
Reply to referee-2 comments

Thank you very much for the positive evaluation. Here are reply comments.

• The article is a very nice tutorial overview of the subject. The grammar and
spelling need to be reviewed, an example: page 3, line 19 ”useful took” presum-
ably should be “useful tool”. I will leave this for the editorial staff and authors
to go through this instead of providing an incomplete list.

Reply: Thank you for the positive evaluation and a careful check of the
manuscript text.

– “useful took” was corrected into “useful tool” (page 4).

– We went through the spelling check and the sentence check to eliminate
errors in English.

• For the physics discussion, last section should really be expanded a little more
to be a review rather than a tutorial. I would like to see a little more discus-
sion of the two dimensional treatment, turbulent diffusion, as well as pickup
ion effects on pages 16 and 17. A comprehensive review should include a basic
discussion of the models. Authors already have a lot of the references in there.
Including the model equations and a basic discussion of how they incorporate
the higher order effects would make this review a good one stop overview read.
I would like to see an expanded section 3.

Reply: Agreed. We added the following text and explanations.

– A model including the latitude dependence (Lima et al., 2001) is added
to section 2.2.1. (page 12).

“A model of latitudinal dependence of the magnetic field is constructed
by employing the method of separation of variable for an axi-symmetric
magnetohydrodynamic outflow (Lima et al., 2001). The radial and the
azimuthal components of the magnetic field are proposed as

Br =
B0

r2

√
1 + µ sin2ε θ (41)

Bφ = λB0
sinε θ

r

 r2

R2
s
− 1

1−M2
A

 , (42)

where ε is a free parameter, µ is the ratio of the flow kinetic energy (or
energy density, strictly speaking) in the equatorial region to that in the
polar region, and λ is the ratio of azimuthal to radial velocity (and also
magnetic field) at the base of the wind. Rs is the radius of the star or the
Sun. MA is the Alfvén Mach number of the flow. The polar component
of the magnetic field is assumed to vanish due to the assumption of the
axial symmetry around the rotation axis.”
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– A model including the tilt angle and the solar cycle dependence (Burger
et al., 2008) is added to section 2.2.4. (page 16 to page 18).

“A more refined magnetic field model is constructed by Burger et al.
(2008), which offers an extension of the tilted heliospheric current sheet
(with respect to the rotation axis) to the solar cycle dependence. The
latitude-dependent magnetic field model is expressed as follows:

Br = B0

(r0

r

)2
(65)

Bθ = Br
r

Usw
ω∗ sinβ∗ sinφ∗ (66)

Bφ = Br
r

Usw

[
ω∗ sinβ∗ cos θ cosφ∗ +

sin θ (ω∗ cosβ∗ − Ω�) +
dω∗

dθ
sinβ∗ sin θ cosφ∗ +

ω∗
dβ∗

dθ
cosβ∗ sin θ cosφ∗

]
. (67)

Here

φ∗ = φ− Ω�t+
Ω(r − r0)

Usw
+ φ0. (68)

B0 is again the radial component of the magnetic field at the reference
radius r0. The symbol βF is the angle (the Fisk angle) between the
virtual magnetic axis (p-axis) and the rotation axis of the Sun, and ω
is the differential rotation rate of the Sun. Both the angle βF and ω are
generalized to the latitudinal dependent case by introducing the transition
function Ft(θ) in the following way:

β∗ = βFFt(θ) (69)

ω∗ = ωFt(θ). (70)

The transition function is constructed as follows (Burger et al., 2008):

Ft =
∣∣tanh[δpolθ] + tanh[δpol(θ − π)]− tanh[δeq(θ − θ′b)]

∣∣2 (71)

for the northern high-latitude region (0 ≤ θ < θ′b);

Ft = 0 (72)

for the equatorial or low-latitude region (θ′b ≤ θ ≤ π − θ′b); and

Ft =
∣∣tanh[δpolθ] + tanh[δpol(θ − π)]− tanh[δeq(θ − π + θ′b)]

∣∣2 (73)

for the southern high-latitude region. θ′b is the equatorward-limit polar
angle of the coronal hole (characterized by open field lines) and is between
60◦ and 80◦ from the solar rotation axis in Burger et al. (2008). The
symbols δpol and δeq are the control parameters of the transition from
the high-latitude magnetic fields (Fisk-type model) into the low-latitude
fields (Parker-type model), e.g., δpol = δeq = 5.0 proposed by Burger
et al. (2008). The magnetic field model in Eqs. (65)–(67) represent a
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natural extension of the Parker model in that the case Ft = 1 reproduces
the model proposed by Zurbuchen et al. (1997) and the case Ft = 0 the
Parker model. The associated polar and azimuthal components of the
flow velocity are:

Uθ = r0ω
∗ sinβ∗ sinφΩ (74)

Uφ = r0

(
ω∗ sinβ∗ cos θ cosφΩ + ω∗ cosβ∗ sin θ +

dω

dθ
sinβ∗ sin θ cosφΩ +

ω∗
dβ∗

dθ
sin θ cosφΩ

)
. (75)

The Fisk angle βF is related to the tile angle of the heliospheric current
sheet αF by Burger et al. (2008):

cos (αF + βF) = 1−
(
1− cos θ′mm

) sin2 αF

sin2 θmm
, (76)

where θmm and θ′mm are the equatorward (low-latitude) boundary of the
polar coronal hole on the level of photosphere source surface in helio-
magnetic coordinates, respectively. The boundary angles are expressed
in heliographic coordinates as θb = θmm−αF and θ′b = θ′mm−αF, respec-
tively.
The tilt angles αF and βF and the boundary angles θb and θ′b can be mod-
eled in a time-dependent way when constructing the Fisk-Parker-hybrid
model (Burger et al., 2008) as a solar cycle dependent one: The time
dependence of the tilt angle αF is modeled as

αF = αmin +
(π

4
− αmin

2

) [
1− cos

(π
4
T [yr]

)]
(77)

for 0 ≤ T [yr] ≤ 4yr, and

αF = αmin +
(π

4
− αmin

2

) [
1− cos

(π
7

(T [yr]− 11)
)]

(78)

for 4 < T ≤ 11yr, where αmin = π/18 is an offset tilt angle. Time T is
measured in units of years after a solar minimum. The time dependence
of the boundary angles is

θb =
θb(min)

2

[
1 + cos

(π
4
T [yr]

)]
(79)

θ′b =
θ′b(min)

2

[
1 + cos

(π
4
T [yr]

)]
(80)

for 0 ≤ T ≤ 4yr, and

θb =
θb(min)

2

{
1 + cos

[π
7

(T [yr]− 11)
]}

(81)

θ′b =
θ′b(min)

2

{
1 + cos

[π
7

(T [yr]− 11)
]}

(82)

for 4 < T ≤ 11yr.”
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– A more detailed explanation of the two-dimensional MHD model by Saku-
rai (1985) is included in section 3.1, subsection “two-dimensional treat-
ment”. (page 19–20)

“It is useful to introduce the poloidal-toroidal expression of the magnetic
field in the two-dimensional MHD treatment:

~B = ∇× (a~eφ) +Bφ~eφ, (90)

where a denotes the magnetic stream function and ~eφ is the unit vector
in the azimuthal direction around the rotation axis. The poloidal fields
Bp (the first term in Eq. 90) are obtained by a family of curves under
a = const. We introduce the barred radius which is the distance from the
rotation axis, r̄ = r sin θ. The flow velocity is decomposed by referring to
the local magnetic field as

~U =
αm(a)

ρ
~B + r̄2Ω(a)~eφ, (91)

where the first term (denoted by Up) is the flow velocity component par-
allel to the magnetic field in the frame rotating with the angular velocity
Ω, and the second term (denoted by Uφ) is perpendicular to the mag-
netic field. The toroidal component of magnetic field is determined by
the angular momentum conservation,

r̄

(
Uφ −

Bφ
µ0a

)
= l = Ωr̄2

A(a), (92)

where l is the specific angular momentum and r̄A is the Alfvén radius at
which the poloidal component of the flow velocity becomes equal to the
Alfvén speed for the poloidal component of the magnetic field. Equation
(92) is obtained from the (steady-state) MHD momentum equation and
the flow velocity expression in Eq. (91). The magnetic stream function
needs to be determined for the flow velocity and the poloidal component
of the magnetic field. The magnetic stream function is numerically eval-
uated from the momentum equation (or force balance) perpendicular to
the magnetic field by solving the following equation (Sakurai, 1985):

∇ ·
[(

α2
m

ρ
− 1

µ0

)
∇a
r̄2

]
= ρ

(
E′ − 1

γp − 1

p

ρ

K ′

K
+ r̄2ΩΩ′

)
+

B2
p

ρ
αmα

′
m +

D

[
D

µ0
Ω2r̄2αmα

′
m − α2

mΩ2(r̄2
A)′ − α2

mΩΩ′
(
r̄2

A − r̄A

)]
,(93)

where

D =
µ0ρ

(
r̄2

A − r2
)

r̄2(µ0ρα2
m − ρ)

(94)

and the prime (·)′ denotes the differentiation with respect to the magnetic
stream function, d/da. Equation (93) is the generalized Grad-Shafranov
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equation for the two-dimensional centrifugally-driven wind. The density
ρ follows the Bernoulli equation:

U2
p

2
+

1

2
(Uφ − Ωr̄)2 +

γp

γp − 1

p

ρ
− GM·

r
− Ω2r̄2

2
= E(a) (95)

under the polytropic or adiabatic equation of state

p = K(a)ργp . (96)

In the two-dimensional MHD treatment of the flow, the wind becomes col-
limated toward the rotation axis by the pinch of toroidal fields (Sakurai,
1985), causing a non-zero poleward (northward or southward) component
of the magnetic field.

– A more detailed explanation about the effect of turbulent diffusion and
a model construction for the turbulent diffusion are added to section 3.3,
subsection “Turbulent diffusion”. (page 20–22)

“Turbulence on smaller spatial scales serves as an energy sink to large-
scale mean fields, which leads to the notion of turbulent diffusion (mean-
field electrodynamics). To see this more clearly, one may decompose the
magnetic field into a large-scale mean field ~B0 and a fluctuating field δ ~B
(with the zero mean value); and the flow velocity likewise:

~B = ~B0 + δ ~B (97)

~U = ~U0 + δ~U. (98)

The induction equation for the large-scale magnetic field has then the
frozen-in term for the large-scale fields ~B0 and ~U0 and the electromotive
force term Eem:

∂ ~B0

∂t
= ∇×

(
~U0 × ~B0

)
+∇× ~Eem. (99)

The electromotive force is an averaged electric field coming from the cou-
pling of the fluctuating with the fluctuating magnetic field by the cross
product:

~Eem =
〈
δ~U × δ ~B

〉
. (100)

A widely-used model in the mean-field electrodynamics is that the elec-
tromotive force depends on the large-scale quantities such as the large-
scale magnetic field, the curl of the large-scale magnetic field, and the
curl of the large-scale flow velocity. By introducing the proper transport
coefficients αt, βt, and γt, the electromotive force is modeled as

~Emodel = αt
~B0 − βt∇× ~B0 + γt∇× ~U0. (101)

After some algebra using Eqs. (99) and (100), one identifies that the
term βt∇ × ~B0 becomes nothing other than the diffusion term for the
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large-scale magnetic field (under the condition that the coefficient βt is
not negative):

∂ ~B0

∂t
= ∇×

(
~U0 × ~B0

)
+∇×

(
αt
~B0

)
+βt∇2 ~B0+∇×

(
γt∇× ~U0

)
. (102)

The terms with αt and γt in turn may amplify the large-scale magnetic
field when the coefficients are in favor of field amplification (dynamo
mechanism). The transport coefficients are theoretically estimated as
follows:

αt = Cατ(−hkin + hcur) (103)

βt = Cβτ (ekin + emag) (104)

γt = Cγτhcrs, (105)

where Cα, Cβ, and Cγ are dimensionless scalar factors, and are estimated
as (Yoshizawa, 1998),

Cα ' 0.02 (106)

Cβ ' 0.05 (107)

Cγ ' 0.04. (108)

The symbol τ denotes the turbulent correlation time length, and h and e
represent the helicity and the energy quantities: hkin the kinetic helicity
density, hcur the current helicity density, hcrs the cross helicity density,
ekin the turbulent kinetic energy density, and emag the turbulent magnetic
energy density. The helicity density quantities and the energy density
quantities are defined for the fluctuating field,

hkin =
〈
δ~U ·

(
∇× δ~U

)〉
(109)

hcur =
1

µ0ρ0

〈
δ ~B ·

(
∇× δ ~B

)〉
(110)

hcrs =
1

√
µ0ρ0

〈
δ~U · δ ~B

〉
(111)

ekin =
1

2
〈|δ~U |2〉 (112)

emag =
1

2µ0ρ0
〈|δ ~B|2〉. (113)

Note that different definitions are possible for the helicity and energy
density quantities. In the definition above (Eqs. 109–113) the fluctuating
magnetic field is converted into the velocity dimension such as δ ~B/

√
µ0ρ0

and the energy density is represented as that per unit mass. The corre-
lation time length τ can in the simplest case be modeled or represented
by the eddy turnover time,

τed =
`

δU
=
ekin + emag

ε
, (114)

where ε is the dissipation rate which needs to be obtained by solving an
equation in the similar fashion to the turbulence energy (Yokoi, 2008).
The estimate of time scale can be extended by including the Alfvén time
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effect into a synthesized time scale τs in the additive sense in the frequency
domain as

1

τs
=

1

τed
+ χ

1

τA
, (115)

where τA denotes the Alfvén time

τA =
`

VA
=
|ekin + emag|2

εV 2
A

(116)

with the length scale ` and the Alfvén speed VA. The symbol χ is the
weight factor for the Alfvén time, and is estimated to be of the order 102

in the solar wind application (Yokoi, 2008). A more rigorous treatment
is to solve two sets of equations, one for the large-scale mean fields and
the other for the small-scale turbulent fields. This task can be achieved
either analytically using the two-scale direct interaction approximation
(Yokoi, 2006; Yokoi and Hamba, 2007; Yokoi et al., 2008) or numerically
(Usmanov et al., 2012, 2014, 2016).”

– Subsection “Pickup ions” is extended by showing model equations. (page
22–23)

“Pickup ions from interstellar neutral hydrogen atoms are one of the
ingredients to the solar wind, and contribute to additional mass of the
plasma, which results in deceleration of the solar wind expansion and in
increase in the plasma temperature. Pickup ions originate in (1) charge
exchange with the solar wind protons and (2) photoionization by the so-
lar radiation. Steady-state MHD equations for the wind including pickup
ions are introduced by Isenberg (1986) and Whang (1998), and are nu-
merically implemented to simulation studies for a three-component fluid
(thermal protons, electrons, pickup protons) by Usmanov and Goldstein
(2006); Usmanov et al. (2014) and for a four-component fluid by adding
interstellar hydrogen (Usmanov et al., 2016).

The continuity equation in the one-fluid sense (mixture of electrons, solar
wind protons, and pickup ions of interstellar origin) has a contribution
from the photoionization as a source term. and is written for the steady
state as (Whang, 1998)

∇ · (ρ~U) = mpqph, (117)

where ρ and ~U denote the mass density and the flow velocity in the one-
fluid sense, mp the proton mass, and qph the pickup ion production rate
by the photoionization process,

qph = ν0

(
r2

0

r

)
nnt. (118)

Here ν0 = 0.9× 10−7 s−1 is the photoionization rate per hydrogen atom
at the Earth orbit distance as reference r0 = 1 au, and nnt is the number
density of neutral hydrogen (of interstellar origin). The one-fluid mo-
mentum equation in the steady state is approximated into (by neglecting
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higher-order terms) (Whang, 1998)

ρ~U · ~U +∇P −ρ∇
(
GM�
r

)
− 1

µ0
(∇× ~B)× ~B = −(qex +qph)mp

~U. (119)

Here qex is the pickup ion production rate by the charge exchange process,

qex = σexnswnntU, (120)

where σex is the cross section of charge exchange between a hydrogen
atom and the solar wind protons, nsw is the number density of solar wind
protons.”

– Section 3.3 (Stellar wind and interstellar space) is extended by referring to
the models by Johnstone et al. (2015), Keppens and Goedlbloed (1999),
Thirumalai and Heyl (2010), and Kriticka et al. (2016). (page 23)

“Various outflow models have been proposed for the stellar wind. For
example, a wind model is constructed and numerically studied for the
thermallly-driven hydrodynamic outflow from low-mass stars (Johnstone
et al., 2015). A dead zone due to the magnetic dipole field effect can
arise in the equatorial region (Keppens and Goeldbloed, 1999). A model
is also constructed for the stellar winds around asymptotic giant branch
(AGB) stars with dust grains by employing the MHD equation for the
stellar wind plasma and the Euler equation for the dust grains under the
gravity, the radiation pressure, and the drag force (Thirumalai and Heyl,
2010), showing the possibility of a stellar wind driven by dust grains.
Mass-loss rate is observationally studied via stellar winds for sublumi-
nous stars (Krtička et al., 2016), in which the following flow velocity
model is used for fitting with three parameters U1, U2, and γsw:

U =

[
U1

(
1− Rs

r

)
+ U2

(
1− Rs

r

)2
]{

1− exp

[
γsw

(
1− r

Rs

)2
]}

,

(121)
where Rs is the stellar radius.”

– A paragraph is added at the end of section 4 (Summary and conclu-
sions) on page 25. We add only one paragraph in section 4 to keep the
manuscript concise.

“It is also worth noting the limits of the models. First, the magnetic
fields are highly structures in the solar corona and at the solar surface.
At some distance sufficiently close to the Sun, the interplanetary magnetic
field should smoothly be connected to the coronal magnetic field. Sec-
ond, the outer heliosphere has the termination shock and the heliopause,
which are not included in the models in this review. Third, the solar
variability includes not only the 11-year sunspot number variation or the
22-year magnetic structure variation, but also modulations of the solar
cycle on long time scales such as 100 or even 1000 years.”
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• I had minor comments on figures and captions but the other referee has already
discussed them in more detail than I was planning.

Reply: We went through the manuscript text check again. All changes are
marked in blue in the revised manuscript.

Other changes

• Analysis and extension of the Parker model by Summers (1978,1982) are cited
in section 2.1.1. (page 5)

• All equations in separate lines have the equation numbers.

• Mathematical symbols have been re-assigned by using capital letters, small
letters, caligraphic letters, asterisk, subscripts, to avoid confusion. Also, a
circle is used instead of “degree” for the units of angles.

• The following reference items are added.

– Alazraki and Couturier, Astron. Astrophys., 1971.

– Belcher, Astrophys. J., 1971.

– Isenberg, J. Geophys. Res., 1986.

– Johnstone et al., Astron. Astrophys., 2015.

– Keppens and Goedlbloed, Astron. Astrophys., 1999.

– Krticka et al., Astron. Astrophys., 2016.

– Lima et al., Astron. Astrophys., 2001.

– Summers, J. Inst. Maths. Applics, 1978.

– Summers, Astrophys. J., 1982.

– Thirumalai and Heyl, Mon. Not. R. Astron. Soc., 2010.

– Yoshizawa, Hydrodynamic and Magnetohydrodynamic Turbulent Flows:
Modelling and Statistical Theory, 1998.
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