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Abstract. Accurate estimates of the ionospheric electron
density are essential for various space-weather applications
but are challenging at high latitudes due to strong spatial and
temporal variability driven by auroral precipitation and com-
plex ionospheric convection. This study presents an assimila-
tive empirical model designed to improve regional electron-
density estimates in Northern Scandinavia. The model uses
ionogram images, the local magnetic field, the auroral elec-
trojet, the ring current and solar-activity indices as inputs.
These inputs are fused by a multimodal neural network and
trained with incoherent-scatter-radar (ISR) observations of
electron density profiles as the target. The model remains
functional with only a subset of input, with modest accu-
racy degradation. Comparative analysis demonstrates that
our neural-network-based assimilative model outperforms
the ARTIST 4.5 ionogram scaler and the state-of-the-art E-
CHAIM model, especially during auroral activity. Overall,
our model achieves an R? score of 0.74 on an indepen-
dent test dataset, whereas ARTIST 4.5 and E-CHAIM obtain
R? values of —0.08 and 0.34, respectively. These results indi-
cate that the model can provide reliable, continuous electron-
density estimates at high latitudes, even under auroral con-
ditions. This methodology can be extended to develop em-
pirical ionospheric models for other regions with historical
ISR data and to invert ionograms to electron-density profiles
when ISR observations are unavailable.

1 Introduction

The Arctic ionosphere exhibits highly variable electron den-
sity due to auroral precipitation, structured plasma convec-
tion, and large seasonal variability in daily photoioniza-
tion (Keskinen and Ossakow, 1983). Accurate knowledge
of electron density profiles is important for a wide range of
space-weather applications and ionospheric research (Buon-
santo and Fuller-Rowell, 1997; Lanzerotti, 2001; Pulkki-
nen, 2007). Several measurement techniques allow continu-
ous monitoring of the ionospheric electron density, including
GNSS total electron content (TEC) (e.g., Rideout and Coster,
2006) and ionosondes (Galkin et al., 2018). These methods
are less accurate than incoherent scatter radar (ISR) mea-
surements, which observe Thomson scatter from ionospheric
electrons and allow estimation of electron density, plasma
temperature, and ion velocity (Evans, 1969; Beynon and
Williams, 1978). However, ISRs provide significantly sparser
coverage in time and space, compared to GNSS TEC and
ionosonde measurements, often making continuous monitor-
ing of electron density intractable.

Several methods have been developed to make use of
ISR observations to facilitate the estimation of the iono-
spheric electron density. For example, Holt et al. (2002) and
Zhang et al. (2005) used a global network of ISRs to de-
velop regional empirical electron-density models that suc-
cessfully capture ionospheric climatology. They binned ob-
servations by altitude and time of day, then derived lin-
ear relationships between solar activity, geomagnetic activ-
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ity, and electron density. The E-CHAIM model (Themens
etal., 2017, 2018, 2019) incorporates solar variability via the
F10.7 cm flux and the Ionospheric Index (IG) (Minnis, 1955;
Liu et al., 1983). E-CHAIM uses information from ionoson-
des, ISRs, and radio-occultation experiments to generate an
empirical model, providing improved plasma-density pro-
files in the auroral and polar regions compared with the In-
ternational Reference Ionosphere (IRI) model (Bilitza et al.,
2022).

Ionosondes measure the group delay of HF radio waves
between a radar antenna and the point of reflection in the
ionosphere across a range of frequencies (e.g., Davies, 1990;
Levis et al., 2010). Inferring the electron-density profile from
these measurements is challenging because the inverse prob-
lem is nonlinear and ill-posed, as there are regions in the
ionosphere that are not directly measured, such as the “val-
ley region” between the E-region peak and the altitude where
the F-region electron-density exceeds the peak E-region elec-
tron density, and the top-side ionosphere where the elec-
tron density decreases. Several methods have been developed
to estimate the electron densities based on ionosonde mea-
surements such as POLAN (Titheridge, 1985; Sauli et al.,
2007), ARTIST (Reinisch et al., 1983, 1992; Reinisch and
Huang, 2001; Reinisch et al., 2005; Galkin and Reinisch,
2008), NeXTYZ (Zabotin et al., 2006), Autoscala (Pez-
zopane and Scotto, 2007) and the IGC method (Ankita and
Ram, 2023, 2024). These automated techniques perform well
at mid-latitudes during conditions where the ionosphere is
relatively unstructured, but are known to perform poorly dur-
ing auroral precipitation, sporadic E and spread F conditions.
Nevertheless, ionosonde measurements still contain informa-
tion about the F-region scale height variation, the electron-
density in the valley region between the E-region peak and
the F-region, the presence of auroral precipitation in the form
of complex E-region ionogram traces, or in the form of weak
or non-existent traces indicating a presence of high E- and
D-region ionization. This information is currently not used
optimally as there is no simple analytic relationship that can
be used.

Machine learning (ML) techniques can uncover complex
relationships within data and have greatly impacted scientific
research the last decade. In space physics, ML has been ap-
plied to a wide range of tasks (Camporeale, 2019), notably to
classify auroral images (Clausen and Nickisch, 2018; Kvam-
men et al., 2020; Nanjo et al., 2022), predict ground-induced
currents (Wang et al., 2019; Pinto et al., 2022), forecast sub-
storm onset (Sado et al., 2023), predict local and global geo-
magnetic activity (Wintoft and Lundstedt, 1999; Wintoft and
Wik, 2018), model space-weather drivers (Lundstedt, 2005),
scale ionograms (Chen et al., 2018; Rao et al., 2022; Guo
and Xiong, 2023; Kvammen et al., 2024; Sherstyukov et al.,
2024; Liu et al., 2025), perform time-series prediction of to-
tal electron content (Liu et al., 2022), predict electron-density
distributions (Mao et al., 2024), and classify plasma regions
in near-Earth space (Breuillard et al., 2020).
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In this study, we present a novel approach for estimating
electron-density profiles above the EISCAT Tromsg ISR fa-
cility. The goal is to find an empirical relationship between
ISR-measured electron-density profiles and our input data:
geophysical parameters and ionograms. We employ deep
learning (DL) to approximate a mapping from 25 readily
accessible geophysical parameters and/or ionogram images
to the corresponding ISR measurements of electron density
profile. This approach circumvents the need for algorithmic
true-height inversion of ionograms and may capture more
subtle information contained within ionograms when esti-
mating electron density. Convolutional neural networks have
already been shown to be powerful tools for automatic iono-
gram scaling (e.g., Kvammen et al., 2024). Here, we adopt a
similar approach for extracting features from ionograms, but
instead of estimating scaling parameters, we directly predict
the electron-density profile from each ionogram.

The remainder of this paper is organized as follows: Sect. 2
describes the dataset and preprocessing steps. Section 3 out-
lines the deep neural network architecture and training pro-
cedure. Section 4 presents our results and benchmarks them
against established models. Section 5 discusses the impli-
cations of these findings and proposes directions for future
work. Finally, in Sect. 6 we draw some conclusions from this
work.

2 Data Acquisition and Preprocessing

In this study, we used three distinct data types acquired from
multiple sources:

1. Electron-density profiles, n.(z), obtained from the EIS-
CAT UHF incoherent-scatter radar at Ramfjordmoen,
Tromsg (Rishbeth and Williams, 1985)

2. Ionograms recorded by the co-located digisonde oper-
ated by the Tromsg Geophysical Observatory (TGO)

3. Geophysical parameters retrieved from online space-
weather and observatory services.

The EISCAT UHF profiles served as the “ground truth” for
supervised training of our deep neural network (DNN). For
each day with available EISCAT UHF measurements, we ex-
tracted the corresponding ionograms and geophysical param-
eters. Figure 1 shows the resulting data availability: between
2019 and 2022, 363 of 1452d (25 %) yielded suitable data,
providing 9040 of 139392 possible hourly profiles (6.5 %),
since many days contained data from experiments with par-
tial daily coverage. The 2019-2022 data was selected due to
the availability of simultaneous Digisonde and EISCAT data.
Note that coverage is biased away from summer months due
to reduced EISCAT usage during summer. This results in a
dataset that is not balanced across all seasons. Furthermore,
the training dataset is dominated by solar minimum and
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Figure 1. The distribution of 15 min intervals with EISCAT UHF data suitable for this study are shown along with the Sunspot number
(incinerating solar phase). Blue lines mark days that are used for training the model while green lines displays testing days.

rising-phase conditions. To partially address this issue, we re-
served data from the previous solar maximum and data from
2018 as an independent test set, containing 1177 samples.
This enables evaluation of the model under contrasting solar
cycle conditions. In future work, we aim to curate a more bal-
anced dataset across both seasonal and solar-cycle variations
to further improve model generalization. Our neural-network
outputs were evaluated against ionogram-derived electron-
density estimates from ARTIST 4.5 (Reinisch et al., 2005)
and E-CHAIM’s ne(z) model predictions (Themens et al.,
2017).

2.1 The EISCAT Tromsg Ultra High-Frequency Radar

The EISCAT facility at Ramfjordmoen in Tromsg is one
of the few high-latitude ISR stations located in the auro-
ral zone (69.6°N, 19.2°E). The UHF radar consists of a
32 m antenna and operates in the 930 MHz band with a peak
power of 2.0 MW. It measures ionospheric plasma param-
eters through several standard experiments (Lehtinen and
Huuskonen, 1996). In this study, only data from runs of
the standard experiment “beata” have been used. This ex-
periment provides data with a minimum time resolution of
5.0s over a range span of 49-693 km (Tjulin, 2017). One-
minute-averaged plasma parameters for all available beata
experiments, outlined in Fig. 2, were extracted from the pub-
lic Madrigal database (Madrigal Database, 2025) for further
processing. Only the measurement time (¢), radar range (r),
electron density (ne), and measurement error (o) were pro-
cessed. We discarded electron-density profiles measured at
zenith angles exceeding 20° to focus on near-vertical scatter-
ing, thereby excluding most scanning experiments. Figure 2
(first column) illustrates the extracted profiles for a day with
full 24 h coverage.
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The processed profiles were clipped to altitudes between
90 and 400km to exclude D-region and upper F2-region
activity, as measurements above 400 km contain little use-
ful information for this study. The profiles were then re-
interpolated onto the most common altitude grid in the
dataset, consisting of 27 points. To remove NaN and oo val-
ues (from failed ISR spectrum fits), we applied a simple in-
painting procedure to interpolate or extrapolate these val-
ues. Additionally, a custom outlier-filtering script (see Ap-
pendix A) was used to detect and correct any remaining out-
liers in the n. profiles, which may arise from noise or cali-
bration issues.

Because the TGO ionosonde produces ionograms at least
every 15min, we averaged the EISCAT UHF profiles over
15 min intervals to match the ionosonde’s time resolution
(see third column in Fig. 2). Some intervals contained in-
termittent gaps; in those cases, we averaged all available
measurements. Although the UHF data are averaged over a
15 min interval, each ionogram sweep requires 7—-8 min, with
much shorter dwell times at individual frequencies. Thus, un-
der highly dynamic conditions the ionosphere may signif-
icantly change between the lowest and highest frequencies
within a single sweep, making direct comparison with EIS-
CAT UHF measurements complicated.

2.2 The Tromsg Geophysical Observatory Ionosonde

Tonospheric soundings have been performed in Tromsg for
nearly a century. Hosted by the Auroral Observatory, Sir Ed-
ward Appleton established himself with an ionosonde during
the Second International Polar Year (1932-33). Blueprints
of this instrument were given to the observatory, a new in-
strument was built, and permanent soundings began in 1935.
Over the years, five different ionosondes have been oper-
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Figure 2. Example electron density profiles measured by the EISCAT UHF on 30 January 2022, illustrating the data processing steps. The
left panel (a) shows the original extracted profiles, including unclipped measurements with noise and outliers. The middle panel (b) shows the
profiles after outlier detection using PCA and IQR methods, followed by filtering of the detected outliers with a 2D median filter (in altitude
and time) with kernel = (5 x 5). The right panel (¢) shows the final profiles after averaging over 15 min intervals to match the temporal

resolution of the Tromsg Digisonde.

ated in Tromsg, producing one of the longest continuous
time series in the world (Hall and Hansen, 2003). In 1992,
a Lowell Digisonde DPS system (Reinisch et al., 1992) was
acquired, featuring autoscaling capability via the ARTIST
software (Reinisch et al., 2005; Galkin et al., 2008). The
1992 system underwent several software and hardware up-
grades in 1998, 1999, 2001, and 2005. From 2005 to 2022,
ARTIST 4.5 (Reinisch et al., 2005) served as the automatic
ionogram scaler. In December 2022, the system was up-
graded to a Digisonde DPS-4D (Reinisch et al., 2008) and
has since been running ARTIST 5.0 (Galkin and Reinisch,
2008). For this work, however, we use data from the previous
system (2005-2022), scaled with ARTIST 4.5. This allows us
to take advantage of the large EISCAT dataset available from
this period, providing the needed data volume to develop a
reliable model.

The TGO digisonde (69.6°N, 19.2°E) is located approxi-
mately 525 m from the EISCAT UHF radar. The system oper-
ates in the upper medium-frequency (MF) to high-frequency
(HF) bands with a range resolution of 5 km and a peak power
of 300 W. The transmitter is connected to a crossed-rhombic
antenna suspended by a ~ 50 m tower, and reception is per-
formed using four crossed-loop antennas. The digisonde
transmits HF pulses into the ionosphere to determine the
frequencies, f;, at which wave reflections occur. It sweeps
from 1 to 16 MHz, averaging 16 pulses for each frequency,
taking up to 7min with a 50kHz step size. Using stan-
dard interferometric techniques, the angle of arrival of the
backscattered signal is used to separate vertical from oblique
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backscatter. Electron densities are then obtained from the O-
mode reflection at each virtual height through the relation-
ship: f; ~ 8.98,/ne, where the plasma density 7. is in m3
(Breit and Tuve, 1926; Davies, 1965).

SAO-Explorer, the standard Digisonde analysis tool, was
used to extract ionogram data for further processing. We
extracted frequencies, virtual ranges, amplitudes, polariza-
tions, and zenith angles to construct ionogram images. Ver-
tical echoes with polarization +90° were classified as O-
and X-mode reflections, respectively. Using the extracted fre-
quencies and virtual ranges, standard RGB images of size
113 x 301 x 3 were constructed, assigning O-mode to the
red channel, X-mode to the green channel, and leaving the
blue channel empty. Virtual ranges were clipped between
80 and 480 km to approximately match the altitude range of
the ISR n. profiles described in Sect. 2.1. The upper alti-
tude limit was set to 480 km as ionosondes measure virtual
heights and not actual heights, thus, allowing for the increas-
ing difference between virtual and actual heights when near-
ing the F region maximum. Frequencies above 9 MHz were
discarded, as few ionograms during this phase of the solar cy-
cle contain fop> above that threshold. Finally, a resampling
grid was applied to produce symmetric ionogram images of
shape 81 x 81 x 3. Figure 3 illustrates an example before and
after processing.

Furthermore, during processing we found that ionograms
measured before 2015 contained substantial noise around the
X- and O-mode echoes (see Fig. 3c). These noisy echoes,
reminiscent of leakage or a disconnected Rx antenna, could
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Figure 3. Top row: The left panel (a) shows the original ionogram from the TGO ionosonde, with O-mode echoes in red and X-mode
echoes in green, plotted as a function of frequency (x-axis) and virtual altitude (y-axis). The right panel (b) shows the resampled ionogram,
remapped onto an 81 x 81 grid with altitudes clipped to 80-480km and frequencies limited to below 9 MHz. Bottom row: The filtering
process in three stages. The left panel (c¢) presents the original ionogram with noise around the echoes. The middle panel (d) highlights the

detected noise in black. The right panel (e) shows the cleaned ionogram, with echo strength indicated by color intensity.

degrade model performance because it does not reflect the
distribution of electron-density profiles in the training data.
We therefore filtered these ionograms by discarding all pixels
whose amplitude A f; at frequency f and image height i is
less than 75 % of the maximum amplitude at that frequency.
In other words, we retained only pixels satisfying the condi-
tion: Ay; > 0.75max; (Ay;).

2.3 Geophysical Parameters

A curated dataset of geophysical parameters was collected to
characterize solar and geomagnetic activity. These parame-
ters serve as inputs to the machine-learning network along-
side ionogram data, facilitating the development of a base-
line ionospheric model that is adjusted when an accompany-
ing ionogram is available. This approach enables estimation
of ionospheric plasma densities even during intervals with-
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out ionogram observations, thereby enhancing the network’s
robustness and supporting continuous, long-term operation.
In total, 25 parameters were selected to capture solar,
global, auroral and local geophysical conditions. Solar ac-
tivity indices (R, F10.7, and Ly-«), ring-current indices
(SYM-D, SYM-H, ASY-D, and ASY-H), and the ap in-
dex were obtained from the OMNIWeb database (National
Aeronautics and Space Administration, 2025), while au-
roral electrojet indices (SMU, SML, and SME) were re-
trieved from SuperMAG (SuperMAG Database, 2025). Lo-
cal magnetic-field parameters were calculated from magne-
tometer observations in Tromsg, Norway, provided by TGO
(TGO Database, 2025). The magnetometer is located approx-
imately 14 km northwest of the co-located EISCAT ISR and
TGO ionosonde. The full list of parameters is summarized in
Table 1 and plotted in Fig. 4. The correlation matrix (Fig. 5)
reveals that some indices are nearly perfectly correlated, for

Ann. Geophys., 44, 85-107, 2026
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Table 1. Solar and geophysical parameters used in the model.

Parameter Description

R Sunspot number, indicative of solar cycle phase

F10.7 Solar radio flux at 10.7 cm, proxy for solar activity

Ly Solar ultraviolet emission at 121.6 nm, important for ionospheric ionization
ap Geomagnetic disturbance index, reflecting global geomagnetic storm activity
SYM-H, SYM-D Symmetric magnetic disturbance, proxy for ring current strength

ASY-H, ASY-D Asymmetric magnetic disturbance, indicative of interhemispheric differences

SMU, SML, SME
By, gin,pyin
Bx,By,Bz

max max max
BX s BY s BZ

Auroral electrojet indices representing magnetic disturbances in auroral zones
Minimum disturbances in local magnetic field components over 15 min

Mean local magnetic field components, indicative of average auroral activity
Maximum local magnetic field component, indicative of peak auroral activity
Solar zenith angle, indicating solar elevation angle

X
DOY gin, DOY cos
TODsgip, TODcos

Day-of-year encoded cyclically, capturing Earth—Sun geometry
Time-of-day encoded cyclically, representing diurnal variation

example, sunspot number, F10.7, and Ly-« irradiance have
correlation coefficients above 0.9. Still, all parameters are re-
tained, as the computational cost of including each is negli-
gible.

The cyclic parameters, day-of-year, time-of-day, and so-
lar zenith angle, were normalized to the range [—1, 1]. All
other geophysical parameters were normalized using robust
scaling. For each parameter p;, the scaled value p; is given
by

pi —median(p;)
IQR(pi) '

pi = ey

where IQR(p;) and median(p;) are the interquartile range
and median of p;, computed over the dataset spanning one
solar cycle (2012-2022).

3 Deep Learning Methodology

This section presents the multi-modal neural network de-
signed to estimate the electron-density profiles, n.(z), from
ionograms and geophysical parameters. We describe the
machine-learning and pattern-recognition techniques em-
ployed and detail the network architecture, which processes
both scalar geophysical inputs and ionogram images.

3.1 Multi-Modal Neural Networks

The goal of this study is to estimate ionospheric electron-
density profiles from corresponding ionogram images and
geophysical parameters. We formulate this as a regression
problem: find a function f that takes an ionogram / and pa-
rameter vector p as inputs and produces the profile n.(z) as
output. In practice, we model

ne(z) = 10702 )
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This defines a mapping between our input domains and the
output domain:

f:{,P) > N, 3)

where [ is the ionograms of size H x W x C (here
81 pixel x 81 pixel x 2 pixel), P is the d = 25 geophysical
feature vector (see Sect. 2), and N, is the electron-density
profiles at the 27 considered height steps.

However, deriving the function f is challenging both be-
cause the inverse problem is highly non-linear and because
of the complex behaviour of the high-latitude ionosphere,
especially during periods of auroral activity. Consequently,
exploring machine learning, in particular neural networks
(NNss), is appropriate for developing a mapping that captures
these non-linear, complex relationships. A key property of
NNs is their ability to approximate any non-linear function
given sufficient hidden layers, neurons, and well-chosen hy-
perparameters (Goodfellow et al., 2016, Chapter 6). In this
work, we take advantage of this property to develop a multi-
modal neural network (MMNN) that combines subnetworks
trained to extract relevant features from both ionograms and
geophysical parameters. Thus, our regression is defined as:

fie(z) = 10/ 1hU:9).8(p:9)1:0) @

where h (with parameters ¢) processes the ionogram, g (with
parameters ¢) processes the geophysical vector, and f (with
parameters 6) combines their embeddings to predict n¢(z).

This multi-modal configuration enables the MMNN to
learn a richer latent representation by integrating different
data sources, improving prediction accuracy (Huang et al.,
2021). Moreover, the network can adapt to degraded or miss-
ing data in one modality by relying more heavily on the
other. For example, if an ionogram is noisy or incomplete,
the MMNN will predominantly base its density estimate on
the geophysical inputs.

https://doi.org/10.5194/angeo-44-85-2026
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Figure 4. Time series of geophysical parameters. (a) Normalized large-scale solar parameters: sunspot number (red), F10.7 (black), and
Lyman-« irradiance (light blue), along with the day-of-year (DOY) and solar zenith angle at Tromsg, plotted from 1 January 2012 to
31 December 2022. (b) A shorter interval showing additional normalized parameters: local magnetic-field components, ring-current indices,

the Ap index, and auroral electrojet indices.

3.2 Network Architecture

Our MMNN consists of three networks: (1) a Convolutional
Neural Network (CNN) (Goodfellow et al., 2016, Chapter 9)
to extract spatial features from ionogram echoes, (2) a Deep
Multi-Layer Perceptron (DMLP) to extract scalar features
from the geophysical parameters, and (3) a fusion DMLP
that learns from the concatenated features of the previous
two networks. We refer to these networks as Iono-CNN, Geo-

https://doi.org/10.5194/angeo-44-85-2026

DMLP, and Fu-DMLP, respectively, to simplify notation. To-
gether, they constitute KIAN-Net (Kian’s Ionospheric As-
similative Neural Network). Figure 6 provides an overview
of the KIAN-Net architecture.

3.2.1 Iono-CNN

CNNs are able to extract features from ionograms contain-
ing E- and F-region echoes, as shown by Kvammen et al.

Ann. Geophys., 44, 85-107, 2026
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eters excluding the time features and the min/max B-field features. (b) Histograms exhibiting the distribution for each feature category. i.e,
Auroral electrojet, Magnetic disturbance, solar activity and B-field.
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Figure 6. KIAN-Net architecture: A multi-modal neural network combining lono-CNN for ionogram feature extraction, Geo-DMLP for
geophysical parameter processing, and Fu-DMLP for feature fusion and final electron-density prediction.

(2024). Although they used single-channel ionograms, their — a BatchNorm2D layer;
work inspired us to build a CNN for three-channel (RGB)
ionograms. Our Iono-CNN (Fig. 7) comprises four blocks, — a ReLU activation (Nair and Hinton, 2010), which in-
each containing: troduces nonlinearity while limiting outputs to [0, 00);
— a Conv2D layer with 3 x 3 filters, stride 1, and — a MaxPool2D layer with a 2 x 2 window (except in the
padding 1; final block).
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Figure 7. The Iono-CNN architecture: a 4-block convolutional neural network designed to extract spatial features from 3-channel (RGB)
ionograms using stacked layers of Conv2D, BatchNorm2D, ReLU activation, and MaxPool2D. The diagram was made using the software

developed by Igbal (2018).

We initialize all weights with He (Kaiming) initialization
(He et al., 2015) to preserve variance through the ReL.U non-
linearity. In the final layer, the feature maps are flattened into
a 12 800-dimensional vector. The BatchNorm2D layers both
accelerate convergence and smooth the loss surface by reduc-
ing internal covariate shift (Ioffe and Szegedy, 2015). Finally,
the MaxPool2D layers downsample feature maps by select-
ing the maximum in each 2 x 2 window, the max-pooling
lowers computational cost and captures spatially invariant
dominant features (Goodfellow et al., 2016, Chapter 6).

3.2.2 Geo-DMLP

The Geo-DMLP maps 25 geophysical state parameters
(Sect. 2.3) into a higher-dimensional (1024-dimensional)
feature vector for estimating electron density, n¢(z). The net-
work comprises five fully connected (FC) layers, each of

which applies:

— afully connected layer with trainable weights and biases

— batch normalization to reduce internal covariate shift
(Ioffe and Szegedy, 2015)

— a ReLU activation (Goodfellow et al., 2016, Chapter 6)
to introduce nonlinearity

The complete architecture is shown in Fig. 8.
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3.2.3 Fu-DMLP

To fuse the features from Iono-CNN and Geo-DMLP, we in-
troduce Fu-DMLP (Fig. 9). The network takes the concate-
nated feature vector (12 800 + 1024 dimensions) and predicts
27 electron-density values across the 90-400 km range with-
out explicit altitude inputs. Fu-DMLP is an eight-layer fully
connected network arranged in an encoder-like fashion. In
this model, each successive layer has approximately half the
neurons of its predecessor, forming a bottleneck that com-
presses the representation before the final 27-dimensional
output. Each layer consists of:

— a fully connected layer with trainable weights and bi-
ases;

— BatchNorm1D for stable activations (Ioffe and Szegedy,
2015);

— aReLU activation (Goodfellow et al., 2016, Chapter 6)
to introduce nonlinearity.

3.3 Training

The predictions generated by KIAN-Net were evaluated
against the ground truth using the Huber loss function (Hu-
ber, 1964). This loss function combines the properties of
both Mean Squared Error (MSE) and Mean Absolute Er-
ror (MAE), where small residuals are treated quadratically,
while large residuals are treated linearly. This makes the net-
work more robust to outliers (Terven et al., 2023), which can
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Figure 8. Geo-DMLP architecture: five fully connected layers transforming 25 geophysical inputs into a 1024-dimensional feature vector
using FC layers, batch normalization, and ReLU activations. Inputs are color-coded by relevance (e.g., magnetic field components in shades

of purple). The diagram was made using the software by Igbal (2018).

Combined
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Features

Figure 9. Fu-DMLP architecture: an 8-layer, encoder-style FC network that fuses the 12800 and 1024-dimensional feature vectors from
Tono-CNN and Geo-DMLP to predict 27 electron-density values over the 90-400 km range. The model uses FC layers, BatchNorm1D, and
ReLU activations for stable training and progressive dimensionality reduction. Diagram by Igbal (2018).

lead to more stable training that effectively damps the im-
pact of short-scale ionospheric activities. This approach fur-
ther reduces the impact of noisy observations and faulty data
on the network gradients. The electron density profiles were
normalized with log; in order to scale down in magnitude.
Redefining the expression from Hastie et al. (2009), Huber
Loss is expressed as:

1(@)?,

Slal — %82, otherwise.

if la] <4,

Ls(a) = { &)

where a is the residual:

a=1logy(ne(z)) — f ((h1;9),8(p; ¥)]; 0)

where ne(z) are the true values, f are the model output val-
ues and § > 0 is a tunable hyperparameter that sets the tran-
sition point between MSE and MAE. We used the default

Ann. Geophys., 44, 85-107, 2026

value § = 1. In order to estimate the mapping function in
Eq. (3), the optimal set of total KIAN-Net parameters @,
where [0, ¢, §] € ®, can be approximated by minimizing the
total Huber Loss over N number of n profiles. This is math-
ematically defined as:

N 27

@ =argming 4 , ZZL3

i=1j=1
x (logg(ne(zj)) — f([R(I; $), g(p; 9)];0)). (6)

Optimization was performed using the Adaptive Moment
Estimation (ADAM) algorithm (Kingma and Ba, 2014),
which builds on the Stochastic Gradient Descent (SGD) algo-
rithm, originally introduced by Robbins and Monro (1951).
ADAM improves SGD by using adaptive learning rates, es-
timating first and second order momentum terms with expo-
nentially decaying averages. These terms, mitigates the pos-
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Table 2. Architectural specifications of KIAN-Net’s three-component MMNN. Iono-CNN processes 3-channel RGB ionograms through four
convolutional blocks (Conv2D + BatchNorm + ReLU + MaxPool) with 3 x 3 kernels. Geo-DMLP trains geophysical parameters through
five linear layers, also including batch normalization in 1D (BN1D). Fu-DMLP combines features from both networks and is trained to predict
27 electron density values. Parameter counts include BatchNorm weights within preceding layers. Total learnable parameters: 127 438 299.

Block Layer Type Output Shape  Specs (k, s, p)  Parameters
Iono-CNN (¢)

1 Conv2D +BN2D (16, 81, 81) G, LD 480

MaxPool2D (16, 40, 40) 2,2,0) 0

2 Conv2D +BN2D (32, 40, 40) G, L 4704

MaxPool2D (32, 20, 20) 2,2,0) 0

3 Conv2D +BN2D (64, 20, 20) G, LD 18624

MaxPool2D (64, 10, 10) (2,2,0) 0

5 Conv2D +BN2D  (128,10,10) (3,1,1) 74112
Geo-DMLP (¢)

1 Linear + BN1D (1, 64) 1792

2 Linear +BNI1D 1, 128) 8576

3 Linear + BN1D (1,256) 33536

4 Linear + BN1D 1,512) 132608

5 Linear +BN1D (1, 1024) 527360
Fu-DMLP ()

1 Linear + BN1D (1, 6912) 95572224

2 Linear + BN1D (1, 3456) 23898240

3 Linear + BN1D (1, 1728) 5977152

4 Linear +BNI1D (1, 864) 1495584

5 Linear + BN1D (1, 432) 374544

6 Linear + BN1D 1, 216) 93960

7 Linear +BNI1D (1, 108) 23652

8 Linear 1,27) 2943

sibility of getting stuck in local minimas during training, as
well as smoothening the corresponding loss surface. How-
ever, it is acknowledged that recent research propose conver-
gence issues linked to ADAM for specific use cases (Reddi
et al., 2019; Zou et al., 2021).

Both the network architecture and the training process
were implemented using the PyTorch framework. The dataset
was constructed by pairing ionograms and geophysical state
parameters with the corresponding ground-truth electron-
density profiles, forming sample triplets (n.(z);, I;, p;). This
dataset was then randomly split into training and validation
sets with an 80/20 ratio to mitigate splitting bias. Each set
was loaded via PyTorch dataloaders: the training loader used
a batch size of 256 and shuffled the samples after each epoch
to reduce learning bias and improve generalization (Smith
et al., 2020). For validation, the entire validation set was uti-
lized as a single batch, with the sample order also random-
ized. The training ran over 350 epochs with an initial learn-
ing rate set to 0.01. For refined convergence, two schedulers
were set at 200 and 300 epochs, reducing the learning rate to
0.001 and 0.0001, respectively.
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4 Results

The global performance of KIAN-Net was evaluated by
comparing its predictions n.(z;) with EISCAT UHF mea-
surements from selected days in the years 2012, 2013, and
2018. The test dataset was entirely disjoint from the training
dataset, using different years of data for training and testing.
This approach ensures a fair evaluation of the model’s abil-
ity to generalize to unseen geophysical conditions and solar
cycle phases.

To determine how KIAN-Net’s estimates of n.(z;) com-
pare with existing methods, we included results from
ARTIST 4.5 and E-CHAIM in our analysis. The E-CHAIM
model was run with both the “storm” and “precip” flags
enabled, meaning that global and auroral-zone information
from the Ap, AE, and DST indices was used to estimate the
electron density profile (Themens et al., 2017). We also gen-
erated estimates using each network component separately
(Iono-CNN and Geo-DMLP) to assess their individual con-
tributions and determine the relative influence of each input
on the overall performance. To quantify goodness of fit, we
used the testing dataset to compute the R? score, the root-
mean-square error (RMSE), the Pearson correlation coeffi-
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Table 3. Comparison of five models using R2-score, RMSE, Pear-
son correlation (rp), and distance correlation (rq) metrics, averaged
over all time steps in the testing dataset. KIAN-Net outperforms
both its subcomponents (Iono-CNN and Geo-DMLP) and the base-
line models (Artist 4.5 and E-CHAIM) across all metrics. Bold val-
ues indicate the best-performance.

Model R? RMSE r-pearson  r-dist
KIAN-Net 0.74 0.13 092 092
Iono-CNN 0.66 0.14 0.89  0.90
Geo-DMLP 0.62 0.16 0.87  0.89
ARTIST 4.5 —0.08 0.77 0.55  0.60
E-CHAIM 0.34 0.20 0.78  0.83

cient rp, and the distance correlation r4. A summary of these
performance metrics are presented in Table 3.

To illustrate model performances and further analyze the
model outputs, we examine a four-day interval (13—17 Jan-
uary 2012) that captures full diurnal cycles and a represen-
tative range of geophysical activity. Results for this period
are presented in Fig. 10, with corresponding relative errors
in Fig. 11.

Visual inspection of Figs. 10 and 11 shows that all
deep-learning models successfully approximate the electron-
density profiles and agree well with the EISCAT UHF mea-
surements. By direct comparison, KIAN-Net, Iono-CNN,
and Geo-DMLP outperform ARTIST 4.5 and E-CHAIM on
the test dataset, with superior quantitative metrics, as shown
in Table 3. Overall, KIAN-Net, Iono-CNN, and Geo-DMLP
achieve R? scores of 0.74, 0.66, and 0.62, respectively, while
ARTIST 4.5 and E-CHAIM obtain R? of —0.08 and 0.34.
Figure 10 also highlights that all models, including the deep
learning models, struggle to estimate nighttime electron den-
sities during weak auroral precipitation. There are several
reasons for this. First, during low-density periods in the F re-
gion, such as under the ionospheric trough, ionograms often
contain limited information about the electron density pro-
file, particularly above auroral heights. The trough is typ-
ically associated with strong horizontal gradients and tilts
in the ionosphere, which inhibit vertical-incidence signals
from returning to the ionosonde receiver (Voiculescu et al.,
2010; Zabotin et al., 2006). This limitation can be further en-
hanced by auroral absorption in the D-region, which reduces
the signal-to-noise ratio of the ionosonde returns. Second,
there is also a differences in sampling geometry, the EIS-
CAT UHF radar provides altitude-resolved measurements
within a narrow ~ 1° field of view, whereas the Digisonde
has a broader vertical field of view ~ 30°. This difference,
combined with the ionosonde’s reduced sensitivity during
trough and absorption conditions, makes direct comparisons
between EISCAT profiles and ionogram-based estimates par-
ticularly challenging in the nighttime auroral region.
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Figure 12 presents the time-averaged performance met-
rics as a function of altitude. The metrics: R2, RMSE, Pear-
son correlation (rp), and distance correlation (rg) are sys-
tematically better for the DL models at all altitudes below
350 km. In this region, ARTIST 4.5 often failed and was re-
placed by a constant n = 1 x 108 m~3 to enable comparison
with ISR observations. The performance gap is most pro-
nounced in the E-region (100-160 km), where the KIAN-Net
and Tono-CNN models achieve R > 0.4 and RMSE <0.2,
whereas ARTIST 4.5 and E-CHAIM yield R* <0 and
RMSE = 0.2. This is further illustrated by the relative-error
plots in Fig. 11d and e, which show that densities between
90 and 160 km are generally underestimated (blue shading).
Correlation metrics also favour the DL models, with both r,
and rq typically exceeding 0.90, and reaching > 0.95 in the
upper F-region for the KIAN-Net and Iono-CNN models,
while ARTIST 4.5 and E-CHAIM exhibit correlations gen-
erally below 0.8.

5 Discussion

The estimates produced by KIAN-Net closely match those
of Tono-CNN, indicating that the ionogram inputs dominate
over the geophysical parameters used by Geo-DMLP. This is
expected, since the ionogram traces contain direct informa-
tion about the electron densities, whereas the relationship be-
tween electron densities and geophysical parameters is more
indirect. Nevertheless, Geo-DMLP captures both the daily
variation of the F-region and the auroral variation of the E-
region n. relatively well. At F-region heights, n. is governed
by the balance between recombination and photoionization,
which to first order depends on EUV flux (captured by F10.7)
and the solar zenith angle. For the test days, Geo-DMLP
tends to overestimate the duration of the F-region, predicting
higher n. during both sunrise and sunset. We attribute this to
significant day-to-day fluctuations of n. due to variable iono-
spheric horizontal convection during these periods. Remark-
ably, Geo-DMLP also predicts E-region enhancements due
to auroral precipitation, despite its limited information about
the local ionosphere. The geophysical parameters most sen-
sitive to auroral activity are the local magnetic-field fluctua-
tions driven by the auroral electrojet. However, these fluctua-
tions arise from currents spanning a much larger region than
the localized E-region echoes detected by the ionogram. To
further assess their role, we performed a preliminary abso-
lute gradient impact analysis of the geophysical inputs. This
analysis indicates that solar zenith angle and F10.7 contribute
most strongly, followed by AE and local magnetic-field vari-
ations, consistent with their expected influence on F-region
ionization and auroral precipitation. Although ionogram data
dominate model performance, these results suggest that the
geophysical parameters provide complementary and physi-
cally meaningful information. Further, our results show that
the DL-models successfully captured nighttime electron den-
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Comparison Between Prediction Models and Ground Truth
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Figure 10. Comparison of electron-density profiles from 13 January 2012 to 17 January 2012 (00:00 UTC) against EISCAT UHF ground
truth. (a) EISCAT UHF measurements of the electron density profiles. (b) Predictions made by KIAN-Net. (c¢) Predictions made by Iono-
CNN. (d) Predictions made by Geo-DMLP. (e) Estimates made by ARTIST 4.5. (f) Estimates made by E-CHAIM. (g) The calculated
R2-scores at each time step where the colours depict the model with the best corresponding R2.

sity profiles with both E and F-region peaks, as further dis-
cussed in Appendix B.

ARTIST 4.5 systematically produced reasonable estimates
of daytime bottom-side F-region densities. However, the
quality of the topside densities is rather variable. This short-
coming stems from ARTIST’s methodology, which derives
an a-Chapman profile for the topside F-region peak using
bottomside F-region densities. This approach is an oversim-
plification, especially during periods of high-energy depo-
sition from the magnetosphere and loss of thermal equi-
librium along the vertical column. During auroral activity,
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ARTIST 4.5 often fails to produce any n.(z;) estimates.
When intense E-region ionization disrupts the ionosonde’s
ability to detect F-region echoes, ARTIST omits to make an
electron density profile and instead scales the E-region as a
sporadic E-layer.

In comparison, E-CHAIM, as an empirical mid- and high-
latitude ionospheric model, generated continuous predictions
throughout the test period. Using only the Ap, AE, and Dst
indices as inputs, E-CHAIM does not respond to short-term
or local variations, resulting in smoother n.(z) profiles. Con-
sequently, E-CHAIM does not fully capture day-to-day local
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Comparison of Errors bewteen Predictions and Ground Truth
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Figure 11. Relative error between model predictions and EISCAT UHF ground truth from 13 January 2012 to 17 January 2012 (00:00 UTC).
(a) Relative error by KIAN-Net. (b) Relative error by Iono-CNN. (¢) Relative error by Geo-DMLP. (d) Relative error by ARTIST. (e) Relative
error by E-CHAIM. (f) Colour plot depicting the colour of the prediction with the least absolute relative error. (g) RMSE at each time step,

with colors indicating the model achieving the lowest RMSE.

variations of F-region densities and the rapidly varying au-
roral E-region densities. Near the foF2 peak, where all mod-
els perform reasonably well, KIAN-Net and Iono-CNN re-
main slightly superior, with R? scores typically above 0.95
and RMSE ~ 0.05. ARTIST 4.5 follows with R? ~20.75 and
RMSE % 0.13, outperforming Geo-DMLP in this region. E-
CHAIM shows weaker performance across most altitudes,
except in the upper F-region (> 250 km), where its correla-
tion coefficients reach 2 0.65.

There are several potential directions for future develop-
ment of this method. First, incorporating additional EISCAT
data from solar-maximum and summer conditions would bal-
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ance the current dataset. Due to data availability, the consid-
ered dataset is weighted toward autumn, winter, and spring
during the rising phase of the recent solar cycle. Dedi-
cated summer campaigns should be conducted in the com-
ing years to collect these missing observations. Second, ex-
tending this technique to include data from other ISR facil-
ities, both across magnetic local time in the northern auro-
ral zone (Sondre Strgmfjord, Resolute Bay, Poker Flat, and
EISCAT Svalbard) and at lower latitudes (Millstone Hill,
Sanya, Arecibo, and Jicamarca), would broaden geographic
and temporal coverage. For this task, it is not obvious if a
single deep learning model should be trained with all avail-
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Figure 12. Calculated metrics between the models predictions (KIAN-Net, lono-CNN, Geo-DMLP, ARTIST 4.5, E-CHAIM) and the EIS-
CAT UHF electron density profiles along the temporal axis for each altitude ranging within 90-400 km. The performance metrics: (a) Calcu-
lated R2-score, (b) Root Mean Squared Error (RMSE), (¢) Pearson’s correlation coefficient (rp), and (d) The Distance correlation (rq), are
shown as functions of altitude. Results are aggregated over all available time steps where EISCAT UHF has valid profiles (non-Nan values),
with metrics calculated using normalized (0—1) electron density values. Higher RZ/rP/rd and lower RMSE indicate better agreement with

EISCAT UHF measurements.

able data to provide a global ionogram-inversion scheme, or
if it is preferable with separate models for each IS-radar fol-
lowed by an interpolation scheme, such as those used in Holt
et al. (2002) and Zhang et al. (2005). Although KIAN-Net
can operate using only ionograms or only geophysical pa-
rameters, we have not yet systematically evaluated how its
performance degrades when one or more geophysical inputs
are unavailable. Such “reduced-input” Geo-DMLP variants
may effectively transition toward empirical models like E-
CHAIM, this might make it possible to justify and make such
models more responsive to geophysical conditions. More-
over, as computational resources increase, processing higher-
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resolution ionogram images with larger virtual-height ranges
should further improve the quality of the estimates. Fur-
thermore, E-CHAIM also includes an assimilative mode,
A-CHAIM, which ingests ionosonde and GNSS-TEC data
to adjust its output away from climatology, comparing A-
CHAIM’s assimilative performance with KIAN-Net would
be of interest. In addition, incorporating further geophysical
inputs into KIAN-Net, such as vertical TEC, the Polar Cap
Index, and solar indices (e.g., F30 and MG II (Lastovicka and
Buresov4, 2023)), may improve its accuracy. Finally, because
ionograms may contain information about other plasma pa-
rameters, training KIAN-Net to predict electron and ion tem-
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perature profiles could extend its utility beyond density esti-
mation.

6 Conclusions

We have presented a multi-modal neural-network, named
KIAN-Net, to estimate ionospheric electron-density pro-
files from both ionogram images and geophysical param-
eters. The model was trained to learn the mapping from
25 readily available geophysical inputs and ionogram im-
ages to simultaneous electron-density profiles measured by
the EISCAT UHF incoherent scatter radar in Tromsg. Its
two subnetworks, Iono-CNN and Geo-DMLP, extract com-
plementary features from the ionograms and geophysical
state parameters, respectively. KIAN-Net and its two sub-
networks performs favorably compared to the industry-
standard ionogram-inversion algorithm (ARTIST 4.5) and
the state-of-the-art high-latitude empirical ionospheric model
(E-CHAIM). Notably, Geo-DMLP, which is trained only
on geophysical parameters, effectively captures high-latitude
spatial and temporal variability, caused by dynamic auroral
precipitation and complex plasma convection, suggesting its
utility as a local ionospheric model for Tromsg.

In total, over 10000 ionogram—geophysical-parameter
sample pairs were used to train and evaluate KIAN-Net. On
an independent test set spanning multiple years, KIAN-Net
achieved an R? of 0.74 against EISCAT observations, com-
pared to R?> = —0.08 for ARTIST 4.5 and R>=0.34 for E-
CHAIM. KIAN-Net also obtains RMSE < 0.17, Pearson cor-
relation rp, > 0.92, and distance correlation rq > 0.92. De-
tailed analysis shows that KIAN-Net provides robust and
reliable electron density estimates (R? > 0.5) across diverse
ionospheric conditions, including periods with significant au-
roral activity. Future work includes expanding the network to
different latitudes and longitudes where ISR data are avail-
able and training it to predict additional plasma parameters
(e.g., electron and ion temperatures) from the input data, fur-
ther expanding the capabilities of the model.
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Appendix A: Outlier-Filtering Procedure

The outlier-filtering procedure operates as follows. First, a
principal component analysis (PCA) is applied to the collec-
tion of electron-density profiles for each individual day con-
taining data. PCA is a dimensionality reduction technique
that maps the original variables (electron densities at dif-
ferent altitudes) onto a new set of orthogonal axes, called
principal components. These components are linear combi-
nations of the original variables and are ordered so that the
first component explains the largest variance in the dataset,
the second the next largest, and so forth. By keeping only the
first two components, each profile is represented in a compact
two-dimensional form that captures its dominant variability,
even though the components no longer correspond directly
to the original physical variables (altitude and density). Sec-
ond, outliers are detected using the interquartile range (IQR)
method, where any value lying outside the lower and upper
fences at Q1 —1.5IQR or Q3+1.5IQR, with IQR = Q3-Ql1,
is flagged as a potential outlier. Finally, each identified out-
lier profile is processed by applying a 2D median filter (in
altitude and time) with kernel = (5 x 5), which smooths the
outlier by matching neighboring values while preserving the
overall profile shape. Figure A1 shows an example of this
filtering on EISCAT UHF profiles from 31 March 2022.
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Figure A1l. Example of outlier detection and median filtering applied to EISCAT UHF electron-density profiles from 31 March 2022. Each
column corresponds to one detected outlier at different measurement times (labeled above each subplot). The top row (“Before”) shows the
original profiles, and the bottom row (“After”) shows the profiles after median filtering with kernel = (5 x 5). The y-axis is radar range/altitude
(km), and the x-axis is electron density on a logarithmic scale (m~3). The orange curve highlights the outlier profile, while the blue and
green curves show the profiles from two time steps before and after the outlier, respectively.
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Appendix B: Statistical Comparisons of Peak Electron
Densities

Given that ARTIST 4.5 demonstrates high accuracy in de-
tecting F-region electron-density peaks, we implemented a
peak-identification routine using the £ ind_peaks function
from SciPy’s signal-processing library. Prominence and re-
lated parameters were tuned to capture as many true peaks as
possible. E-region peaks were identified within 90-190 km
and F-region peaks within 190-350 km. For each model out-
put, the routine records the altitude and magnitude of each
detected peak in arrays corresponding to the original profiles.
These model-derived peaks were then compared to those ob-
served by the EISCAT UHF radar in a scatter plot (Fig. B1).
The performance at peak retrieval was quantified using R?,
RMSE, and Pearson correlation r, for each model output.

To assess how well each model captures the overall dis-
tribution of peak electron densities, we estimated probability
density functions (PDFs) for the E- and F-region peak mag-
nitudes using kernel density estimation (KDE) with a Gaus-
sian kernel (Koutroumbas and Theodoridis, 2008). Similar-
ity between predicted and observed PDFs was quantified via
the Bhattacharyya coefficient (BC) (Bhattacharyya, 1943),
Jensen—Shannon divergence (JS) (Menéndez et al., 1997),
and Wasserstein distance (W) (Villani, 2009), summarized
in Table B1. These metrics were chosen to provide a multi-
faceted evaluation of the agreement between predicted and
observed electron density distributions. The BC captures the
amount of overlap between the two distributions, provid-
ing an intuitive measure of similarity. The JS-div quantifies
the similarity between two probability distributions by sym-
metrizing the Kullback-Leibler divergence (Kullback, 1997),
offering a bounded and smoother measure that remains finite
even when distributions do not share full support. The W-
dist, reflects the minimal effort needed to transform one dis-
tribution into the other, giving insight into the overall shape
and displacement of the distributions.

For E-region peaks (90-190 km), both KIAN-Net (R =
0.80, RMSE = 0.23, r, = 0.90) and Iono-CNN (R*>=0.81,
RMSE = 0.24, r, = 0.91) demonstrate superior performance
compared to the baseline models. As shown in Fig. B1(a),
Iono-CNN achieves the best peak-distribution alignment
with EISCAT UHF peaks (BC=0.99, JS=0.02, W =
0.05), slightly outperforming KIAN-Net (BC =0.97, IS =
0.10, W =0.12). This indicates that direct ionogram in-
puts provide marginally higher discriminative power for
E-region peak prediction than the fused multi-modal ap-
proach. In contrast, ARTIST 4.5 produces mostly con-
stant E-region peak densities around log;y(ne) ~9.2 and
some varying clustering below < 10.5, resulting in poor
metrics (R?=—4.18, RMSE = 0.91, rp=—0.17) and low
distribution similarity (BC =0.64, JS =2.66, W =0.82).
E-CHAIM similarly fails to capture E-region variability
(R2 =—0.04, RMSE = 0.56, rp =0.06), producing quasi-
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static peaks near logo(ne) ~ 10.7 and resulting in a spiked
PDF with low similarity (BC = 0.25, JS =2.97, W = 0.48).

For F-region peaks (190-350 km), all models perform rea-
sonably well. Iono-CNN maintains superior performance
(R>=0.91, RMSE =0.12, rp =0.96), but ARTIST 4.5
slightly outperforms KIAN-Net in peak magnitude estima-
tion (R? = 0.89, RMSE = 0.11 versus R> = 0.87, RMSE =
0.14), as summarized in Table B1 and visualized in Fig. B1.
This aligns with ARTIST’s design focus on F-region Chap-
man profile modelling from foF2 information within iono-
grams, though its advantage is restricted to peak magni-
tudes rather than full-profile accuracy. However, this ad-
vantage applies only to peak values and not to full-profile
accuracy (Table 3). E-CHAIM shows reduced performance
(R?> =0.63, RMSE =0.22, rp =0.81) with a diverging tail
forming slightly above log;((ne) 2 11. This is also observed
in its F-region probability density function (Fig. B), at-
tributable to systematic underestimation during periods of
enhanced ionization on 14 January 00:00 UT and 16 Jan-
uary 2012. This temporal misalignment is reflected in its ele-
vated Wasserstein Distance (W = 0.21) compared to KIAN-
Net (W = 0.08).
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Peak Electron Densities
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Figure B1. The E- and F-region peak electron densities measured by EISCAT UHF compared to peak predictions made by each predic-
tion/estimation model. The R2-scores together with the RMSE and pearsons correlation r, are plotted in the same order corresponding to
the legend. The PDFs are plotted respective to each axis to exhibit the variances in the distributions. (a) Detected E-region peak electron
densities for each model plotted along x and y-axes (b) F-region peak electron densities for each model plotted along x and y-axes.

Table B1. Model performance on E- and F-region peak predictions (Fig. B1). Metrics for peak altitudes and magnitudes include R?,RMSE,
and Pearson correlation (rp). Distribution similarity metrics for the PDFs are the Bhattacharyya coefficient (BC), Jensen—Shannon divergence
(JS), and Wasserstein distance (W). Bold values indicate the best-performance.

R?> RMSE r BC JS W/| R*> RMSE r, BC JS W
KIAN-Net 079 024 089 099 003 006]094 011 097 099 006 0.12
Iono-CNN 077 026 089 099 003 006|093 012 096 098 0.06 O0.11

Geo-DMLP 0.47 0.38 0.71 099 0.04 0.05 | 0.71 0.23 087 092 024 0.16
ARTIST 4.5 —2.62 0.82 —-037 0.78 1.75 0.64 | 0.92 011 09 097 0.09 0.10
E-CHAIM 0.08 0.44 033 0.62 1.19 037 | 0.67 026 091 093 023 0.12
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Code and data availability. lonograms and magnetometer data
used to develop KIAN-Net were provided by TGO (TGO Database,
2025). Ionogram data is also available trough the GIRO database
(Reinisch and Galkin, 2011). Solar activity indices (sunspot num-
ber R, radio flux F10.7, and Lyman-o flux), ring current in-
dices (SYM-D, SYM-H, ASY-D, and ASY-H), and the ap index
were obtained from the OMNIWeb database (National Aeronautics
and Space Administration, 2025), while auroral electrojet indices
(SMU, SML, and SME) were obtained from SuperMAG (Super-
MAG Database, 2025). EISCAT electron density observations, used
to evaluate the model’s performance, are available from the Madri-
gal database (Madrigal Database, 2025). The replication code and
data for this project is available at (Sartipzadeh et al., 2026).
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