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Abstract. Current knowledge on the description of the interplanetary magnetic field is reviewed with an emphasis on the

kinematic approach as well as the analytic expression. Starting with the Parker spiral field approach, further effects are in-

corporated into this fundamental magnetic field model, including the latitudinal dependence, the poleward component, the

solar cycle dependence, and the polarity and tilt angle of the solar magnetic axis. Further extensions are discussed in view of

the magnetohydrodynamic treatment, the turbulence effect, the pickup ions, and the stellar wind models. The models of the5

interplanetary magnetic field serve as a useful tool for theoretical studies, in particular on the problems of plasma turbulence

evolution, charged dust motions, and cosmic ray modulation in the heliosphere.

1 Introduction

The interplanetary magnetic field (IMF) is a spatially extended magnetic field of the Sun, and forms together with the plasma

flow from the Sun (referred to as the solar wind) a spatial domain of the heliosphere1 around the Sun surrounded by the local10

interstellar cloud. Starting with the first direct measurements in 1960’s (Ness et al., 1964; Ness and Wilcox, 1964; Wilcox and

Ness, 1965; Wilcox, 1968), the IMF is becoming increasingly more accessible in various places in situ in the solar system,

e.g., the inner heliosphere (closer than the Earth orbit from the Sun) was covered by the Helios mission (Porsche, 1981), see

monograph by Schwenn and Marsch (1990, 1991), the outer heliosphere (beyond the Earth orbit) by Voyager (Stone, 1977;

Kohlhase and Penzo, 1977; Stone, 1983), and the high-latitude region by the Ulysses mission (Wenzel and Smith, 1991; Wenzel15

et al., 1992).

In the lowest-order picture, IMF has an Archimedian spiral structure, also referred to as the Parker spiral after Parker (1958),

imposed by the solar wind expansion and the solar rotation, and exhibits spatial variation (e.g., sectors with the opposite

directions of the radial component of the magnetic field, latitude dependence) and time variation (e.g., solar cycle dependence).

Typical values of the IMF magnitude (in the sense of the mean field) B0 turn out to be of the order of 3–4 nT at the20

Earth orbit (1 astronomical unit, hereafter au). Long-term measurements of the IMF by the Ulysses spacecraft show that the

field magnitude of about 3–4 nT is typical not only in the solar ecliptic plane but also in the high-latitude regions (Forsyth

et al., 1996). Of course, irregular or transient phenomena (such as coronal mass ejections or co-rotating interaction regions)

1IMF is also referred to as the heliospheric magnetic field.
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cause local, large-amplitude deviations from the mean field. Recent study by Henry et al. (2017) indicates that the IMF (at

the Earth orbit) can be regarded as the Parker spiral type when the IMF is sufficiently inclined to the Earth orbital plane,

either (1) Bx > 0.4B and By <−0.4B or (2) Bx <−0.4B and By > 0.4B, where Bx is the sunward component of the

magnetic field (GSE-X direction),By is the dawn-to-dusk component of the field (GSE-Y direction), andB is the magnetic field

magnitude. The IMF can be more radial and of the Ortho-Parker spiral type (valid under |Bx|> 0.4Bt, where Bt denotes the5

transverse component of the magnetic field to the radial direction from the Sun, Bt =
√
B2

y +B2
z ) or oriented more northward

or southward |Bz|> 0.5Bt.

Model construction of the IMF has immediate applications in the following plasma physical or astrophysical problems:

1. Solar wind turbulence.

Plasma and magnetic field in interplanetary space develop into turbulence. Early in situ measurements in 1960’s have10

already shown that the frequency spectrum of the fluctuation of the IMF is a power-law over a wide range of frequencies

(typically in the mHz regime) (Coleman, 1968), and the spectral index is close to −5/3 (Matthaeus et al., 1982; Tu

and Marsch, 1995), known as the inertial-range spectrum of fluid turbulence. Properties of solar wind turbulence are

extensively studied using in situ spacecraft such as Helios, Voyager, Ulysses, and the observational properties are docu-

mented in reviews by, e.g., Tu and Marsch (1995), Petrosyan et al. (2010), and Bruno and Carbone (2013). Solar wind15

is the only accessible natural laboratory of turbulence in collisionless plasmas, relevant to astrophysical applications to

interstellar turbulence. Knowledge on the IMF structure is an important ingredient in turbulence modeling. In particular,

the large-scale inhomogeneity or velocity shear are the driver of turbulence when the solar wind plasma evolves into

turbulence. For example, the mean-field models of turbulence explicitly need the large-scale structure as an input (Yokoi

and Hamba, 2007; Yokoi, 2011).20

2. Charged dust motion.

Dust grains in interplanetary space have typically a length scale of nanometers to micrometers, and are electrically

charged by various processes, e.g., sticking of the ambient electrons onto the dust surface (which makes the dust charge

state negative) or photo-electrons (which makes the charge state positive) (Shukla, 2001; Mann et al., 2014). Unlike

the electrons or ions in the plasma, the charged dust grains undergo not only the gravitation attraction by the Sun25

and the planets and the Poynting-Robertson effect but also the electromagnetic interaction (Coulomb and Lorentz force).

Combination of these forces results, e.g., in a long-time tilt of the orbital plane (on the time scale of 10 to 100 years), e.g.,

perihelion or apohelion shift from the solar ecliptic plane to the high-latitude region. Knowledge on the IMF structure

is important because the orbital motion and the orbit drift can be tracked, either in a static IMF structure or in a time-

evolving IMF structure (Grün et al., 1994; Mann et al., 2007, 2014; Czechowski and Mann, 2010; Lhotka et al., 2016).30

3. Cosmic ray modulation.

Cosmic ray consists mostly (more than 90 %) of protons. The spectrum of the cosmic ray is well characterized by a

power-law as a function of the particle energy (kinetic energy, strictly speaking) with a peak at about 1 GeV and a
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slope of about -2.7. The number flux of the cosmic ray can be measured by the neutron monitors, and is known to be

anti-correlated to the sunspot number variations with a period of about 22 years (cosmic ray modulation). The cosmic

ray transport in the heliosphere is modeled by the convection-diffusion equation system, which can be treated both in

a kinetic way based on the Boltzmann transport theory (Parker, 1965) and in a fluid-physical way using the continuity

equation with the convection and diffusion terms (Duldig, 2001). See also the recent review by Potgieter (2013). The5

knowledge of IMF is important because the cosmic ray exhibits charged particles undergo drift motions in a curved,

inhomogeneous magnetic field (i.e., curvature drift and grad-B drift), as pointed out by, e.g., Isenberg and Jokipii (1979).

In fact, the 22-year variation of the cosmic ray modulation (as measured by the neutron monitors on the Earth ground)

can be explained and theoretically reconstructed by including the IMF structure (Kóta and Jokipii, 2001a; Burger et al.,

2008; Miyahara et al., 2010).10

Here we review various models of the IMF with an emphasis on the hydrodynamic approach and the analytic expression.

This review is intended to complement a more comprehensive review by Owens and Forsyth (2013). We limit our review to

the kinematic approach in the sense that the magnetic fields behave passively and are frozen-in into the given plasma flow. The

review is organized in a concise way by primarily taking the kinematic approach. There is an increasing amount of literatures

and studies about the IMF and the modeling approach is becoming diverse, e.g., hydrodynamic, hydromagnetic, and kinetic.15

We point out, however, that even in the simple kinematic approach, the IMF models are still illustrative and have various

applications as introduced above.

We also limit our review to the analytic expression as much as possible. Analytic expression of the magnetic fields is a

useful tool in space science, and has been constructed for various plasma domains or plasma phenomena in the solar system

other than the solar wind: solar corona (Banaszkiewicz et al., 1998), coronal mass ejection (CME) (Isavnin, 2017), Earth’s20

magnetosphere (Katsiaria and Psillakis, 1987; Tsyganenko, 1990, 1995; Tsyganenko and Sitnov, 2007), and local interstellar

medium surrounding the heliosphere (Röken, 2015). One can of course numerically solve the governing equations to reproduce

the magnetic field and its dynamics more realistically, but the numerical treatment is not the scope of this review.

The advantage of the analytic or semi-analytic expression is that one can implement the magnetic field models by themselves

for the theoretical studies of the solar system plasma phenomena. Verification of the magnetic field models is possible using25

the existing in situ spacecraft data from, e.g., the Helios, Voyager, and Ulysses missions as well as the upcoming measurements

in interplanetary space by Parker Solar Probe (Fox et al., 2016), BepiColombo’s cruise in interplanetary space (Benkhoff et al.,

2010), and Solar Orbiter (Müller et al., 2013).

2 Kinematic approach

We focus on the kinematic approach such that the flow pattern is given as an external field of a model field. The magnetic field30

is passive in the sense of the frozen-in field into the plasma. The reaction of the magnetic field onto the plasma motion (such

as the Lorentz force acting on the plasma bulk flow) is not considered here.
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2.1 Parker model

2.1.1 Thermally-driven wind

In this section we review the formulation of the original Parker spiral model of the interplanetary magnetic field. As suggested

by Biermann (1951, 1957) the solar gas outflows into interplanetary space. The existence of the radial outflow of the solar

gaseous material, nowadays known as the solar wind, and the spiral structure of the IMF associated with the solar rotation were5

predicted by Parker (1958) before the confirmation by in situ spacecraft measurements. It is worth while to note that the spiral

structure in interplanetary space was also indicated in the comet tail study by Alfvén (1957) as a beam extending away from

the Sun. The solar wind is mainly composed of protons, electrons, and helium alpha particles (there are, in addition, heavier

ions from the Sun and pickup ions from the local interstellar medium), and streams radially away from the Sun far beyond the

orbits of the planets over distances of about 100 au. The solar wind first encounters the termination shock located before the10

heliopause, a boundary layer between the solar plasma and the local interstellar medium at a distance of about 110–160 au.

At the Earth orbit distance (1 au), the solar wind velocity typically ranges between 300 km s−1 (referred to as the slow solar

wind) to 700 km s−1 (the fast solar wind). During the coronal mass ejection events, the solar wind speed can reach about 1400

km s−1.

The Parker model treats the solar wind as a one-dimensional (in the radial direction), steady-state, iso-thermal thermally-15

driven stream. Basic equations are the continuity equation,

d

dr

(
ρUrr

2
)

= 0, (1)

the momentum balance,

Ur
dUr
dr

+
1

ρ

dp

dr
+
GM�
r2

= 0, (2)

and the adiabatic law or the equation of state,20

p= ρc2s . (3)

Here ρ denotes the mass density, Ur the radial component of the flow velocity, r the distance from the Sun, p the gas pressure,

G the gravitational constant, M� the solar mass, and cs the sound speed. Note that the sound speed is considered constant due

to the assumption of the iso-thermal medium. Equations (1)–(3) can be reduced into the following form,

Ur
dUr
dr

=

(
2c2s
r
− GM

r2

)(
1− c2s

U2
r

)−1

. (4)25

One sees immediately that Eq. (4) has a singularity at which Ur = cs is satisfied. The flow speed reaches the sound speed

(called the critical point or the sonic point) at

rc =
GM�
2c2s

. (5)
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The critical point is located about 6 solar radii for a (coronal) temperature of 1 MK. Equation (4) exhibits difference types or

classes of the flow velocity profile as a function of the distance from the Sun. Above all, a continuous flow acceleration over the

sonic point meets the condition for the solar wind, i.e., acceleration in the subsonic domain (r < rc) and further acceleration in

the supersonic domain (r > rc). See, e.g., Tajima and Shibata (2002) for a more detailed description about the Parker model.

At a larger distance than the critical radius rc, the flow velocity has an asymptotic form,5

Ur ' 2cs

(
ln
r

rc

)1/2

. (6)

A comparison between the approximation of Ur using (6) and a numerical solution of (4) is shown in Fig. 1. The solution

shown in red and obtained for T = 1MK, perfectly agrees with the analytical solution shown in dashed black. The Parker

model thus predicts that the solar corona expands radially outward at subsonic velocities close to the Sun (within the critical

radius), and the coronal gas is gradually accelerated to supersonic velocities further out. Hereafter we also use an expression10

of Usw for the magnitude of the solar wind velocity. A more detailed analysis of the Parker model with the asymptotic solution

of the flow velocity is presented by Summers (1978). A two-fluid model of the solar wind is presented by Summers (1982) as

a hydrodynamic extension of the Parker model for the electron and the protons under the adiabatic law for each fluid type.

2.1.2 Spiral magnetic field

Using the angular velocity of the Sun, Ω�, the radial, polar, and azimuthal components of the solar wind velocity is given in15

the HG (heliographic) frame of reference as follows,

Ur = Usw (7)

Uθ = 0 (8)

Uφ = −Ω�r sinθ. (9)

A magnetic stream line satisfies the differential equation at a given polar angle θ,20

1

r sinθ

dr

dφ
' Ur
Uφ

=− U

Ω�r sinθ
. (10)

We make use of a rough assumption that the flow speed is nearly constant over the critical radius beyond some distance r > rc.

The field-line equation (Eq. 10) has then the solution as

r− r0 =−Usw

Ω�
(φ−φ0) . (11)

Here, the magnetic field line passes through the coordinate at (r0,θ,φ0). The IMF is obtained from the divergence-free condi-25

tion of the Maxwell equations,

∇ ·B = 0. (12)
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Figure 1. Radial solution of the solar wind Ur for different temperatures in mega-Kelvins (right frame ticks). Vertical lines indicate the

position of the planets, the dark-shaded region covers the region of main belt asteroids of the solar system, where blue lines mark the position

of mean motion resonances of asteroids with planet Jupiter.

That is, using the assumption of spherically symmetry, the IMF is expressed as

Br = B0

(r0

r

)2

(13)

Bθ = 0 (14)

Bφ = −B0
Ω�r0

Usw

r0

r
sinθ, (15)

where B0 is the radial component of the magnetic field at a reference radius r0. The transformation into the stationary frame5

(HGI, heliographic inertial) yields the same expression of the magnetic field as Eqs. (13)–(15). Note that due to a Galilean

transformation, the electric field has a convective contribution in the polar direction eθ,

E =−U ×B =−UswBφeθ. (16)

Realizations of the magnetic field lines in the Parker spiral model are shown for different (constant) solar wind speeds in Fig. 2.

The angle between the the magnetic field line and Earth’s orbit is about 45◦ for a typical solar wind speed of 400 km s−1, and10

increases (becomes more radial) at a higher flow speed. Note that when considering the magnetohydrodynamic (MHD) effect,
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Figure 2. Streamlines in the Parker spiral model of interplanetary magnetic field around the Sun (a filled circle in yellow) in the heliospheric

ecliptic plane up to 5 astronomical units (au) under different conditions of the solar wind speed. The orbit of the Earth is marked by a blue

curve at a radius of 1 au, that of Mars by a red curve (1.5 au), and that of Jupiter by a green curve (5 au).

the above discussion is valid outside the Alvén radius at which the flow speed reaches the Alfvén speed, rA ' 50R� = 0.25 au,

where R� is the solar radius.

We rewrite Eqs. (13)–(15) into a simpler form as

Br = B0

(r0

r

)2

(17)

Bφ = −r0B0

(r0

r

) Ω� cosϑ

Usw
, (18)5

where, again, B0 =B (r0,θ,φ0) is the reference radial component of the magnetic field. (Meyer-Vernet, 2012).

We note that in Eqs. (17)–(18) the latitude ϑ (measured from the equator) is related to the polar angle θ (measured from

the rotation axis) by θ = π−ϑ. By identifying or defining the radial and tangential components as BR =Br and BT =Bφ,
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respectively, it is straightforward to transform the Parker spiral field into the RTN system as

BR = B0

(r0

r

)2

(19)

BT = −r0B0

(r0

r

) Ω� sinθ

Usw
. (20)

Note that the normal component vanishes, BN = 0, because the Parker model does not include the polar component like the

dipolar field of the Sun.5

2.1.3 Spiral angle

The distance to the surface on which an azimuthal angle of 45◦ is realized (or Bθ 'Br) is approximately located at

r ' Usw

Ω�
sinθ. (21)

Using the rotation period of the Sun 25.38 days (equivalent to an angular velocity of ω = 2.865× 10−6rad s−1) and the flow

speed Usw ' 430 km s−1, the transition from the radially-dominant to the azimuthally-dominant magnetic field indeed happens10

around r = 1 au. The transition distance is displayed as a function of the flow speed in Fig. 3 for three different solar rotation

periods, 24.47 days, 25.38 days, and 26.24 days.

Alternatively, the Parker spiral model can be formulated in terms of the spiral angle ψ:

tanψ =
Ω�(r−R�)sinθ

Usw
, (22)

In this setting, the magnetic field B is, by using the unit vectors in the radial direction er and in the azimuthal direction eφ,15

given as

B =B0

(r0

r

)2

(er− tanψ eφ) . (23)

In this formulation the magnitude of the magnetic field is estimated as

B =B0

(r0

r

)2
√

1 + tan2ψ (24)

2.1.4 Vector potential20

The magnetic vector potential A for the Parker spiral magnetic field under the Coulomb gauge ∇ ·A = 0 can analytically be

evaluated (Bieber et al., 1987). The vector potential in the following form,

Ar =
2aΩ�
3Usw

(
1− 3x

2
−x ln(1 +x)

)
(25)

Aθ =
2aΩ�
3Usw

sinθ

(
x

1 +x
+ ln(1 +x)

)
(26)

Aφ =
a

r sinθ
(1−x) , (27)25
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Figure 3. Heliocentric distance r in astronomical units (au) at which the spiral angle of the interplanetary magnetic field reaches 45◦ to the

radial direction from the Sun (Br =Bφ). The curves are plotted as a function of the solar wind speed in units of km s−1 for 3 different

rotation rates, a period of 26.24 hours (upper curve), 25.38 hours (middle curve), and 24.47 hours (lower curve). A typical value of the solar

wind speed is 430 km s−1 (shown by a vertical thin line).

where x= |cosθ|. Equations (25)–(27) correspond to the IMF in the following expression:

Br =
a

r2

cosθ

|cosθ|
(28)

Bθ = 0 (29)

Bφ = −aΩ�
Usw

sinθ cosθ

|cosθ|
. (30)

Here a is a free parameter proportional to the magnitude of the magnetic field in units of nT au2 (for example, a= 3.54 nT au25

produces a magnetic field of 5 nT at 1 au). The polar component of the vector potential can be multiplied by a scalar function

f(θ) to improve the accuracy of the model as Aθ→ f(θ)Aθ.

Another formulation of the vector potential (again, under the Coulomb gauge) is to introduce a scalar potential as

ΦC =−2aΩ�r

3u

(
1− 3x

2
−x ln(1 +x)

)
, (31)
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which yields the following vector potential (Webb et al., 2010),

A = a

(
1− |cosθ|
r sinθ

eφ−
f (θ)Ω� sinθ

Usw
eθ

)
. (32)

Of course, in the both cases, Eqs. (25)–(27) and (32), the magnetic field is obtained by the definition of the vector potential as

B =∇×A. The electrostatic potential for the convective electric field E =−U ×B =−∇Φ is

Φ =−aΩ� cosθ. (33)5

The magnetic field lines for the Parker spiral model are shown in Fig. 4. Black lines have been calculated by the intersection

of the two surfaces of constant Euler potentials αE, βE (Webb et al., 2010):

αE =−a|cosθ| , βE = φ+
Ω�r

Usw
−Ω�t . (34)

It is worth mentioning that the spiral magnetic field lines are constructed with the radial component from the Sun and the

azimuthal component around the rotation axis, and do not contain the polar component (in the direction toward the rotation10

axis and perpendicular to the radial direction) as in Eqs. (28)–(30). The Parker spiral field lines have an axial component

along the rotation axis but this is due to the radial component of the field line which has the axial component. For the sake of

convenience one may set a value of unity to the variables a, t, Ω�, and Usw to provide the topology of the problem: αE defines

a cone (in green) that intersects a shell (in red) defined by βE. Intersection lines define the magnetic field lines of the Parker

model.15

2.2 Generalization of the Parker model

The Parker spiral model well approximates the mean, and large scale structure of the interplanetary magnetic field of our solar

system. However, it fails to describe the three-dimensional geometry and evolution in time on various scales.

2.2.1 Latitudinal dependence

The Parker model does not recognize the sign reversal of the dipolar magnetic field over the north and the south hemispheres,20

the divergence-free nature of the magnetic field is not well represented. The hemispheric sign reversal can be incorporated into

the Parker model as follows (Webb et al., 2010):

B =
af (θ)

r2

(
er −

Ω�r sinθ

Ur
eφ

)
. (35)

Here, the constant a and function f = f(θ) are given by:

a = σpB0r
2
0 (36)25

f(θ) = 1− 2H(θ−π/2) =
cosθ

|cosθ|
, (37)

where σp =±1 defines the polarity of the magnetic field in the northern hemisphere of the sun, and f(θ) is the Heaviside step

function with the property f(θ) = +1 for 0< θ < π/2 and f(θ) =−1 for θ > π/2.
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Figure 4. Magnetic field lines (black curves) in the Parker spiral model for different latitude angles θ from the rotation axis. Curves are

defined as the intersection of the surfaces of the Euler potentials, αE = const. and βE = const., as presented by Webb et al. (2010). Note

that the spiral magnetic field lines are constructed with the radial component from the Sun and the azimuthal component around the rotation

axis, and do not contain the polar component (in the direction toward the rotation axis and perpendicular to the radial direction). The spiral

field lines have an axial component along the rotation axis but this is due to the radial component of the spiral field line (in the sense of being

away from the rotation axis).
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A more elaborated analytic model is proposed along with the Ulysses measurements over the solar polar regions (Zurbuchen

et al., 1997; Forsyth et al., 2002). The three-dimensional model allows non-zero field in the polar component, and is expressed

as

Br = B0

(r0

r

)2

(38)

Bθ =
B0r

2
0

Uswr
ω sinβF sin

(
φ+

rΩ�
Usw

−φ0

)
(39)5

Bφ = −B0r
2
0

Uswr

[
Ω� sinθ−ω

(
cosβF sinθ+

sinβF cosθ cos

(
φ+

rΩ�
Usw

−φ0

))]
, (40)

where B0 is the radial component of magnetic field at the source surface located at heliospheric distance r = r0, ω the

differential rotation rate of the magnetic field line at foot points, βF (the Fisk angle) the polar angle at which a field line

originating in the rotational pole crosses the source surface and is related to the angle between the solar magnetic dipole axis10

and the rotation axis, φ0 the heliographic longitude of the plane defined by the rotation and magnetic axes. The source magnetic

field is defined at r = r0. The angle φ= φ0 occurs in the plane defined by the rotation axis and the magnetic axis of the Sun.

Angle βF is the polar angle where the field line p crosses the source surface (from the heliographic pole). The angle βF can be

calculated in the model by Fisk (1996) for a given orientation αF of the magnetic axis M and a given non-radial expansion.

For the configuration discussed by Fisk (1996), the value of βF is about 30◦.15

A model of latitudinal dependence of the magnetic field is constructed by employing the method of separation of variable for

an axi-symmetric magnetohydrodynamic outflow (Lima et al., 2001). The radial and the azimuthal components of the magnetic

field are proposed as

Br =
B0

r2

√
1 +µsin2ε θ (41)

Bφ = λB0
sinε θ

r

 r2

R2
s
− 1

1−M2
A

 , (42)20

where ε is a free parameter, µ is the ratio of the flow kinetic energy (or energy density, strictly speaking) in the equatorial region

to that in the polar region, and λ is the ratio of azimuthal to radial velocity (and also magnetic field) at the base of the wind. Rs

is the radius of the star or the Sun. MA is the Alfvén Mach number of the flow. The polar component of the magnetic field is

assumed to vanish due to the assumption of the axial symmetry around the rotation axis.

2.2.2 Poleward component25

The IMF can have a non-zero polar (or latitudinal) component, e.g., from the solar dipolar field. Generalization of the Parker

model to the non-zero polar component case (Bθ 6= 0) is based on the analysis by Forsyth et al. (1996). Let φB be the azimuthal

angle that the projection of the IMF vector onto the R–T plane makes with the R axis in the right-handed sense, and δB be the
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meridional angle of the IMF to the the R–T plane. These angles are defined in terms of the magnetic field components (Forsyth

et al., 1996):

tan φB =BT/BR

sin δB =BN/B, (43)

where B =
√
B2

R +B2
T +B2

N.5

The azimuthal angle of the spiral field φP that the tangent to the ideal Parker spiral magnetic field makes with the radially

outward direction at a position in interplanetary space specified by radial position r and heliographic latitude δ is then given

by :

tanφP =
Uφ−Ωr cosδ

Ur
. (44)

On the assumption that Uφ is small, φP turns out to be negative. A magnetic field with a direction in agreement with the Parker10

spiral model will have either φB = φP in a region of outward polarity or φB = 180◦+φP in a region of inward polarity field.

In both regions the Parker model predicts that an ideal magnetic field has a meridional angle δB = 0◦ with respect to the R–T

plane. Therefore, up to the second order in BN the sine of the meridional angle δB according to the second equation in Eq.

(43) is given by

sinδB '
BN√

B2
R +B2

T

. (45)15

If we combine the first of Eq. (43) together with Eq. (45) and solve for BT and BN we find up to O(B3
N):

BT =−B0

(r0

r

)2 (Uφ− rΩ� cosδ)

Ur
(46)

BN =B0

(r0

r

)2

√
1 +

(Uφ− rΩ� cosδ)
2

U2
r

sinδB , (47)

where we substituted BR by Br in Eqs. (17)–(18),

BR =B0

(r0

r

)2

. (48)20

Equations (46)–(48) provide a type of the Parker spiral magnetic field with the generalization to a non-zero normal component

BN 6= 0 parameterized by δ and δB. For δB = 0◦ and ignoring the azimuthal component of the solar wind Uφ, the model

reproduces the Parker model, i.e., Eqs. (17)–(18):

BR = B0

(r0

r

)2

(49)

BT = −
(r0

r

)
r0B0Ω� cosδ (50)25

BN = 0. (51)
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Another way of generalization is to use the power-law dependence using the power-law index κ as a free parameter (Lhotka

et al., 2016),

BR = BR0

(r0

r

)2

bR (t) (52)

BT = BT0

(r0

r

)
bT (t) (53)

BN = BN0

(r0

r

)κ
bR (t) . (54)5

Here, BR0, BT0, and BN0 are the mean magnetic field. bR, bT, and bN can be time-dependent such as the solar cycle (see

section 2.2.3). The power-law index κ is a free parameter and determines the dependence of BN on the inverse distance from

the Sun 1/r.

2.2.3 Solar cycle dependence

The solar cycle is a periodic change in the sunspot number over 11 years. In the plasma physics sense, the solar cycle is more10

associated with the magnetic activity of the Sun with a period of 22 years (the magnetic polarity is reversed after one sunspot

cycle). During solar maximum the entire magnetic field of the Sun flips, thus alternating the polarity of the field every solar

cycle. The solar (magnetic) activity is diverse such as solar radiation, ejections of solar material, and the number and the size

of sunspots and the occurrence rate of solar eruptions. As a consequence, the periodic change in the solar magnetic field (or

dipolar axis) affects the polarity of the IMF as well. To include the time dependent effect Kocifaj et al. (2006) suggests the15

following magnetic field model,

BR = B0

(r0

r

)2

cos

(
πt

11[yr]
+φ0

)
(55)

BT = −B0

(r0

r

)
cosϑ cos

(
πt

11[yr]
+φ0

)
. (56)

Here, ϑ is again latitude with θ = π−ϑ. Note that the transverse direction (with a unit vector eT is constructed as eT =

ωmag× eR, where ωmag is the magnetic axis of the Sun. If we assume that ωmag coincides with the rotation axis of the Sun,20

Ω�, then the relation BT =−Bφ holds with Bφ given in Eqs. (17)–(18). However, in comparison with the second equation in

Eqs. (17)–(18), the second equation in Eq. (35) differs by a factor r0Ω�/Ur in addition to the inclusion of the time dependent

terms. However, assuming solar wind speed Usw ' 450 km s−1, and solar rotation rate Ω� ' 2π/24.47 day−1 this factor

becomes close to unity at r0 = 1 au.

2.2.4 Polarity and tilt angle25

Two additional effects can further be incorporated into the IMF model, the polarity Amag and the tilt angle θtilt. The polarity

Amag is defined such that a case of Amag > 0 corresponds to the magnetic fields pointing outward from the Sun in the northern

hemisphere (the angle between the magnetic axis and the solar rotation axis is below 90◦), and a case of Amag < 0 is in the

opposite sense to Amag > 0. Using the polarity A, the Parker spiral magnetic field is given by the following equation (Jokipii
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and Thomas, 1981):

B =
Amag

r2
(er −Γeφ)×{

1− 2H

[
θ−

(
π

2
+ θtilt sin

(
φ− rΩ�

Usw

))]}
, (57)

where H is the Heaviside step function. Γ is defined as

Γ =
rΩ� sinθ

Usw
. (58)5

The polarity Amag is expressed in units of magnetic flux (cf. Eq. 23). An equivalent formulation of Eq. (57) is as follows (Kota

and Jokippii, 1983):

B =
Amag

r2

(
er −

rΩ� sinθ

Usw
eφ

)
[1− 2H(θ− θ∗)] (59)

cotθ∗ = −tanθtilt sinφ∗ (60)

where φ∗ is the azimuthal angle in the co-rotating frame at an angular speed of the solar rotation,10

φ∗ = φ+
rΩ�
Usw

. (61)

The tilt angle θtilt is larger at near solar maximum and smaller at near solar minimum (Thomas and Smith, 1981), and

typically varies from 75◦ at high level of solar activity to 10 down to 3◦ during solar minimum activity. A model of tilt angle

variation over a 22-year solar cycle was constructed by Jokipii and Thomas (1981), Kota and Jokippii (1983) as follows:

θtilt = θt0 + θt1 cos

(
2πt

T

)
, (62)15

where θt0 = 20◦, θt1 = 10◦, and T = 11yr. The tilt angle θtilt is set to be at sunspot maximum at t= 0.

The wavy, flapping shape of the heliospheric current sheet is expressed by the equation for the polar angle as follows (Jokipii

and Thomas, 1981):

θcs =
π

2
+ sin−1

[
sinθtilt sin

(
φ−φ0 +

rΩ�
Usw

)]
(63)

' π

2
+ θtilt sin

(
φ−φ0 +

rΩ�
Usw

)
. (64)20

The approximation in Eq. (64) is valid for θtilt� 1rad (up to about 30◦).

A sketch of the topology of the heliospheric current sheet is shown in Fig. 5, where the magnetic field is discontinuous, i.e.

for vanishing θ−θ∗ = 0 inH(θ−θ∗). For small values of θtilt the sheet is close to the plane defined in terms of the solar equator

(left) while for larger values (θtilt = 20◦) the wavy structure of the ‘ballerina skirt’ is found to be much more pronounced.

The drift motion depends on the sign of qAmag, a combination of the electric charge of the particle and the polarity of the25

solar magnetic field. During the period of qAmag > 0, the time variation of the cosmic ray flux shows a flatter maximum, while

during qAmag < 0 the time variation of the cosmic ray flux shows a shape maximum, see, e.g. Jokipii and Thomas (1981) or

Kota and Jokippii (1983).
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Figure 5. Shape of the ‘ballerina skirt’ model of the heliocentric current sheet defined by cosθ∗ = cosθ. Topology at t= 0 and for θt0 = 5o

(left) and θt0 = 30o (right).

A more refined magnetic field model is constructed by Burger et al. (2008), which offers an extension of the tilted helio-

spheric current sheet (with respect to the rotation axis) to the solar cycle dependence. The latitude-dependent magnetic field

model is expressed as follows:

Br = B0

(r0

r

)2

(65)

Bθ = Br
r

Usw
ω∗ sinβ∗ sinφ∗ (66)5

Bφ = Br
r

Usw

[
ω∗ sinβ∗ cosθ cosφ∗+

sinθ (ω∗ cosβ∗−Ω�) +
dω∗

dθ
sinβ∗ sinθ cosφ∗+

ω∗
dβ∗

dθ
cosβ∗ sinθ cosφ∗

]
. (67)

Here

φ∗ = φ−Ω�t+
Ω(r− r0)

Usw
+φ0. (68)10

B0 is again the radial component of the magnetic field at the reference radius r0. The symbol βF is the angle (the Fisk angle)

between the virtual magnetic axis (p-axis) and the rotation axis of the Sun, and ω is the differential rotation rate of the Sun.

Both the angle βF and ω are generalized to the latitudinal dependent case by introducing the transition function Ft(θ) in the
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following way:

β∗ = βFFt(θ) (69)

ω∗ = ωFt(θ). (70)

The transition function is constructed as follows (Burger et al., 2008):

Ft = |tanh[δpolθ] + tanh[δpol(θ−π)]− tanh[δeq(θ− θ′b)]|2 (71)5

for the northern high-latitude region (0≤ θ < θ′b);

Ft = 0 (72)

for the equatorial or low-latitude region (θ′b ≤ θ ≤ π− θ′b); and

Ft = |tanh[δpolθ] + tanh[δpol(θ−π)]− tanh[δeq(θ−π+ θ′b)]|2 (73)

for the southern high-latitude region. θ′b is the equatorward-limit polar angle of the coronal hole (characterized by open field10

lines) and is between 60◦ and 80◦ from the solar rotation axis in Burger et al. (2008). The symbols δpol and δeq are the control

parameters of the transition from the high-latitude magnetic fields (Fisk-type model) into the low-latitude fields (Parker-type

model), e.g., δpol = δeq = 5.0 proposed by Burger et al. (2008). The magnetic field model in Eqs. (65)–(67) represent a natural

extension of the Parker model in that the case Ft = 1 reproduces the model proposed by Zurbuchen et al. (1997) and the case

Ft = 0 the Parker model. The associated polar and azimuthal components of the flow velocity are:15

Uθ = r0ω
∗ sinβ∗ sinφΩ (74)

Uφ = r0

(
ω∗ sinβ∗ cosθ cosφΩ +ω∗ cosβ∗ sinθ+

dω

dθ
sinβ∗ sinθ cosφΩ +

ω∗
dβ∗

dθ
sinθ cosφΩ

)
. (75)

The Fisk angle βF is related to the tile angle of the heliospheric current sheet αF by Burger et al. (2008):20

cos(αF +βF) = 1− (1− cosθ′mm)
sin2αF

sin2 θmm

, (76)

where θmm and θ′mm are the equatorward (low-latitude) boundary of the polar coronal hole on the level of photosphere source

surface in heliomagnetic coordinates, respectively. The boundary angles are expressed in heliographic coordinates as θb =

θmm−αF and θ′b = θ′mm−αF, respectively.

The tilt angles αF and βF and the boundary angles θb and θ′b can be modeled in a time-dependent way when constructing25

the Fisk-Parker-hybrid model (Burger et al., 2008) as a solar cycle dependent one: The time dependence of the tilt angle αF is

modeled as

αF = αmin +
(π

4
− αmin

2

)[
1− cos

(π
4
T [yr]

)]
(77)
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for 0≤ T [yr]≤ 4yr, and

αF = αmin +
(π

4
− αmin

2

)[
1− cos

(π
7

(T [yr]− 11)
)]

(78)

for 4< T ≤ 11yr, where αmin = π/18 is an offset tilt angle. Time T is measured in units of years after a solar minimum. The

time dependence of the boundary angles is

θb =
θb(min)

2

[
1 + cos

(π
4
T [yr]

)]
(79)5

θ′b =
θ′b(min)

2

[
1 + cos

(π
4
T [yr]

)]
(80)

for 0≤ T ≤ 4yr, and

θb =
θb(min)

2

{
1 + cos

[π
7

(T [yr]− 11)
]}

(81)

θ′b =
θ′b(min)

2

{
1 + cos

[π
7

(T [yr]− 11)
]}

(82)

for 4< T ≤ 11yr.10

3 Further models and effects

3.1 Magnetohydrodynamic models

The models of the solar wind and the interplanetary magnetic field can be extended from kinematic or hydrodynamic treatments

to magnetohydrodynamic (MHD) treatments. An overview of the MHD wind models is given by Tajima and Shibata (2002).

Various magnetic effects are introduced in the MHD picture, e.g., the Alfvén velocity as a characteristic propagation speed (the15

Parker model, in contrast, recognizes the sound speed as a characteristic propagation speed) and the associated critical radius,

collimation of the flow toward the rotation axis by magnetic pinching in the twisted field geometry.

One-dimensional treatment

An MHD model is proposed for an axi-symmetric, one-dimensional, centrifugal force driven wind on the solar equatorial plane

(Weber and Davis, 1967). Six variables are determined as a function of the radial distance (mass density ρ, radial and azimuthal20

components of flow speed,Ur andUφ, and that of the magnetic field,Br andBφ, and pressure p) using six equations (continuity

equation, magnetic flux conservation, force balance, induction equation, adiabatic pressure, and energy conservation) and six

integral constants (mass flux, magnetic flux, angular velocity of the Sun, Alfvén radius, entropy, and total energy). The Alfvén

radius is defined as the radius at which the flow velocity reaches the Alfvén velocity in the radial component, Ur = VA,r. At
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larger distances from the Sun, the solution is given asymptotically as

ρ ∝ r−2 (83)

Ur → U∞ (84)

Br ∝ r−2 (85)

Bφ ∝ r−1. (86)5

The magnetic field becomes more azimuthal and thus twisted with increasing distance, Bφ/Br ∝ r.

The momentum balance equation by Parker (1958) is extended to including the effect of magnetic field and Alfvén wave

heating rate (Alazraki and Couturier, 1971; Belcher, 1971; Woolsey and Cranmer, 2014; Comişel et al., 2015):

1

U

dU

dr

(
U2−U2

c

)
= −U2

c

d

dr
lnB− c2s

d

dr
lnT +

QA

2ρ(U +VA)
− GM�

r2
. (87)10

Here QA denotes the Alfvén wave heating rate. Uc is the critical speed

U2
c = c2s +

WA

4ρ

3U +VA

U +VA
, (88)

where WA is the energy density of the Alfvén waves including the perpendicular fluctuation components of the flow velocity

δU⊥ and that of the magnetic field δB⊥,

WA =
1

2
ρδU2

⊥+
δB2
⊥

2µ0
. (89)15

Two-dimensional treatment

In the two-dimensional picture, the energy conservation (the generalized Bernoulli equation) and the conservation law perpen-

dicular to the magnetic field (the generalized Grad-Shafranov equation) are derived using the force balance equation among

the advection of the flow itself (flow nonlinearity such as steepening and eddies), the pressure gradient, the Lorentz force, and

the gravitational attraction by the Sun, the mass flux conservation, the induction equation, and the adiabatic condition along the20

flow (Heinemann and Olbert, 1978; Sakurai, 1985; Lovelace et al., 1986). The generalized Grad-Shafranov equation cannot be

solved analytically but needs to be solved numerically. It is found that the wind becomes collimated toward the rotation axis of

the Sun (or the star) by the magnetic pinching of the spiral or twisted field. In fact, any stationary, axi-symmetric magnetized

wind collimates toward the rotation axis at large distances (Heyvaerts and Norman, 1989).

It is useful to introduce the poloidal-toroidal expression of the magnetic field in the two-dimensional MHD treatment:25

B =∇× (aeφ) +Bφeφ, (90)

where a denotes the magnetic stream function and eφ is the unit vector in the azimuthal direction around the rotation axis. The

poloidal fields Bp (the first term in Eq. 90) are obtained by a family of curves under a= const. We introduce the barred radius
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which is the distance from the rotation axis, r̄ = r sinθ. The flow velocity is decomposed by referring to the local magnetic

field as

U =
αm(a)

ρ
B + r̄2Ω(a)eφ, (91)

where the first term (denoted by Up) is the flow velocity component parallel to the magnetic field in the frame rotating with

the angular velocity Ω, and the second term (denoted by Uφ) is perpendicular to the magnetic field. The toroidal component of5

magnetic field is determined by the angular momentum conservation,

r̄

(
Uφ−

Bφ
µ0a

)
= l = Ωr̄2

A(a), (92)

where l is the specific angular momentum and r̄A is the Alfvén radius at which the poloidal component of the flow velocity

becomes equal to the Alfvén speed for the poloidal component of the magnetic field. Equation (92) is obtained from the

(steady-state) MHD momentum equation and the flow velocity expression in Eq. (91). The magnetic stream function needs10

to be determined for the flow velocity and the poloidal component of the magnetic field. The magnetic stream function is

numerically evaluated from the momentum equation (or force balance) perpendicular to the magnetic field by solving the

following equation (Sakurai, 1985):

∇ ·
[(

α2
m

ρ
− 1

µ0

)
∇a
r̄2

]
= ρ

(
E′− 1

γp− 1

p

ρ

K ′

K
+ r̄2ΩΩ′

)
+

B2
p

ρ
αmα

′
m +15

D

[
D

µ0
Ω2r̄2αmα

′
m−α2

mΩ2(r̄2
A)′−α2

mΩΩ′
(
r̄2
A− r̄A

)]
, (93)

where

D =
µ0ρ

(
r̄2
A− r2

)
r̄2(µ0ρα2

m− ρ)
(94)

and the prime (·)′ denotes the differentiation with respect to the magnetic stream function, d/da. Equation (93) is the general-

ized Grad-Shafranov equation for the two-dimensional centrifugally-driven wind. The density ρ follows the Bernoulli equation:20

U2
p

2
+

1

2
(Uφ−Ωr̄)2 +

γp

γp− 1

p

ρ
− GM·

r
− Ω2r̄2

2
= E(a) (95)

under the polytropic or adiabatic equation of state

p=K(a)ργp . (96)

In the two-dimensional MHD treatment of the flow, the wind becomes collimated toward the rotation axis by the pinch of25

toroidal fields (Sakurai, 1985), causing a non-zero poleward (northward or southward) component of the magnetic field.
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3.2 More ingredients

Solar wind models can further be improved by considering turbulent diffusion and pickup ions.

Turbulent diffusion

Turbulence on smaller spatial scales serves as an energy sink to large-scale mean fields, which leads to the notion of turbulent

diffusion (mean-field electrodynamics). To see this more clearly, one may decompose the magnetic field into a large-scale5

mean field B0 and a fluctuating field δB (with the zero mean value); and the flow velocity likewise:

B = B0 + δB (97)

U = U0 + δU . (98)

The induction equation for the large-scale magnetic field has then the frozen-in term for the large-scale fields B0 and U0 and

the electromotive force term Eem:10

∂B0

∂t
=∇× (U0×B0) +∇×Eem. (99)

The electromotive force is an averaged electric field coming from the coupling of the fluctuating with the fluctuating magnetic

field by the cross product:

Eem = 〈δU × δB〉 . (100)

A widely-used model in the mean-field electrodynamics is that the electromotive force depends on the large-scale quantities15

such as the large-scale magnetic field, the curl of the large-scale magnetic field, and the curl of the large-scale flow velocity.

By introducing the proper transport coefficients αt, βt, and γt, the electromotive force is modeled as

Emodel = αtB0−βt∇×B0 + γt∇×U0. (101)

After some algebra using Eqs. (99) and (101), one identifies that the term βt∇×B0 becomes nothing other than the diffusion

term for the large-scale magnetic field (under the condition that the coefficient βt is not negative):20

∂B0

∂t
=∇× (U0×B0) +∇× (αtB0) +βt∇2B0 +∇× (γt∇×U0) . (102)

The terms with αt and γt in turn may amplify the large-scale magnetic field when the coefficients are in favor of field amplifi-

cation (dynamo mechanism). The transport coefficients are theoretically estimated as follows:

αt = Cατ(−hkin +hcur) (103)

βt = Cβτ (ekin + emag) (104)25

γt = Cγτhcrs, (105)
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where Cα, Cβ , and Cγ are dimensionless scalar factors, and are estimated as (Yoshizawa, 1998),

Cα ' 0.02 (106)

Cβ ' 0.05 (107)

Cγ ' 0.04. (108)

The symbol τ denotes the turbulent correlation time length, and h and e represent the helicity and the energy quantities: hkin5

the kinetic helicity density, hcur the current helicity density, hcrs the cross helicity density, ekin the turbulent kinetic energy

density, and emag the turbulent magnetic energy density. The helicity density quantities and the energy density quantities are

defined for the fluctuating field,

hkin = 〈δU · (∇× δU)〉 (109)

hcur =
1

µ0ρ0
〈δB · (∇× δB)〉 (110)10

hcrs =
1

√
µ0ρ0

〈δU · δB〉 (111)

ekin =
1

2
〈|δU |2〉 (112)

emag =
1

2µ0ρ0
〈|δB|2〉. (113)

Note that different definitions are possible for the helicity and energy density quantities. In the definition above (Eqs. 109–113)

the fluctuating magnetic field is converted into the velocity dimension such as δB/
√
µ0ρ0 and the energy density is represented15

as that per unit mass. The correlation time length τ can in the simplest case be modeled or represented by the eddy turnover

time,

τed =
`

δU
=
ekin + emag

ε
, (114)

where ε is the dissipation rate which needs to be obtained by solving an equation in the similar fashion to the turbulence energy

(Yokoi et al., 2008). The estimate of time scale can be extended by including the Alfvén time effect into a synthesized time20

scale τs in the additive sense in the frequency domain as

1

τs
=

1

τed
+χ

1

τA
, (115)

where τA denotes the Alfvén time

τA =
`

VA
=
|ekin + emag|2

εV 2
A

(116)

with the length scale ` and the Alfvén speed VA. The symbol χ is the weight factor for the Alfvén time, and is estimated to be of25

the order 102 in the solar wind application (Yokoi et al., 2008). A more rigorous treatment is to solve two sets of equations, one

for the large-scale mean fields and the other for the small-scale turbulent fields. This task can be achieved either analytically

using the two-scale direct interaction approximation (Yokoi, 2006; Yokoi and Hamba, 2007; Yokoi et al., 2008) or numerically

(Usmanov et al., 2012, 2014, 2016).
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Pickup ions

Pickup ions from interstellar neutral hydrogen atoms are one of the ingredients to the solar wind, and contribute to additional

mass of the plasma, which results in deceleration of the solar wind expansion and in increase in the plasma temperature. Pickup

ions originate in (1) charge exchange with the solar wind protons and (2) photoionization by the solar radiation. Steady-state

MHD equations for the wind including pickup ions are introduced by Isenberg (1986) and Whang (1998), and are numerically5

implemented to simulation studies for a three-component fluid (thermal protons, electrons, pickup protons) by Usmanov and

Goldstein (2006); Usmanov et al. (2014) and for a four-component fluid by adding interstellar hydrogen (Usmanov et al.,

2016).

The continuity equation in the one-fluid sense (mixture of electrons, solar wind protons, and pickup ions of interstellar

origin) has a contribution from the photoionization as a source term. and is written for the steady state as (Whang, 1998)10

∇ · (ρU) =mpqph, (117)

where ρ and U denote the mass density and the flow velocity in the one-fluid sense, mp the proton mass, and qph the pickup

ion production rate by the photoionization process,

qph = ν0

(
r2
0

r

)
nnt. (118)

Here ν0 = 0.9×10−7 s−1 is the photoionization rate per hydrogen atom at the Earth orbit distance as reference r0 = 1 au, and15

nnt is the number density of neutral hydrogen (of interstellar origin). The one-fluid momentum equation in the steady state is

approximated into (by neglecting higher-order terms) (Whang, 1998)

ρU ·U +∇P − ρ∇
(
GM�
r

)
− 1

µ0
(∇×B)×B =−(qex + qph)mpU . (119)

Here qex is the pickup ion production rate by the charge exchange process,

qex = σexnswnntU, (120)20

where σex is the cross section of charge exchange between a hydrogen atom and the solar wind protons, nsw is the number

density of solar wind protons.

3.3 Stellar wind and interstellar space

Various outflow models have been proposed for the stellar wind. For example, a wind model is constructed and numerically

studied for the thermally-driven hydrodynamic outflow from low-mass stars (Johnstone et al., 2015). A dead zone due to the25

magnetic dipole field effect can arise in the equatorial region (Keppens and Goedlbloed, 1999). A model is also constructed for

the stellar winds around asymptotic giant branch (AGB) stars with dust grains by employing the MHD equation for the stellar

wind plasma and the Euler equation for the dust grains under the gravity, the radiation pressure, and the drag force (Thirumalai

and Heyl, 2010), showing the possibility of a stellar wind driven by dust grains. Mass-loss rate is observationally studied via
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stellar winds for sub luminous stars (Krtička et al., 2016), in which the following flow velocity model is used for fitting with

three parameters U1, U2, and γsw:

U =

[
U1

(
1− Rs

r

)
+U2

(
1− Rs

r

)2
]{

1− exp

[
γsw

(
1− r

Rs

)2
]}

, (121)

where Rs is the stellar radius.

Stellar winds can be detected by the spectroscopic investigation. A line spectrum becomes distorted to blue-shifted absorp-5

tion and redshifted emission by the retarding stellar wind (away from the observer), known as the P Cygni profile. One type of

the stellar wind models is the Lucy model (Lucy, 1971):

U = Ut

[
1− (1− asw)Rs

r
− asw

R2
s

r2

]1/2

, (122)

where asw is a free parameter with −1< asw < 1. Equation (122) satisfies the conditions of zero speed at the stellar surface,

(U = 0 at r =Rs) and asymptotic behavior at very large distances from the star U → Ut as r→∞). Ut is the terminal flow10

velocity. The flow speed increases monotonously as a function of the radius, U > 0 and dU
dr > 0. The other type is a variant of

the Lucy model (Kudritzki and Puls, 2000):

U

Ut
=

(
1− bsw

Rs

r

)βsw

, (123)

where the constant bsw is the flow velocity at the inner boundary of the stellar wind. An even more simplified expression is

(Lamers, 1998)15

U

Ut
=

(
1− Rs

r

)βsw

, (124)

where Ut is the asymptotic, termination flow speed. βsw is a free parameter, and is empirically chosen as 0.5≤ βsw ≤ 4 (Sapar

et al., 2003).

4 Summary and conclusions

There is an increasing amount of models for the interplanetary magnetic field. Starting with the Parker model, the magnetic field20

model can be extended to include the latitudinal dependence, the poleward component, the time-dependence, and the polarity

and tilt effect even in the analytic or semi-analytic treatment. Which model to choose would depend on the application, e.g., if

the solar cycle is to be included or not, or if the latitudinal dependence is to be or not. In the temporal sense, cosmic ray diffusion

has the shortest time scale, about 13 hours for relativistic particles nearly at the speed of light to travel over 100-au distance in

the heliosphere. In contrast, plasma turbulence evolves together with the solar wind, and the time scale is intermediate, being25

of the order or days, cf. the solar wind travel time from the Sun to the Earth orbit, 1 au, is about 100 hours or roughly 4 days.

Charged dust motions and modulation of the cosmic ray flux in the heliosphere evolve on the longest time scale among the

three applications, of the order of of years (secular variation of the orbital parameters).
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The accuracy or the uncertainty of the reviewed models need to be verified using in situ magnetic field measurements

from the previous, current, and upcoming spacecraft missions. Above all, the magnetic field in the inner heliosphere will be

extensively studied with Parker Solar Probe, BepiColombo (in particular, the cruise-phase measurements), and Solar Orbiter.

It is interesting to note that the analytic expression is also available for the coronal magnetic field (during the solar minimum)

and the local interstellar magnetic field surrounding the heliosphere. Hence, naively speaking, one may expect to construct a5

more complete model of the magnetic field from the Sun to the local interstellar medium. Such a model, once smoothly

and rationally connected from one region to another, enables one to improve the accuracy of theoretical studies on plasma

turbulence evolution, charged dust motions, and diffusion of cosmic ray and energetic particles.

It is also worth noting the limits of the models. First, the magnetic fields are highly structures in the solar corona and at the

solar surface. At some distance sufficiently close to the Sun, the interplanetary magnetic field should smoothly be connected to10

the coronal magnetic field. Second, the outer heliosphere has the termination shock and the heliopause, which are not included

in the models in this review. Third, the solar variability includes not only the 11-year sunspot number variation or the 22-year

magnetic structure variation, but also modulations of the solar cycle on long time scales such as 100 or even 1000 years.
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