RMSE values in the bottom tropospheric area. 307 

Table 2. Statistics of two models’ tomography accuracy with respect to ECMWF data in the spatial distribution scenario 308 

for the experimental period (Unit: g/m3). 309 

Layer 

bias RMSE RMSE 

Improvement 

Percentage 

Traditional 

model 

Improved 

model 
 

Traditional 

model 

Improved 

model 

1 -7.81 -7.65  8.17 8.00 2.06% 

2 -3.52 -3.42  3.95 3.83 3.14% 

3 -0.90 -0.80  1.66 1.60 4.05% 

4 0.72 0.61  1.39 1.36 2.00% 

5 1.62 1.58  1.87 1.83 2.28% 

6 1.95 1.77  2.10 2.09 0.39% 

7 1.98 1.90  2.25 2.20 2.07% 

8 1.76 1.68  2.15 2.10 2.32% 

9 1.62 1.60  2.06 2.04 1.10% 

10 1.34 1.11  1.85 1.47 20.68% 

11 1.04 0.87  1.60 1.25 21.75% 

12 0.74 0.61  1.26 0.96 23.67% 

13 0.44 0.38  0.71 0.58 18.36% 
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Figure 2. The layered maps of the water vapor density from (a) (b) the traditional model and (c) (d) the improved 310 

model at specific epochs, (a) (c) 0:00 UTC 9 April 2014 and (b) (d) 0:00 UTC 11 April 2014. 311 

4.2. The accuracy information of the everyday distribution scenario 312 

To prove whether the accuracy of the improved model is better than that of the traditional model on 313 

the everyday time scale, the RMSE improvement percentage is obtained from all ECMWF comparative 314 

points (a total of 12) at two epochs each day, using both the layered optimal polynomial functions and the 315 

traditional method. Figure 3 shows that the percentage of RMSE improvement per day is mostly positive, 316 

and the percentage of April 11th can even approach 12%, indicating that the improvement seems to be 317 

appreciable. This improvement shows that the accuracy of the improved model is mostly superior to that of 318 

the traditional model in everyday distribution; however, on April 7, April 9 and April 15, the RMSE 319 

improvement percentage is negative. This might be due to the heavy showers bringing rapid water vapor 320 

changes from April 7 to April 8 and on April 14, which is difficult to fit the polynomial function well with 321 

the unstable water vapor. However, since negative percentages do not exceed -1%, the accuracy of the 322 

improved model could be considered basically equivalent to that of the traditional model for these four 323 

days. 324 
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 325 

Figure 3. Everyday distribution statistics of daily RMSE improvement percentage between 25 March and 25 April, 326 

2014. 327 

In addition, the overall RMSE and bias of the residuals are obtained from the ECMWF comparative 328 

points (a total of 12) in two epochs under the entire everyday distribution scenario. The statistical results 329 

are shown in Table 3 below. 330 

Table 3. Statistics of two models’ tomography accuracy with respect to ECMWF data in the everyday distribution 331 

scenario for the experimental period (Unit: g/m3). 332 

Statistics 

type 

Traditional 

model 

Improved 

model 

RMSE 

improvement 

percentage 

RMSE 

bias 

2.97 

0.07 

2.87 

0.02 

3.44% 

Table 3 shows that the RMSE obtained by the improved model is smaller by 3.44% compared to that 333 

of the traditional one. The bias of the improved model more closes to zero, indicating that the improved 334 

model has better stability and less systematic deviation from the comparative data. The better accuracy 335 

shows the superiority of the improved model. 336 

4.3. The accuracy information of rainy and non-rainy scenarios 337 

To further analyze the reliability of the improved model compared with the traditional model in 338 

different weather conditions, according to the distribution of rainy days in Table 1, all the rainy days data 339 

and non-rainy days data are used separately for tomography to obtain the RMSE and bias of the residuals 340 

under corresponding weather conditions. The number of matching points is still 12 (see Fig. 1). The overall 341 

statistical results are shown in Table 4.  342 
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Table 4. Statistics of two models’ tomography accuracy with respect to ECMWF data in the rainy scenario and the non-343 

rainy scenario for the experimental period (Unit: g/m3). 344 

(a) The overall rainy scenario statistics 

Statistics type 
Traditional 

model 

Improved 

model 

RMSE 

improvement 

percentage 

RMSE 3.05 2.94 3.68% 

bias 0.05 -0.01  

(b) The overall non-rainy scenario statistics 

Statistics type 
Traditional 

model 

Improved 

model 

RMSE 

improvement 

percentage 

RMSE 2.89 2.80 3.21% 

bias 0.10 0.04  

Table 4 (a) shows that the RMSE and bias of the residuals calculated by the improved model are better 345 

than those of the traditional model using rainy days’ data. The RMSE of the improved model is 3.68% 346 

better than that of the traditional model, indicating the accuracy of the new model is superior. The improved 347 

model bias closes more to zero than that of the traditional one, which means the improved model has an 348 

increase in stability and a reduction in the system error. Using non-rainy days’ data, the RMSE and bias of 349 

the residuals calculated by the improved model are also better than those of the traditional model (see Table 350 

4 (b)). The RMSE improvement percentage is 3.21%, also indicating the improved model has enhanced 351 

accuracy. Besides, the improved model bias is more close to zero, making the system error weakened. Table 352 

4 also shows that the RMSE improvement percentage of the rainy-day is better than that of the non-rainy 353 

days. This finding shows that the improved model is more suitable for obtaining the tomographic results 354 

when heavy water vapor changes occur. 355 

4.4. The accuracy information of voxels with and without GNSS rays penetrating scenarios 356 

In the traditional pixel-based water vapor tomography model, the water vapor density in the voxels 357 

without GNSS rays passing through depends on the accuracy of the water vapor density in the adjacent 358 

voxels with GNSS rays penetration. However, the improved model uses the layered optimal polynomial 359 

functions for overall fitting to obtain the water vapor density in voxels without penetrating GNSS rays. To 360 

determine if the layered optimal polynomial function of the improved model contributes better to the 361 

accuracy of the water vapor density, the scenarios of voxels with and without GNSS rays penetration as 362 

described in section 3.2 were designed. After obtaining the RMSE and bias of the residuals using the 363 

improved and traditional tomography models separately under designed scenarios, the overall accuracy 364 

information of voxels with and without GNSS rays penetrating shows in Table 5.  365 
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Table 5. Statistics of two models’ tomography accuracy with respect to ECMWF data in the voxels with and without 366 

penetrating GNSS rays for the experimental period (Unit: g/m3). 367 

(a) The overall scenario statistics of voxels without rays penetrating  

Statistics type 
Traditional 

model 

Improved 

model 

RMSE  

Improvement  

Percentage 

RMSE 3.40 3.20 5.88% 

Bias 1.59 1.51  

(b) The overall scenario statistics of voxels with rays penetrating 

Statistics type 
Traditional 

model 

Improved 

model 

RMSE  

Improvement  

Percentage 

RMSE 3.27 3.24 1.00% 

bias 1.70 1.65  

Table 5 (a) shows that the RMSE and bias of the residuals calculated by the improved model are better 368 

than those of the traditional model in the scenario of voxels without GNSS rays penetrating. Moreover the 369 

RMSE of improved tomography model is 5.88% better than that of the traditional model, and the bias 370 

decreased from 1.59 to 1.51 g/m3. To a certain extent, results show that the improved model is more 371 

advantageous for obtaining the water vapor density from the voxels without GNSS rays penetrating, which 372 

is consistent with the initial hypothesis: the traditional model uses empirical constraint equations in section 373 

2.1.2, Eq. (7), which is unable to well represent the actual distribution of the water vapor density from 374 

voxels without GNSS rays penetrating. However, the improved model uses the relatively accurate water 375 

vapor density from voxels with GNSS rays penetrating as the observation values to further fit the water 376 

vapor density in voxels without GNSS rays penetrating. Therefore, the improved model can better reflect 377 

the actual layered situation of continuous water vapor changes, and the accuracy is naturally better. What’s 378 

more, in the scenario of voxels with GNSS rays penetrating, the RMSE and bias obtained by the improved 379 

model are also superior to those of the traditional models, see Table 5 (b). The RMSE calculated by the 380 

improved model is 1% higher than that of the traditional model, and the bias reduced from 1.7 to 1.65 g/m3, 381 

which could prove the reliability of the improved model. 382 

In order to double-check if the improved model in the scenario of voxels without GNSS rays 383 

penetration shows a better result in the vertical water vapor distribution, the water vapor density profiles 384 

for different altitudes at specific times are given in Fig. 4. Two times (0:00 UTC 11 April 2014 and 12:00 385 

UTC 11 April 2014) are chosen for they correspond to the maximum percentage of RMSE improvement 386 

during the experiment period of 32 days. Figure 4 shows that in the scenario of voxels without GNSS rays 387 

penetration, the water vapor profile of the improved model better matches that of ECMWF data than the 388 

traditional model, especially in the bottom layers, which again implies that the water vapor density derived 389 

from the improved model is superior to that of the traditional one in the scenario of voxels without GNSS 390 

rays penetrating. 391 
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Figure 4. Water vapor profiles derived from ECMWF and two models in the scenario of voxels without penetrating 392 

GNSS rays, (a) and (b) are periods of 0:00 UTC 11 April 2014 and 12:00 UTC 11 April 2014, respectively. 393 

Furthermore, to compare directly the vertical accuracy of the water vapor density derived from 394 

different altitudes in the scenario of voxels without penetrating GNSS rays, the tomographic results (25 395 

March 2014 to 25 April 2014) from two different tomography models are analyzed. Figure 5 shows the 396 

percentage of RMSE improvement and the relative error of the water vapor density changing with altitudes. 397 

The percentage of RMSE improvement in Fig. 5 is defined as the same as Eq. (16), and the relative error is 398 

defined by using the Eq. (17). 399 

 ECMWF

ECMWF

RE
 




   (17) 400 

where RE is the relative error,   represents the water vapor density derived from the traditional or 401 

improved tomography model, and ECMWF  is the water vapor density derived from ECMWF grid data.  402 

It can be observed in Fig. 5 that in the scenario of voxels without GNSS rays penetration the percentage 403 

of RMSE improvement is positive in lower layers while negative in some middle and upper layers, which 404 

could prove that the improved model enhances the accuracy of tomography results in most layers when 405 

there are seldom voxels with GNSS rays penetrating especially in the bottom layers. Due to the lack of 406 

GNSS observation data, the bottom accuracy of tomographic results is generally low. In addition, Figure 5 407 

shows in the scenario of voxels without GNSS rays penetration, the relative error begins to decrease with 408 

the altitude and then increases above 3 km. When the altitude is higher, the relative error becomes larger 409 

because of the small water vapor values in the upper layers, a very tiny difference could cause a large 410 

relative error between the models and the ECMWF data. 411 
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Figure 5. In the scenario of voxels without GNSS rays penetration (a) the percentage of RMSE improvement and (b) 412 

the relative error change with height (the blue curve and red curve are derived from the differences between the profiles 413 

of the improved model, the traditional model and ECMWF grid data, separately for 64 epochs from 25 March 2014 to 414 

25 April 2014). 415 

5. Water vapor comparison with radiosonde data 416 

As radiosonde data can provide fairly accurate vertical profiles of tropospheric water vapor (Niell et 417 

al., 2001), in this paper, the water vapor profiles derived from radiosonde data, as a reference, are used to 418 

validate the tomographic results from two models for showing if the improved model would be more 419 

efficient than the traditional one. In Hong Kong, there is one radiosonde station located at King’s Park 420 

(shown in Fig. 1) where radiosonde balloons are launched twice daily at 0:00 and 12:00 UTC, respectively. 421 

Water vapor profiles derived from the improved model and the traditional model for the location of the 422 

radiosonde station are compared with that derived from radiosonde data at 00:00 and 12:00 UTC daily for 423 

the experimental period of 32 days. The overall statistical results are shown in Table 6. The RMSE and the 424 

bias of the improved model are 1.03 and -0.06 g/m3, respectively, and the values of the traditional model 425 

are 0.82 and -0.17 g/m3, respectively, which indicates that the RMSE of the improved model is not as good 426 

as the traditional model while the bias of the improved model is a little better than that of the traditional 427 

one. The reason for poor accuracy of the improved model could be due to systematic differences between 428 

the training source ECMWF data and the radiosonde data. Besides, shown in Fig.1, the location of the 429 

radiosonde station is close to one GNSS station (HKSC), leading to the voxels for the location of the 430 

radiosonde station having GNSS rays penetration. Since the improved model has advantages of obtaining 431 

water vapor density just from voxels without GNSS rays penetration, this situation cannot show the 432 

superiority of the improved model.  433 
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Table 6. Statistics of two models’ tomography accuracy with respect to radiosonde data for the experimental period 434 

(Unit: g/m3). 435 

Statistics 

type 

Traditional 

model 

Improved 

model 

RMSE 

bias 

0.82 

-0.17 

1.03 

-0.06 

In addition, water vapor profiles obtained by two models and radiosonde data are compared for the 436 

specific two epochs at 0:00 UTC 25 March 2014 and 0:00 UTC 7 April 2014, shown in Fig. 6. Those two 437 

times are selected because they correspond to the non-rainy day and heavy rainfall day, which could be 438 

more comprehensive and representative for the comparison results of water vapor profiles. It can be seen 439 

from Fig.6 that two models in the non-rainy day match the radiosonde data a little better than that in the 440 

rainy day. The traditional model shows better comparison results in upper layers than that of the improved 441 

model while the two models have almost the same comparison results in the middle and lower layers. The 442 

reason for poor performance in the lower layers might due to abundant water vapor in the bottom 443 

troposphere as well as the division of the vertical resolution. Compared to the radiosonde data, with almost 444 

the same accuracy and profile matching results as the traditional model, the improved model still has the 445 

advantage of the convenient and efficient expression. 446 

 447 

Figure 6. Water vapor profile comparison derived from different tomographic methods and radiosonde, (a) a non-rainy 448 

day at 0:00 UTC 25 March 2014, (b) a rainy day at 0:00 UTC 7 April 2014. 449 

6. SWV comparison 450 

In order to further verify the reliability of the improved model, five days are randomly selected from 451 

different weather conditions to make assessments on the reconstructed SWVs of two models (see Table 7). 452 

The comparison between measured SWVs and the ones derived from tomography results of two models is 453 

performed and the average RMSE and bias are shown in Table 8. The RMSE and bias of SWVs obtained 454 

from tomography results of two models are almost the same under different weather conditions, which 455 

indicates the reconstructed SWVs of the improved model has the similar accuracy with that of the traditional 456 

one. Since the improved model has the advantage in expressing the water vapor distribution more 457 
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expediently, the similar accuracy of two models in SWVs comparison shows the reliability and superiority 458 

of the improved model. 459 

Table 7. Statistics of two models’ accuracy of SWVs for different weather conditions for 5 days (Unit: mm). 460 

Data 3.30 4.2 4.9 4.13 4.25 

Condition 
Thunderstorms turn 

to heavy rain 

Showers, reports of 

hail in some areas 
Non rainy Sunny 

Cloudy turns to the 

rain 

Model Traditional Improved Traditional Improved Traditional Improved Traditional Improved Traditional Improved 

RMS 10.14 10.28 15.03 15.48 2.47 2.56 8.22 8.55 12.21 12.84 

Bias -2.67 -3.03 -1.94 -2.08 0.14 -0.06 -1.51 -1.54 -3.40 -3.89 

Table 8. Statistics of two models’ average accuracy of SWVs for the experimental period (Unit: mm). 461 

Statistics 

type 

Traditional 

model 

Improved 

model 

RMSE 

bias 

9.63 

-1.89 

10.06 

-2.15 

7. Conclusion 462 

In this paper, an improved pixel-based water vapor tomography model has been proposed, which is 463 

much more concise and convenient in expression than the traditional one. Only using the layered optimal 464 

polynomial coefficients, the three-dimensional water vapor distribution in the tomography region could be 465 

described. By using the SatRef GNSS network observation data in Hong Kong between 25 March and 25 466 

April, 2014, the RMSE and bias have been assessed in 6 scenarios. The scenarios include the spatial 467 

distribution scenario and the everyday distribution scenario, the rainy scenario and the non-rainy scenario, 468 

and the voxels with and without GNSS rays penetrating scenarios. The results demonstrate that in either 469 

case, the RMSE and bias of the improved model are better than that of the traditional model. Among these 470 

scenarios, when there are voxels without GNSS rays penetrating, the RMSE improvement percentage can 471 

be significantly increased up to 5.88%, which shows that the improved model is more advantageous for 472 

obtaining the water vapor density from voxels without GNSS rays penetration. Using radiosonde data for 473 

evaluation, it is proved that with the almost similar accuracy the improved model is more efficient in 474 

expression than the traditional one. However, some shortcomings still remain in the improved model. For 475 

example, more or less the water vapor accuracy of the improved model is still affected by the traditional 476 

model, and the layered optimal polynomial functions are limited by the size of the tomographic area and 477 

the situation of dividing voxels. In the future, the function-based water vapor tomography model, which is 478 

free from the above limitations, should be studied. It is expected that the function-based water vapor 479 

tomography model will be more conveniently used when the expression parameters of the function part 480 

could be obtained directly from SWVs. 481 
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