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Abstract. The coverage of regional ionosphere maps is determined by the distribution of ground monitoring 
stations, e.g. GNSS receivers. Since ionospheric delay has a high spatial correlation, ionosphere map coverage 
can be extended using spatial extrapolation methods. This paper proposes a support vector machine (SVM) to 
extrapolate the ionosphere map data with solar and geomagnetic parameters. One year of IGS ionospheric delay 
map data over South Korea is used to train the SVM algorithm. Subsequently, one month of ionospheric delay 5 
data outside the input data region is estimated. In addition to solar and geomagnetic environmental parameters, 
the ionospheric delay data from the inner data region are used to estimate the ionospheric delay data for the 
outside region. The accuracy evaluation is performed at three levels of range – 5˚, 10˚, and 15˚ outside the inner 
data regions. The extrapolation errors are 0.33 TECU for the 5˚ region and 1.95 TECU for the 15˚ region. These 
values are substantially lower than the GPS Klobuchar model error values. Comparison with another machine 10 
learning extrapolation method, the neural network, shows a substantial improvement of up to 26.7%.  

1  Introduction 

Ionospheric delay is one of the main error sources for single-frequency global navigation satellite system 
(GNSS) receivers. Ionosphere models or ionosphere maps can be used to correct for ionospheric delay. For real 
time applications, a regional ionosphere map using regional GNSS monitoring stations can be used to provide 15 
highly accurate corrections. The regional ionosphere map coverage is determined by the distribution of GNSS 
ground monitoring stations. Since ionospheric delay has a high spatial correlation, ionosphere map coverage 
may be extended by using spatial extrapolation methods. In addition to the spatial correlations, hourly/daily 
indices and solar/geomagnetic indices can serve as input parameters for the extrapolation.  

A series of research studies have been conducted on the temporal extrapolation (prediction) of regional 20 
ionosphere maps using past observations. With respect to using machine learning algorithms, Kumluca et al. 
(1999) applied the neural network (NN) method to forecast ionospheric critical plasma frequencies, 𝑓 𝐹 . 
McKinnell and Friedrich (2007) used an NN to predict the lower ionosphere in the aurora zone. Okoh et al. 
(2016) developed a regional VTEC model for Nigeria based on observational data from 12 stations and tested 
temporal and spatial extrapolation performance. Unlike previous studies, the extrapolation performance was 25 
improved by adding the International Reference Ionosphere (IRI) as an input. Razin and Voosoghi (2016) 
applied a wavelet NN with particle swarm optimization to predict the TEC over Iran. Huang and Yuan (2014) 
used time and temporal variation of the TEC values as radial-basis function (RBF) network inputs to temporal 
extrapolation. A support vector machine (SVM) model has been used to predict the ionospheric f0F2 above 
Chinese stations (Ban et al. 2011, Chen et al. 2010). Akhoondzadeh (2013) used a SVM to predict the TEC and 30 
to detect seismo-ionospheric anomalous variations. 

On the other hand, research on the spatial extrapolation of the ionosphere map is sparse. Wielgosz et al. 
(2003) used kriging and multiquadric method to produce instantaneous TEC maps near the Ohio CORS stations 
in near-real time. Kim and Kim (2014) applied a biharmonic spline method to extend a small ionospheric 
correction coverage area. Ionospheric delay observations were used as the input parameters, and the ionospheric 35 
delay outside the coverage area was extrapolated. Leandro and Santos (2006) used geographical information as 
inputs of a NN model for spatial extrapolation of TEC over Brazil. For spatial extrapolation, Jayapal and Zain 
(2016) used a NN with time and solar/geomagnetic indices. In addition to these environmental parameters, Kim 
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and Kim (2016) used the ionospheric delay of the inner area to improve the performance of spatial extrapolation. 

In addition to the NN method, a SVM algorithm can be considered for spatial extrapolation. An SVM finds a 
solution to the convex quadratic programming problem in training to optimize the margin so that it can be both 
optimal and unique. On the other hand, an NN finds the weight between each layer through the gradient descent 
method, and the solution has a possibility to fall into the local minima in this process. An NN is based on 5 
empirical risk minimization (ERM), which is a method of minimizing learning errors during the learning 
process. On the other hand, an SVM is based on structural risk minimization (SRM), so it has excellent 
generalization performance (Gunn, 1998). SVMs have been widely used as predictive models in various fields. 
Huang et al. (2015) successfully performed stock market movement predictions using an SVM. Mohandes et al. 
(2014) performed wind speed predictions using an SVM and compared the performance against the NN method. 10 
The results showed that the SVM achieved superior prediction performance. 

This paper proposes an SVM algorithm to extend ionosphere map coverage by applying 
temporal/environmental parameters and ionospheric observations. The IGS ionosphere map is used as a 
reference map, and the extrapolation accuracy of the SVM is evaluated by comparing it to the IGS map data. 
The extrapolation accuracies are compared with the GPS Klobuchar model and the NN model. 15 

2  Parameter Modeling 

Three types of input parameters are used for the extrapolation of a regional ionosphere map – temporal 
parameters, environmental parameters, and ionospheric delay observations. An extrapolated ionospheric delay, 

extID , may be represented as a function of these three parameters. 

 ext t e obsID f x x x                                                          (1) 20 

where 𝑥  and 𝑥  are the time and the environmental parameters, respectively. 𝑥  is ionospheric delay 
observations in the inner region. 

The ionospheric variation is correlated with the diurnal and seasonal time variation, and the ionospheric 
delay reaches its maximum around 14 hours local time (LT) and its minimum around 2 LT. Also, the 
ionospheric delay is high in spring and autumn, and low in summer and winter. In order to adopt these 25 
correlations, time parameters are included in the extrapolation model. The diurnal variation is represented by an 
hour number (0 ~ 23 LT), and the seasonal variation is represented by a day number (0 ~ 365). To represent the 
repeatability of these variations, the time parameters are modelled as sinusoidal functions.  

t D D H Hx S C S C                                                           (2) 

where DS and DC  are the sine and cosine, respectively, of the day number, and HS  and HC  are the sine and 30 
cosine, respectively, of the hour numbers. The periods used for the sinusoidal functions are set to 24 hours and 
365.25 days for the diurnal and seasonal parameters, respectively. The ionosphere activity is also highly 
correlated with solar and geomagnetic activity. ree parameters are selected to reflect the space environment – the 
F10.7 index, geomagnetic index Kp, and sunspot number (SSN). 

 10.7ex F Kp SSN                                                              (3) 35 

Although SSN has a similarity with F10.7 in representing solar activity, use of both parameters yielded a 
slightly better estimation accuracy than use of single parameter. Therefore, both F10.7 and SSN are 
adopted for the environmental parameters. Disturbance storm time (Dst) is another candidate for the 
environment parameter instead of Kp. After performing some numerical experiments with Dst, Kp has 
been selected for the parameter. The numerical experiments will be discussed in Section 4.  40 

The ionospheric delays in the inner area are employed for the extrapolation in the outer area. Past inner-area 
ionospheric delays are used to train the machine learning algorithms, and current inner-area delays are used for 
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the extrapolation. The observation data set for the N observation points is derived as follows. 

1 2 N
obs obs obs obsx ID ID ID                                                       (4) 

The proposed algorithm is using fixed locations both for input and output, and it does not require a spatial 
structure. Other researchers’ works on ionosphere prediction used raw GPS TEC measurements at varying IPP 
(Ionospheric Piercing Point) and the measurement locations should be registered in the input. Our algorithm 5 
uses a grid-based ionosphere map with fixed grid points, and their location information is not required as the 
model inputs. 

In the event of high temporal or geographical decorrelation due to geomagnetic storm, two inputs are affected: 
the solar/geomagnetic parameters and the inner ionosphere map data. Because of observation latency, the real-
time solar/geomagnetic parameters may not be available in real time. However the inner ionosphere data may be 10 
available in real time from GPS observations, and this fact makes for the estimation algorithm to respond to the 
geomagnetic storm in real time.     

 

3  Extrapolation methods 

3.1  Support vector machine (SVM) 15 

The SVM method is a machine learning theory proposed by Vapnik in 1995. It uses an algorithm to find a 
hyperplane that maximizes the margin (Gunn, 1998). It is used in data classification and regression problems, 
and SVMs used in regression are referred to as support vector regression (SVR). An SVM sets the regression 
function, ( )svmf x , such that target svmy  is in the following range. 

ˆ( ) T
svm svm svmf x y w x b                                                        (5) 20 

( ) ( ) , 0svm svm svmf x y f x                                                  (6) 

where svmx is the input that contains t e obsx x x   , and Tw is the transposed weighting matrix. svmy  is the target 

that represents the true ionospheric delay in the extrapolation region. x  is the allowable error level for svmy . 

In many practical cases, svmy  is not in the range of ( ( ) , ( ) )svm svmf x f x   , and svmy is frequently adjusted 

to the range of ( ( ) , ( ) )svm svmf x f x   , where   is a slack variable. The optimal regression function is 25 

determined when the total magnitude of the slack variable, i i is minimized. Also, the distance between 

( )svmf x  and the support vector should be maximized. The distance between the SVM and ( )svmf x  is called 

the margin, and the margin may also be minimized. Therefore, the optimal regression function minimizes w  

and   to achieve the maximum margin (Gunn, 1998). 
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                                                                                          (7) 30 

, ,( ) , ( )svm i svm i svm i svmSubject to y f x if y f x        

, ,( ) , ( )svm i svm i svm i svmy f x if y f x                                             (8) 

In equation 7, the superscript – denotes a lower boundary and + denotes an upper boundary. The slack 
variable disappears while expanding equations. C  is the penalty set by users. As the C  value approaches zero, 

the weight for the slack variable decreases and the relative weight for 2
w  increases. Therefore, the regression 35 
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function that maximizes the margin can be calculated. This implies that the regression function differs from 

svmy . As C  increases, the weight for the slack variable sum increases rather than maximizing the margin 

magnitude. Therefore, a regression function is calculated in a form similar to svmy . Eq. (7) can be modified 

using a dual problem, as follows. 

 , ,
1

arg min , ,
2

T T
i SVM j SVM SVMK x x f f y                                     (9) 5 

Where   is     and  is Lagrange multiplier. K  is a kernel function that maps input data svmx  to a 

higher dimension. Kernel functions have several functions, including linear and polynomial functions. The most 
commonly used functions are Gaussian kernel functions (Cristianini, 2001). 
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                                                                          (10) 

After mapping svmx  to feature space, one can determine the optimal   by using quadratic programming 10 
(QP). The optimal regression function can be computed by using the following equation (Gunn, 1998). 

      *
, , , , ,1 1 1

1
, ,

N N NT T
svm i SVM j SVM i SVM j i SVM j SVMi i j

f x w x b K x x y K x x
n

 
  

            (11) 

 

 

Figure 1: Flow chart of the SVM training process 15 
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The flow chart of the SVM training process is shown in Figure 1. The input variables consist of temporal 
and environmental parameters and ionospheric delays in the observation region, and these inputs are identical 
for each extrapolation point. Targets include the true ionospheric delay in the j-th extrapolation point. After the 
input/output of the SVM is defined, a kernel matrix is generated for each input. Then, the training is performed 
to find the optimal coefficients and bias of the regression function, ( )svmf x . The kernel function is calculated 5 
for the epoch of each input so that the size of the matrix becomes N N , where N  is the number of epochs. 
As the input increases, the computational time and memory usage also increase. Therefore, the elements of the 
kernel matrix, including the oldest epoch, are deleted, and the kernel functions of the recent epoch are included 
in the matrix. After defining the kernel function and the boundary of the regression function, the optimal 
weights and biases are calculated using the interior point method (Ferris and Munson, 2004). When the initial 10 
training is completed, the extrapolation and update of the kernel function are repeated. 

 

3.2  Neural network (NN) 

An NN is a statistical learning model similar to a biological neural network. It consists of neurons or 
perceptions, and a synapses. Neurons are interconnected with synapses, which store weights. An NN can solve 15 
problems such as pattern recognition and regression by calculating the weights from the learning of the neurons 
(Habarulema et al. 2011). 

Several types of NNs exist – e.g. back-propagation neural network (BPNN), recurrent neural network 
(RNN), and time delay neural network (TDNN). This study implements a BPNN, which is one of the most 
commonly used NN algorithms. It is a feed-forward, multi-layer perceptron (MLP), supervised learning network 20 
(Jwo et al, 2004). In the hidden layer, activation functions determine whether the values from the previous layer 
are activated or not. Training is generally performed using gradient descent method. 
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Figure 2: Flow chart of the neural network training process 

 

Figure 2 shows a flow chart of the BPNN used for the regional ionosphere map extrapolation. The input layer 
includes the network inputs, 𝑥 , shown in Eqs. (2), (3), and (4). The network inputs and targets are the same as 5 
those used in the SVM. An input neuron multiplied by a weight can be computed through the hidden layer 
towards the output neuron, as follows.  

, 1 1 1, 2 2 1 1,0 1 2 1ˆ ( ( ( ( ) ) ) )n n n n n n n n n n
NN NNy f W f W f f W x b b b b                      (12)  

 

where 𝑏 is the network bias, 𝑛 represents the n-th layer, and 𝑊𝑛,𝑛 1 is the weight from 𝑛 1 to the 𝑛-th layer. 10 
𝑥  is the network input, which includes the three input parameters for extrapolation, and 𝑦𝑁𝑁 is the network 
output. 𝑓 is an activation function. The hyperbolic tangent sigmoid function is implemented, which is the most 
widely used method. The network is trained using the BPNN algorithm with true ionospheric delays and three 
input parameter sets to find the optimal weights and biases. 

The network data is generally divided into training, validation, and test sets. The training set is used to 15 
calculate and update the weights. The validation set is used to verify the training results. The test set is finally 
used to calculate the extrapolation error. This paper uses three data sets divided by 70%, 15%, and 15%, 
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respectively. A detailed implementation of the NN can be found in Kim and Kim (2016). 

 

4  Data Processing 

An IGS global ionosphere map (GIM) is used to acquire reference ionospheric delay data because of its 
high accuracy and global coverage. Regional ionospheric delay time series are generated with the GIM data, and 5 
they are used to train the extrapolation algorithms. The extrapolated ionospheric delays outside the observation 
area are compared with the GIM data to evaluate the accuracy. The IGS GIM grid size is 2.5° x 5°, but other 
regional ionosphere maps such as the space-based augmentation system (SBAS) ionosphere corrections have an 
equal latitude-longitude grid size. Therefore, a 5° x 5° grid size is used for the regional ionosphere map in this 
research.  10 

The estimation interval is the same as the inner ionosphere map generation interval. In this research, two-
hour interval was used because two-hour interval IGS global map is implemented for the inner map. If a shorter 
interval inner map is used, e.g. 5 min. SBAS map or real-time GPS-derived map, and then the estimation 
interval becomes shorter. The proposed algorithm is not a time-prediction algorithm, as other preceding 
researches, and the estimation interval is not an important factor to determine the accuracy. 15 

Figure 3 illustrates the observation and extrapolation grid points. The observation regions (blue) are set 
with a radius of 2,650 km centered on South Korea, and the extrapolation regions (red) are set with a radius of 
4,500 km in order to include the 15° extended grid point from South Korea. Therefore, the latitude of the 
observation area ranges from 15°N to 55°N, and the longitude ranges from 105°E to 150°E. The accuracy 
evaluation points are selected to perform the extrapolation. In order to accommodate the directional 20 
characteristics of the extrapolation performance, the evaluation point set is selected for each direction (north, 
south, east, and west). In each direction, three points are selected with different distances from the inner 
observation region – 5°, 10°, and 15°. All the locations of the extrapolation points are represented in Table 1. 

 

 25 

 
Figure 3: Observation and extrapolation regions of ionospheric delay grids 
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Table 1: The locations of the extrapolation points 
Extrapolation 

point (deg) 
North East South West 

5 60˚N, 125˚E 35˚N, 155˚E 10˚N, 125˚E 35˚N, 100˚E 
10 65˚N, 125˚E 35˚N, 160˚E 5˚N, 125˚E 35˚N, 95˚E 
15 70˚N, 125˚E 35˚N, 165˚E 0˚N, 125˚E 35˚N, 90˚E 

 

In the case with the environmental parameters (i.e. F10.7, Kp, and SSN), real-time data may not exist at the 
extrapolation epoch due to data latency. In order to simulate this data latency, previous one-epoch (2-hour) 
values are used instead of the current values during the extrapolation process. This time interval is not large 5 
because it is not a temporal prediction method, but a spatial extrapolation method. The influence of the time 
interval is much smaller than the inner ionosphere map. True environmental parameters are used in the training 
process, but the previous one-epoch values are used in the extrapolation process. The correlation analysis 
between the current and previous one-epoch values confirms the correlation. The correlation coefficients 
between the two adjacent epochs of data for F10.7, Kp, and SSN are 0.930, 0.863, and 0.852, respectively. Since 10 
the IGS GIM uses 2-hour intervals, the Kp, which is provided every 3 hours, is interpolated at intervals of 2 
hours.  

Previous research showed that extrapolation errors have a high correlation with the ionospheric delay 
magnitude and variation (Kim and Kim, 2014). Therefore, the high ionospheric delay season is more appropriate 
when evaluating the extrapolation algorithm than the low ionospheric delay season. It means that if the 15 
magnitude of the ionospheric delay and variation is small, all the extrapolation values and errors are small. In 
this case, it is difficult to compare the extrapolation performance for each model. The training period is set to 
one year from October 1, 2013 to September 30, 2014. In this period, the minimum and maximum ionospheric 
delays are 5.1 and 112.2 TECU, respectively, as shown in Figure 4. The extrapolation period is set to one month 
from October 1 to 31, 2014. The region analyzed in this paper is located around the mid-latitude. In this region, 20 
the ionospheric spatial gradient is large in the North-South direction. Also, since the southern area is close to the 
geomagnetic equator, its ionospheric variation is very large. 

 

 

 25 
Figure 4: One year variation of ionospheric delay (October 01, 2013 to October 30, 2014, S15) 
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too high, over-fitting may occur, and the calculation time is long. Since there are no criteria for determining the 
number of hidden neurons, the optimal number of hidden neurons must be found by analyzing the extrapolation 
error variation due to the number of neurons. The model parameters with the lowest test error are adopted as the 
optimal values. In Fig. 5 and 6, test errors are computed by the mean RMS extrapolation errors at the 5° 
extrapolation regions. In case of the NN, the number of hidden neurons was selected as 80 where the error 5 
becomes a minimum. In the case of the SVM, the extrapolation result also varies with the model parameters. 
This paper sets the penalty, 𝐶, as 106 (Fig. 6), which causes the regression function to almost equal 𝑦. The 
Gaussian function, which is widely used in SVMs, is used as a kernel function, and 𝜎 is set to 10-6. The values 
of 𝜎 and 𝜀 are selected via trial and error to determine the lowest extrapolation error case. They are set to 10-6 
and 10-7, respectively. 10 

 

 

Figure 5: Test errors of different numbers of hidden neurons by the NN model (5° extrapolation point) 

 

 15 

Figure 6: Test errors of different C values by the SVM model (5° extrapolation point) 
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algorithm. These results may be due to incomplete optimization for Dst use or inherent nature of Dst. Process 
optimization with Dst can be a further research topic. 

 

5  Estimation Results 

The regional ionosphere map extrapolation is performed using the SVM, and the IGS GIM is used as a 5 
truth value. The SVM extrapolation results are compared with the NN and Klobuchar model results. Hourly 
variations of the extrapolation results are analyzed with one-day data, and then daily variations of the results are 
analyzed with one-month data.  

5.1  Single-day extrapolation analysis 

The variations of the ionospheric delay and the extrapolation results are analyzed for the data from October 10 
28, 2014, when the daily ionospheric delay magnitude reaches its maximum for the extrapolation period 
(October 2014).  

 

 
Figure 7: Ionospheric delays of the IGS GIM and Klobuchar model (south 5˚ and north 5˚ points, UT) 15 

 

Figure 7 shows the ionospheric delay variations of the IGS GIM and Klobuchar model on October 28, 
2014. Data from two evaluation points, 5˚ north and south are presented. Universal time (UT) is used. The 
ionospheric delay reaches its maximum at 15:00 LT (6:00 UT) and then decreases. There are large differences 
between the ionospheric delays at the north and south points because of the ionospheric spatial gradient (Kim et 20 
al. 2014). The north-south difference produced by the Klobuchar model is significantly smaller than the IGS 
GIM. 
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Figure 8: Extrapolation error variations on October 28, 2014 (north 5˚ and south 5˚ points) 

 

Figure 8 shows the extrapolation results for October, 28, 2014. Two extrapolation points, north 5˚ (N5) and 
south 5˚ (S5), are selected. In the case of N5, the extrapolation RMS errors of the SVM and NN are 0.23 TECU 5 
and 0.63 TECU, respectively. The SVM outperforms the NN with a 63.5% error reduction. The NN error 
increase at 6 UT corresponds the ionosphere maximum at 6 UT in Fig. 7, and the overall NN error variation at 
S5 follows the ionospheric delay variation. The NN error at N5 and SVM errors at S5/N5 do not follow the 
ionospheric delay variation.  

 10 

 

Figure 9: Extrapolation errors for each direction (5˚ extrapolation regions) 

 

Figure 9 compares the RMS errors of four 5˚ extrapolation points (N5, S5, E5, and W5) on October 28, 
2014. The error magnitude is the largest at the south point where the ionospheric delay magnitude is the largest. 15 
The SVM shows similar error levels for the north, east, and west points. However, the NN shows larger errors 
than the SVM even at the north point. This difference in extrapolation accuracy may be explained via the 
ionospheric spatial gradient. The spatial gradient along the north-south direction is significantly greater than the 
gradient along the east-west direction (Kim et al. 2014, Vuković and Kos 2016). The large gradient increases the 
geographical ionospheric delay difference and frequently causes the NN error increase. However, the SVM is 20 
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more robust for this large amount of gradient data. In general ionosphere estimation errors increases at low 
geomagnetic latitude (Song et al. 2018) However, the errors at E5 and W5 are smaller than those at N5 point 
even though E5 and W5 are located to the south of N5. This is because the input of the model includes the 
internal ionospheric delay for solving a spatial extrapolation problem. It implies that the ionospheric spatial 
gradient is the main factor of the extrapolation performances. 5 

 

 

Figure 10: Extrapolation errors for each direction (10˚ extrapolation regions) 

 

Figure 10 compares the RMS errors of four 10˚ extrapolation points (N10, S10, E10, and W10) on October 28, 10 
2014. Unlike the 5˚ results in Fig. 7, there is little difference between the two models for the northern area. 
However, the difference between the two models in the southern region is increased to 0.63 TECU. It means that 
the extrapolation performance of the SVM and the NN model is larger for the high ionospheric variation region. 
The extrapolation errors of the East and West region are not significantly different from those in Fig. 9. 

 15 

Figure 11: Extrapolation errors for each direction (15˚ extrapolation regions) 
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overall error level increases from that of the 5˚ points, but the SVM still outperforms the NN, particularly at the 
south and north points. The SVM error at the south point is 3.24 TECU, and the error reduction over the NN is 20 
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NN has been reduced.  

 

5.2 One-month extrapolation analysis 

The spatial extrapolations are performed for the one-month period from October 1 to 31, 2014. As with the 
single-day extrapolation, the one-year data from October 2013 to September 2014 is used for the training 5 
process.  

 

Figure 12: Daily extrapolation RMS error variations in October 2014 (south 10˚ point) 

 

Figure 12 shows the daily extrapolation errors for the south 10˚ extrapolation point (S10) in October 2014. 10 
The one-month means of the daily RMS errors are 1.89 TECU for the SVM and 2.54 TECU for the NN. During 
the 31 days, the SVM achieved better performance than the NN for 26 days (83.9%). During low ionospheric 
delay periods, the difference in extrapolation performance between the two methods is not significant (e.g. 
October 9 and 10). However, during high ionospheric delay periods, the difference becomes significant (e.g. 
October 28) 15 

 

 

Figure 13: Extrapolation RMS errors for each two-hour interval on October 2014 (south 10˚ point) 
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In order to analyze the hourly extrapolation performance, the one-month mean of each two-hour time 
interval is presented in Figure 13. The time unit is UT. Both the SVM and NN show an increase in extrapolation 
errors at 06:00 UT. During the high ionospheric variation period, 04:00-08:00 UT, the mean of the SVM error is 
0.88 TECU lower than the error of the NN. Even during the low ionospheric variation period, 18:00-22:00 UT, 5 
the SVM error is 0.88 TECU lower than the NN. These results prove that the extrapolation performance of the 
SVM model is better for both large and small ionospheric delays. A correlation analysis with the geomagnetic 
index, Kp, is performed by computing statistics for each Kp value. (This is not shown as a figure.) Over all Kp 
values, the SVM outperforms the NN with the same level of improvement. The only exception is Kp= 5 on 
October 5 12:00 UT, where the NN outperforms the SVM. However, this high Kp happens only one time among 10 
360 epochs, and a generalized conclusion requires a further research. 

 

Table 2: One-month mean of extrapolation RMS errors using the SVM, NN, and Klobuchar models (unit= TECU) 

Extrapolation 
region 

5˚ 10˚ 15˚ 
Klob. SVM NN Klob. SVM NN Klob. SVM NN 

North 14.41 0.32 0.68 13.07 1.02 1.06 12.04 1.97 1.90 
East 14.63 0.17 0.20 14.57 0.51 0.71 14.47 1.00 1.13 
West 13.38 0.24 0.25 13.29 0.64 0.63 13.12 1.27 1.44 
South 25.13 0.57 0.67 24.40 1.89 2.54 26.97 3.58 3.79 
Total 16.89 0.33 0.45 16.33 1.01 1.23 16.65 1.95 2.06 

 

Table 2 summarizes the extrapolation errors for all evaluation points in October 2014. The one-month 15 
mean of the errors from four directions, north, south, east, and west, and three ranges, 5˚, 10˚, and 15˚, are 
presented. The Klobuchar model of the GPS navigation message (Klob.) is also shown for comparison. In all 
ranges, even at the 15˚ points, both the SVM and NN outperform the Klobuchar model. This proves that the 
extrapolation methods are useful even in large areas. In the east and west points where the ionospheric spatial 
gradient is small, the accuracy improvement provided by the SVM is not significant because it can be suitable to 20 
generalize the ionospheric delay by internal ionospheric delay information. The SVM error is 11.8% smaller 
than that of the NN in the W15 region. In the south region, the extrapolation error is very large due to the large 
ionospheric variation, and these results in the largest improvement provided by the SVM. In particular, the S10 
region contains the largest error difference at approximately 0.65 TECU. The average error for each region is 
the largest at the 10˚ extrapolation region.  25 

The difference may mainly result from the fact that the generalization performance of the SVM model is 
better than that of the NN for the ionospheric variations. Since ionosphere environment depends on its 
geomagnetic locations, the proposed extrapolation algorithm performance might be different at other locations. 
If the estimation region is changed, a new training and optimization process should be performed. 

 30 

 

6  Conclusions 

The coverage area of a regional ionosphere map is determined by the distribution of GNSS ground stations. 
This paper proposes a spatial extrapolation algorithm to extend the ionosphere map coverage using an SVM. 
One year of IGS GIM ionospheric delay data over South Korea and environmental parameters are used as input 35 
data sets to train the SVM algorithm. From the training results, one month of ionospheric delay data outside the 
input data region is estimated. In addition to solar and geomagnetic environmental parameters, current 
ionospheric delay data in the inner data region are used to estimate the ionospheric delay data in the outside 
region. 
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The estimation accuracy is evaluated at 12 points; four directions (north, south, east, and west) and three 
distances (5˚, 10˚, and 15˚). The accuracy improvement by the SVM is compared with the NN. The one-month 
mean of the estimation error produced by the SVM is 0.33 TECU for the 5˚ region, 1.01 TECU for the 10˚ 
region, and 1.95 TECU for the 15˚ region. The improvement levels over the NN for the 5˚, 10˚, and 15˚ regions 
are 26.7%, 17.9%, and 5.3%, respectively. The error reduction by the SVM over NN is more significant at near 5 
points than at remote points. 

Among the four directions, the error in the south region is the largest. The ionospheric delay and variation 
in the north region is usually smaller than the delay either in the east or west, but the extrapolation accuracy in 
the north region is even larger than in the east or west. A larger spatial gradient along the south-north direction 
over the east-west direction may explain this difference. This dependency on the ionospheric spatial gradient 10 
can be explained with inherent nature of extrapolation. A large gradient along the south-north direction implies a 
more sensitivity along the south-north direction data. The north point data is more sensitive to the southern part 
of input data than the western or eastern part of input data. Since the southern part of input data has a larger 
variation than other parts, its variation directly affects the north point estimate and increases the error. 

Although artificial neural network is the most widely used machine learning algorithm for classification 15 
and regression problems, a SVM model is also powerful to prediction problem because of its generalization 
performance. Because a SVM is defined by a convex optimization problem, there are no local minima solutions. 
And SVM is based on structural risk minimization, it has excellent generalization performance. In case of our 
ionosphere extrapolation problem, the SVM demonstrates a better performance than the NN. 

 20 
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