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Abstract. An analytical model for ion beam instability is
constructed in view of application to Mercury’s upstream
waves. Our ion beam instability model determines the fre-
quency and wavenumber by equating the whistler dispersion
relation to the beam resonance condition for planetary fore-
shock wave excitation. By introducing a Doppler shift into
the instability frequency, our model can derive the observer-
frame relation of the resonance frequency to the beam veloc-
ity and the flow speed. The frequency relation will serve as a
useful diagnostic tool for Mercury upstream wave studies in
the upcoming BepiColombo observations.

1 Introduction

The upstream region of the Mercury bow shock is unique in
the plasma physical sense in that the low-frequency electro-
magnetic waves are excited in the nearly radial interplanetary
direction to the Sun and in a moderate Mach number flow
below 10. Diffuse and field-aligned beam and low-frequency
waves are detected by the MESSENGER spacecraft (e.g., Le
et al., 2013; Romanelli and DiBraccio, 2021; Glass et al.,
2023), the mechanism of which is reminiscent of the Earth
foreshock formation. Naive calculation gives a Parker spi-
ral angle of about 20° to the radial direction of the Sun.
The MESSENGER magnetic field and the ENLIL (Odstrcil,
2003; Odstrcil et al., 2004, 2005) model calculation estimate
that the flow speed is about 350–400 km s−1, which corre-
sponds to an Alfvén–Mach number of around 6.

Various kinds of low-frequency electromagnetic waves are
observed upstream of the Mercury bow shock by the MES-

SENGER spacecraft, e.g., the whistler-mode wave at about
2 Hz (in the spacecraft frame), the fast-mode wave at about
0.3 Hz (Le et al., 2013), and the ion cyclotron associated
with the pickup protons (Schmid et al., 2022). Here we pro-
pose that the right-hand-side resonant instability driven by
the beam ions can explain both the whistler and magne-
tosonic modes below or around the ion cyclotron frequency
(for protons) such as the waves at 0.3 Hz in the spacecraft
frame (the proton cyclotron frequency is about 0.46 Hz for a
magnetic field magnitude of 30 nT) and the pickup ion cy-
clotron waves. The wave excitation at a higher frequency
such as 2 Hz in the spacecraft frame needs a modification
of our model, such as an antisunward-streaming ion beam
in the observer frame, parametric instabilities, or a sunward-
streaming electron beam. The lesson from the Earth fore-
shock studies is that the foreshock waves are driven by
the shock-reflected back-streaming ions interacting with the
solar wind, and the waves are driven by the right-hand-
side resonant ion beam instability, also referred to as the
component–component instability (Gary, 1993). The pickup
ion cyclotron waves are unique to the extended exospheric
region in that the neutral species (atomic hydrogen) is photo-
ionized in interplanetary space and is observed around Mer-
cury (Schmid et al., 2022) as well as Venus and Mars (Delva
et al., 2011a, b).

Both the foreshock and ion cyclotron waves exhibit left-
hand-side field rotation about the mean magnetic field in the
temporal sense when seen in the spacecraft frame, because
the right-hand-side beam resonance undergoes a Doppler
shift in the direction opposite to the beam and the wave po-
larization is reversed in a left-hand-side rotation sense. The
pickup ion cyclotron waves are also observed in a left-hand-
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418 Y. Narita et al.: Beam instability

side field rotation sense because the spacecraft frame is vir-
tually the same as the rest frame of the pickup ions.

We develop an analytical model of the ion beam instability
that is relevant to Mercury’s upstream waves in view of the
upcoming arrival of the BepiColombo mission at Mercury
(Benkhoff et al., 2021). Our foreshock model is constructed
of the dispersion relation of whistler waves and the beam res-
onance condition. We derive a constraint relation between the
frequency (or wavenumber) of the instability, the beam ve-
locity, and the flow speed. The model has the capability to
estimate the flow speed if the beam velocity is known or as-
sumed or vice versa to estimate the beam velocity if the flow
speed is known or assumed. In particular, the Mio spacecraft
of BepiColombo covers a wide range of radial distances to
Mercury of up to about 6 planetary radii, which is suitable
for performing a systematic survey of Mercury’s upstream
waves with a magnetometer and plasma detectors. Our model
serves as a diagnostic tool for determining or constraining
the velocities (flow speed and beam velocity) when using the
magnetic field data.

2 Resonance frequency estimate

2.1 Problem setup

In the theoretical framework, the beam instability is conve-
niently analyzed in the rest frame of the bulk plasma. We re-
fer to this as the flow frame, co-moving with the solar wind.
The ion beam is injected into the system at a speed of Ub
(the beam direction is taken to be positive) along the mag-
netic field. See Fig. 1a for the flow frame setup. In order to
interpret the beam instability in the observer frame (represen-
tative of the spacecraft frame), the Galilean transformation is
introduced with a flow speed Uf (taken to be negative in the
direction opposite to the beam). The beam velocity reduces
to Uf+Ub (see Fig. 1b). The observer frame may also be
regarded as the shock frame such that the beam velocity is
Uf+Ub with respect to the bow shock.

2.2 Analysis in the flow frame

The right-hand-side resonant instability represents an energy
and momentum transfer of the beam ions into the electro-
magnetic waves. The kinetic treatment of the beam instabil-
ities is documented in the framework of linear Vlasov the-
ory by Gary (1993). Single-spacecraft and multi-spacecraft
observations in the Earth foreshock region confirm the
right-hand-side resonant instability (Watanabe and Terasawa,
1984; Eastwood et al., 2003; Narita et al., 2003).

The right-hand-side resonant instability occurs when the
low-frequency whistler mode (R+ branch) meets the beam
resonance condition. The resonance occurs at a frequency
below or around the ion cyclotron frequency. Figure 2 il-
lustrates the dispersion relation diagram of four branches
of electromagnetic waves, with R+ the right-hand-side po-

Figure 1. Ion beam injected into the bulk plasma in the flow
frame (a) and in the observer frame (b).

larized parallel-propagating mode (whistler mode with pos-
itive helicity), R− the left-hand-side polarized antiparallel-
propagating mode (ion cyclotron mode with positive he-
licity), L+ the left-hand-side polarized parallel-propagating
mode (ion cyclotron mode with negative helicity), and L−

the right-hand-side polarized antiparallel-propagating mode
(whistler mode with negative helicity). The symbols R and
L represent the dielectric response or the wave helicity (spa-
tial field rotation sense around the mean magnetic field), and
the plus and minus signs represent the propagation direction
with respect to the mean magnetic field.

The task is to find the crossing frequency between the R+

branch and the resonance condition. The low-frequency part
of the whistler dispersion relation for parallel propagation
in a low-beta plasma (cold plasma), by including the effect
of the Hall current, is obtained after Hasegawa and Uberoi
(Eq. 2.24 in 1982) or Gary (Eq. 6.2.5 in 1993) as
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The resonance condition for the beam ions (assumed to be
protons) is expressed as

ω− k‖Ub =−�i. (3)
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Figure 2. Dispersion relations and the beam resonance condition.
Protons are assumed for the bulk ions and beam ions with the cy-
clotron frequency �i. The wave modes are the whistler wave prop-
agating forward (R+ mode) and backward (L− mode) to the mean
magnetic field and the ion cyclotron wave propagating forward (L+

mode) and backward (R− mode). The symbols R and L refer to
the polarization, i.e., the dielectric response in the STIX notation,
and the plus and minus signs refer to the propagation sense with re-
spect to the mean magnetic field. The beam resonance condition is
indicated by the thin line and intersects the y axis (long-wavelength
limit), with the ion cyclotron frequency in the negative frequency
domain. The beam resonance with the R+ mode is considered here.
Resonance with the R− mode is unlikely because of the opposite
group velocity direction to the beam (no sufficient time for the en-
ergy exchange).

Here, ω denotes the wave frequency, k the wavenumber par-
allel to the mean magnetic field, VA the Alfvén speed, and�i
the ion cyclotron frequency for protons.

For an easier theoretical treatment, we normalize the fre-
quency to the ion cyclotron frequency (for the protons) �i
and rewrite hereafter the normalized frequency as ω̃ = ω/�i.
The proton cyclotron frequency is then expressed as unity,
i.e., �̃i = 1. The wavenumber is accordingly normalized to
the ion inertial length VA/�i, and we rewrite the normal-
ized wavenumber as k̃ = kVA/�i. The same normalization
applies to the parallel wavenumber. When limited to the par-
allel propagation, the whistler dispersion relation (Eq. 1) and
the resonance condition are rewritten as

ω̃ = k̃‖+
1
2
k̃2
‖

(4)

and

ω̃− k̃‖Ũb =−1. (5)

The beam velocity is normalized to the Alfvén speed as Ũb =

Ub/VA.
By eliminating the frequency ω in Eqs. (4) and (5), we

obtain the quadratic equation for the resonance wavenumber:

k̃2
‖
− 2(Ũb− 1)k̃‖+ 2= 0. (6)

The roots of Eq. (6) are

k̃‖ = Ũb− 1±
√
(Ũb− Ũ−)(Ũb− Ũ+), (7)

Ũ± = 1±
√

2. (8)

For the existence of a real-number solution, the beam veloc-
ity must satisfy the condition

Ũb ≥ Ũ+ = 1+
√

2. (9)

Interestingly, the threshold value is about 1+
√

2∼ 2.4,
which is close to the critical Alfvén–Mach number for the
shock reflection mechanism. The wave–particle interaction is
considered to sufficiently scatter the particles in a low Mach
number shock up to an Alfvén–Mach number of about 2.7
(subcritical shocks). In a high Mach number shock (Alfvén–
Mach number above 2.7), the dissipation is primarily created
by the specular reflection of the cross-shock potential and the
wave–particle interactions at the shock transition. Our theory
predicts that the critical-beam Mach number will be about
2.4. There might be a relation between the dissipation mech-
anism and the ion beam instability in the collisionless shock
such that the beam instability will potentially contribute to a
more efficient shock dissipation.

The lower wavenumber solution of Eq. (7) with the mi-
nus sign is the resonance wavenumber of interest. The higher
wavenumber solution is valid for a lower beam velocity near
the “touch point” (Eq. 9) but may not be exact for a higher
beam velocity as the parabolic approximation of the whistler
mode is no longer valid at higher frequencies. The resonance
frequency in the flow frame is derived from Eq. (5) as

ω =

(
Ũb− 1−

√
(Ũb− Ũ−)(Ũb− Ũ+)

)
Ũb− 1. (10)

2.3 Transformation into the observer frame

By introducing the Doppler shift through the bulk flow as
k̃‖Ũf (here Ũf denotes the flow speed in the units of the
Alfvén speed) in the direction opposite to the beam veloc-
ity and transforming the frequency from the flow rest frame
into the observer frame, we obtain the resonance frequency
ω̃′ (in the units of the proton cyclotron frequency) as

ω̃′ = k̃‖(Ũb+ Ũf)− 1 (11)

=

[
(Ũb− 1)−

√
(Ũb− Ũ−)(Ũb− Ũ+)

]
× (Ũb+ Ũf)− 1. (12)

Figure 3a displays the dispersion relation and the resonance
condition in the co-moving frame and the observer frame
for the foreshock ions with a beam velocity of Ũb = 7 and a
flow speed of Ũf =−5. Whistler wave frequencies are trans-
formed into the negative frequency domain while retaining
the wavenumber. The temporal sense of wave field rotation
(polarization) changes accordingly from right-hand-side ro-
tation around the magnetic field to left-hand-side rotation.
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Figure 3. Whistler dispersion relation (in black) and beam reso-
nance condition (in gray) in the co-moving frame with the flow (top
panels) and the observer frame standing in the flow (bottom panels).
A beam velocity of Ub/VA = 7 and a flow speed of Uf/VA =−5
are chosen for the foreshock ion scenario (a). The beam velocity
canceling the flow speed is chosen for the pickup ion scenario (b)
Ub/VA =−Uf/VA = 5.

Figure 3b displays the dispersion relation and resonance
condition for a beam velocity canceling the flow speed Ũb =

−Ũf = 5 for the pickup ion scenario. The resonance fre-
quency is the ion cyclotron frequency with the left-hand-side
sense of field rotation in the observer frame.

Equation (12) relates the resonance frequency (e.g., the
peak of the magnetic power spectrum in the spacecraft frame)
to the beam velocity and the flow speed. The frequency es-
timate (Eq. 12) indicates that the ion cyclotron frequency is
expected for the beam instability for the pickup ions by sub-
stituting the sign-reversed flow speed into the beam velocity
as Ũb =−Ũf (pickup ion cyclotron waves).

3 Velocity estimate

Equation (12) may be regarded as a function of the beam
velocity in the flow frame Ũb and the flow speed Ũf given
that the frequency is known in the observer frame. A useful
tool can be developed from Eq. (12). That is, we derive the
relation between the beam velocity in the observer frame Ũ ′b
defined as

Ũ ′b = Ũb+ Ũf (13)

and the flow speed Ũf for the resonance frequency ω̃′. We can
derive the expression of Ũb by transforming Eq. (12) into

ω̃′+ 1

Ũ ′b

− (Ũb− 1)=−
√
(Ũb− Ũ−)(Ũb− Ũ+) (14)

Figure 4. Velocity diagram showing the flow speed (normalized to
the Alfvén speed) Uf/VA as a function of the beam velocity (also
normalized to the Alfvén speed) in the observer frame Ũ ′b/VA at
different values of the resonance frequency (normalized to the pro-
ton cyclotron frequency) in the observer frame ω̃′/�i.

and squaring Eq. (14) as[
ω̃′+ 1

Ũ ′b

− (Ũb− 1)

]2

= ˜(Ub− Ũ−)(Ũb− Ũ+). (15)

Equation (15) is simplified to

Ũb =
ω̃′+ 1

2Ũ ′b
+

Ũ ′b
ω̃′+ 1

+ 1. (16)

We combine Eq. (16) with Eq. (13) and obtain Ũf as a func-
tion of Ũ ′b as

Ũf =−
ω̃′+ 1

2Ũ ′b
+

(
1−

1
ω̃′+ 1

)
Ũ ′b− 1. (17)

Figure 4 is the graphical representation of Eq. (17) at var-
ious values of ω̃′. Three conditions are imposed for Ũf and
Ũ ′b. First, the flow must be in the negative direction (oppo-
site to the beam) in the observer frame, i.e., Ũf < 0. Sec-
ond, the beam velocity must be in the positive direction in
the observer frame for the formation of the foreshock re-
gion, i.e., Ũ ′b > 0. Third, the beam resonance must occur, so
Ũb > Ũ+ in the flow frame (Eq. 9), which is transformed into
Ũf < Ũ

′

b−U+ in the observer frame. The velocity diagram
shows the relation between the flow speed and the beam ve-
locity if the resonance frequency is set or known. The flow
speed has a positive slope to smaller values of the beam ve-
locity (typically Ũ ′b . 0.5), while the slope becomes negative
at larger values of the beam velocity (Ũ ′b & 0.5).

One can develop a useful tool from Eq. (17) and knowl-
edge from Earth foreshock studies, since the beam veloc-
ity is nearly the same as the Alfvén speed in the flow rest
frame (Narita et al., 2003). We determine the flow speed as
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Figure 5. Flow speed diagram as a function of the resonance fre-
quency in the observer frame at different beam velocities. Absolute
values of the frequency and flow speed are used in the plot.

a function of the observer-frame frequency at several rep-
resentative values of beam velocity (in the observer frame)
and plot the diagram in Fig. 5. For the beam velocity on the
order of Alfvén speed or higher, U ′b & VA, which is the esti-
mated flow speed, is a monotonous function of the observer-
frame frequency. The flow velocity increases more rapidly at
higher frequencies (typically ω′/�i & 0.4). Figure 5 gives us
a range of the estimated flow speed if the range of the beam
velocity is set.

4 Discussion

4.1 Validity of the model

We constructed our beam instability model under non-
relativistic, low-frequency, and low-beam-density condi-
tions. We discuss the validity of the model as follows:

1. Galilean approximation.

The solar wind speed is about 400 km s−1 at the distance
of Mercury’s orbit (0.3 to 0.4 astronomical units). The
back-streaming ion beam velocity is in the range from
500 to 1000 km s−1 (e.g., Glass et al., 2023). In total,
the velocity of up to 1500 km s−1 is in the likely range
of the velocities considered in our model. The ratio of
the velocity to the speed of light (Lorentz factor beta) is
estimated as β = 0.005, and the Lorentz factor gamma
is γ = 1.0000125. The Galilean approximation is suffi-
cient in our model. See Appendix B for the relativistic
treatment.

2. Low-frequency approximation.

Our model breaks down at shorter wavelengths (higher
wavenumbers) because the second-order Taylor expan-
sion (parabolic fitting) of the whistler dispersion re-
lation is no longer valid at shorter wavelengths. Our

model is valid at a wavelength (of the low-frequency
whistler mode) from MHD scales (typically about
1000 km and above in the solar wind) down to about
the ion inertial length (down to about 100 km).

3. Low beam density.

Our model is valid for a low density of beam ions (typ-
ically below 0.1 % of the bulk ion density). When the
beam density is higher, the resonance condition changes
in two ways. First, the beam resonance occurs in a
wider range of wavenumbers (the growth rate has a fi-
nite width in the wavenumber domain) around the res-
onance wavenumber (the minus-sign version of Eq. 8).
Second, the fire-hose instability is set by the beam con-
tributing to the dynamic pressure parallel to the mean
magnetic field. The beam–fire-hose instability occurs in
the MHD regime such that the R and L modes are not
yet dispersive in the long-wavelength limit.

4.2 Deviation from parallel propagation

Smaller angular misalignment of the wave propagation direc-
tion from the mean magnetic field has no significant impact
on the resonance condition. Qualitatively speaking, obliquely
propagating whistler-mode waves are elliptically polarized
and thus have both right-hand-side and left-hand-side polar-
ized components. The elliptic polarization implies the pos-
sibility of beam resonance, not only with the right-hand-
side component, but also with the left-hand-side component.
The transition into the left-hand-side beam resonance occurs,
however, at a larger propagation angle of 45–60° to the mean
magnetic field (Verscharen and Chandran, 2013; Narita and
Motschmann, 2025).

Figure 6 displays the dispersion relations and the growth
rate for parallel propagation angles of θkB = 0, 10, and
20°. The unstable mode has no practical difference in the
wavenumber domain (0.25≤ kc/ωpi ≤ 0.28) between the
case of θkB = 0° and that of θkB = 10°. The wavenumber
range of the unstable mode becomes slightly higher at θkB =
20° (0.26≤ kc/ωpi ≤ 0.29).

4.3 Magnetic field oblique to the bulk flow

The model can be upgraded to a mean magnetic field oblique
to the bulk flow direction by projecting the flow velocity onto
the mean magnetic field. The Doppler shift term changes
from k̃‖Ũf to k̃‖Ũf cosθ , where θ is the angle between the
flow direction and the axis of the mean magnetic field. A
smaller value of the angle is used from the mean field direc-
tion or the direction opposite to the mean field such that the
projection does not change sign (0≤ cosθ ≤ 1).

4.4 Heavier ion species

The Mercury plasma environment has heavier ions other than
protons. Examples are helium alpha particles (He++) of solar
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Figure 6. Linear instability analysis using the cold plasma dielectric
tensor for wave propagation angles of 0, 10, and 20° to the mean
magnetic field.

wind origin and molecular or atomic species of exospheric
origin such as H+2 , Li+, and Na+.

– The helium alpha particles stream in the antisunward
direction. The alpha particles may have a different
flow speed from the bulk flow speed of the solar wind
(electron–proton plasma) and can potentially drive the
beam instability by resonating with the whistler or ion
cyclotron mode (e.g., Verscharen and Chandran, 2013),
but this instability scenario is intrinsic to the solar wind.
Specular reflection of the helium alpha particles at the
shock is unlikely because the protons are most easily
accelerated by the electrostatic shock potential back to
the solar wind to form the foreshock region. The back-
streaming alpha particles have so far not been reported
in the shock upstream region.

– Exospheric particles may be present in the shock up-
stream region. The beam velocity is so small (the es-
cape velocity is about 4 km s−1 at Mercury) compared
to the solar wind speed (about 400 km s−1) that the
waves driven by the beam instability appear as pickup
ion cyclotron waves. In this scenario, it is impossible to
estimate the flow speed because the frequency is the ion
cyclotron frequency in the observer frame.

We can nevertheless generalize the instability model to the
beam of heavier ion species. Equation (5) is generalized to

ω̃− k̃‖Ũb =−
1
n
, (18)

where we introduced the mass-per-charge factor of n. For
example, the alpha particles He++ are characterized by the
normalized cyclotron frequency 1/2 (i.e., n= 2), the helium
singular ionized state by the frequency 1/4 (n= 4), and so
on. A combination of Eq. (18) and Eq. (4) gives the resonance

wavenumber as

k̃‖ = Ũb− 1−

√
(Ũb− 1)2−

2
n

(19)

and the resonance frequency in the observer frame as

ω̃′ =

[
Ũb− 1−

√
(Ũb− 1)2−

2
n

]
(Ũb+ Ũf)−

1
n
. (20)

The resonance wavenumber and the resonance frequency
approach zero (k̃‖→ 0 and ω̃′→ 0) for a larger value of
the mass-per-charge factor n→∞. For the pickup ions, the
beam velocity is the flow velocity with the opposite sign, and
Ũb+ Ũf = 0 holds. The resonance frequency in the observer
frame is then ω̃′ =−1/n.

5 Concluding remarks

Our ion beam instability model determines the resonance
frequency and wavenumber by equating the low-frequency
whistler dispersion relation to the beam resonance condition
for planetary foreshock wave excitation. The resonance is of
the right-hand-side type for the R+ mode (whistler branch)
and occurs at a beam velocity of at least Ũb = 1+

√
2∼ 2.4

in the flow rest frame. The instability condition is likely sat-
isfied in the near-Mercury solar wind as the Mach number is
mostly above 4 after the MESSENGER observation and the
ENLIL calculation (Winslow et al., 2013). It is interesting to
note that the critical beam velocity Ũb ∼ 2.4 roughly coin-
cides with the critical Alfvén–Mach number for the specular
reflection at the collisionless shocks (which is about 2.7).

Our model is capable of predicting the wavelength and fre-
quency of the beam instability for the given set of beam ve-
locity and flow speed. Here is an example. For a beam veloc-
ity of Ũ ′b = 1 in the observer frame and a flow Mach num-
ber of 6 in the direction opposite to the beam Ũf =−6 (e.g.,
Winslow et al., 2013), we obtain the beam velocity in the
flow frame as Ũb = Ũb+ Ũf = 7. The resonance wavenum-
ber is estimated as k‖VA/�i ' 0.17 (Eq. 7) and the frequency
as ω′/�i '−0.83 (Eq. 11). By referring to the magnetic
field statistics of about 20 nT (Romanelli and DiBraccio,
2021) and the ion density of about 40 cm−3 (Winslow et al.,
2013), we obtain an Alfvén speed of VA ' 70 km s−1 and an
ion inertial length of VA/�i ' 3.7 km rad−1. The resonance
wavelength is thus estimated as 3.5 km and the frequency as
2.5 s−1, which are well within the sampling rate of the flux-
gate magnetometer on board the BepiColombo Mio space-
craft, with 128 Hz for the burst mode or H mode and 8 Hz for
the normal mode or M1 mode (Baumjohann et al., 2020). The
back-streaming ions are observed by MESSENGER (e.g.,
Glass et al., 2023). The pickup ion cyclotron waves are also
observed by MESSENGER (e.g., Schmid et al., 2022). A
combination of the Mio MGF and Mio MPPE/MIA instru-
ments is ideally suited to testing our instability model against
the spacecraft data.
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Our model is developed for a one-dimensional setup; i.e.,
the beam velocity, the flow, and the wave propagation are as-
sumed to all be aligned with the mean magnetic field. Even
though such an aligned situation is most likely realized in the
Mercury upstream region as the Parker spiral angle here is
the smallest (most radial) of all of the solar system’s planets,
our model may be upgraded to a weakly misaligned wave
system (like the effect of inclination of the mean magnetic
field to the flow direction or a moderately oblique propaga-
tion angle to the mean magnetic field) by projecting the mis-
aligned system onto our one-dimensional treatment.

Appendix A: Dispersion relation

The dispersion relation for low-frequency, parallel-
propagating whistler waves in an electron–ion plasma is
shown in various forms in the literature, such as Eq. (6.2.5)
in Gary (1993) and Eq. (2.24) in Hasegawa and Uberoi
(1982). We start with the general form of the R-mode
dispersion relation for the two-component cold plasma
(electrons and ions), i.e.,

ω2
− k2c2

−
ωω2

pe

ω+�e
−

ωω2
pi

ω+�i
= 0, (A1)

where ω denotes the frequency, k the wavenumber (parallel
to the mean magnetic field), c the speed of light, ωpe the elec-
tron plasma frequency, ωpi the ion plasma frequency, �e the
electron cyclotron frequency, and �i the ion cyclotron fre-
quency. See Eq. (6.2.4) in Gary (1993) for the derivation of
Eq. (A1).

We now apply the low-frequency approximation. First, we
neglect the first term, ω2, on the left-hand side of Eq. (A1).
Second, the denominator of the third term on the left-hand
side of Eq. (A1) is simplified into �e. We then obtain the
dispersion relation as

k2c2
=−

ωω2
pe

�e
−

ωω2
pi

�i

1
1+ ω

�i

(A2)

=−
ωω2

pe

�e
−

ωω2
pi

�i

[
1−

ω

�i
+

(
ω

�i

)2
]

(A3)

=−ω

(
ω2

pe

�e
+

ω2
pi

�i

)
+

ω2ω2
pi

�2
i
−

ω3ω2
pi

�3
i
. (A4)

Note that the second-order Taylor expansion is used when
deriving Eq. (A3).

We introduce the charge neutrality of the plasma, which
cancels the first term on the right-hand side of Eq. (A4). The
charge neutrality reads in frequency form as

ω2
pe

�e
+

ω2
pi

�i
=
qene+ qini

ε0B0
= 0, (A5)

where qe and qi denote the electron and ion charges (includ-
ing the sign), ne and ni the the number densities of electrons

and ions, ε0 the permittivity of the free space, and B0 the
magnetic field magnitude. We also rewrite the squared fre-
quency ratio ω2

i /�
2
i as

ω2
pi

�2
i
=
c2

V 2
A
, (A6)

where VA denotes the Alfvén speed. Combining Eqs. (A4)–
(A6), we obtain the dispersion relation as

k2c2
= ω2 c

2

V 2
A

(
1−

ω

�i

)
. (A7)

When introducing the phase speed as

vph =
ω

k
, (A8)

the dispersion relation is formulated as

v2
ph =

V 2
A

1− ω
�i

, (A9)

which is further simplified by Taylor-expanding the fraction
to first order as

v2
ph ' V

2
A

(
1+

ω

�i

)
, (A10)

which reproduces Eq. (2.24) in Hasegawa and Uberoi (1982).
Using the fact that the low-frequency whistler wave

roughly satisfies the dispersion relation for the Alfvén wave,

ω ' kVA, (A11)

Eq. (A10) is written in the form

ω2

k2 = V
2
A

(
1+

kVA

�i

)
(A12)

= V 2
A

(
1+

kc

ωpi

)
, (A13)

which reproduces Eq. (6.2.5) in Gary (1993). Note that the
ion inertial length is introduced in Eqs. (A12)–(A13) through
Eq. (A6).

Appendix B: Relativistic beam resonance

Quantitatively speaking, the relativistic effect modifies the
cyclotron frequency in the resonance condition as follows:

ω− k‖Ub =
�i

γ
. (B1)

Equation (B1) is obtained by re-formulating Eq. (3) into the
relativistic covariant form as

30
µ k

µ
= k′ 0, (B2)
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where the four-wave vectors kµ (in the rest frame of the bulk
plasma) and k′ν (in the rest frame of the beam) are defined as

kµ = (ω/c,k‖,0,0), (B3)
k′ ν = (�i/c,k

′

‖
,0,0). (B4)

The Lorentz transformation matrix 3ν µ is defined as

3ν µ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 , (B5)

with the Lorentz factors β = Ub/c and γ = (1−U2
b /c

2)−1/2.

Code and data availability. The dispersion solver used to generate
Fig. 6 is available upon request to the authors.
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