Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-107-AC1, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

ANGEOD

Interactive comment

Interactive comment on "Comparison of gravity wave propagation direction observed by mesospheric airglow imaging at three different latitudes by using M-transform" by Septi Perwitasari et al.

Septi Perwitasari et al.

sperwitasari@gmail.com

Received and published: 31 October 2018

The authors would like to thank the Anonymous Referee #1 for his/her time and the valuable comments that help to improve the manuscript.

Referee's comment: The English in the paper could be improved with some proofreading by native English speakers.

Response: We have sent our manuscript to professional English editing service to improve the quality of writing.

Printer-friendly version

Discussion paper

Referee's comment: (Abstract-line 24) MERRA-2 is less accurate at polar regions because less data going into it.

Response: The MERRA-2 reanalysis is a replacement for MERRA and includes many updates over MERRA (Bosilovich et al., 2015). MERRA-2 assimilates several kinds of satellite data in the polar stratosphere and mesosphere such as GPS-RO, AIRS, Aura/MLS, etc (Fujiwara et al., 2017). Especially, the Aura/MLS temperature data above 5 hPa after 2004 are assimilated to only MERRA-2, which contributes to the significant improvement of its stratospheric and mesospheric representation. In addition, only MERRA and MERRA-2 provide pressure level data above 1 hPa. Our analysis requires wind data at higher levels, therefore we think that the choice of MERRA-2 data in our analysis is suitable.

Interactive comment on Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-107, 2018.

ANGEOD

Interactive comment

Printer-friendly version

Discussion paper

