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Abstract. The prominent broad upshifted maximum (BUM)
feature in electromagnetic emissions stimulated by power-
ful high-frequency radio waves in the ionosphere exhibits
an exponential spectrum for pump frequencies near a har-
monic of the ionospheric electron gyro frequency. Exponen-
tial power spectra are a characteristic of deterministic chaos.
In the present treatment, a two-fluid model is derived for
lower-hybrid (LH) oscillations driven by parametric interac-
tion of the electromagnetic pump field, the electron Bernstein
mode, and the upper-hybrid mode, as previously proposed
to interpret the BUM. In two-dimensional geometry across
the geomagnetic field, LH oscillations localized in cylindri-
cal density depletions are associated with multi-cell plasma
drift patterns. The numerical simulations show that topolog-
ical modulations of the drift can give rise to approximately
Lorentzian-shaped pulses in the LH time signal. For param-
eter values typical of the ionospheric experiments, the expo-
nential power spectrum of the Lorentzian pulses has a slope
that is consistent with the slope of the BUM spectrum. The
BUM spectral structure is therefore attributed to determinis-
tic chaos in LH dynamics.

1 Introduction

Electromagnetic emissions excited by powerful high-
frequency (HF) electromagnetic waves transmitted into the
ionosphere from the ground exhibit a rich spectral struc-
ture that depends notably on the pump frequency f0 and
its relation to a multiple s of the ionospheric electron gyro
frequency fe (Leyser, 2001). Figure 1 displays the most

prominent spectral feature of the stimulated electromagnetic
emissions (SEEs), the so-called broad upshifted maximum
(BUM), with its spectral maximum at fBUM ≈ f0+ 24 kHz.
The high-frequency flank of the BUM commonly exhibits
an exponential power spectrum, with a constant slope in a
semi-logarithmic plot. Also seen in Fig. 1 is a downshifted
maximum (DM) at approximately f0− 10 kHz.

As first established in the fluid and nonlinear dynamics
communities (Frisch and Morf, 1981; Greenside et al., 1982),
exponential power spectra are a characteristic of determin-
istic chaos. Research on magnetically confined laboratory
plasma showed that the associated time evolution consists of
intermittent narrow pulses of Lorentzian shape (Pace et al.,
2008) that arise because of topological modulations in the
plasma drift trajectories in the vicinity of separatrices in the
velocity field (Maggs and Morales, 2011, 2012). The topo-
logical modulations of a single-cell drift pattern can make
pulses of plasma escape or enter the flow cell. In a multi-
cell flow pattern, the modulations can make plasma pulses
cross separatrices between the cells to switch the flow cell.
Numerical simulations of structures formed by a tempera-
ture filament in magnetically confined plasma showed that
Lorentzian pulses can arise due to the topological modula-
tions of only two modes of coherent drift waves (Shi et al.,
2009).

A Lorentzian pulse has the following functional form
(Pace et al., 2008; Hornung et al., 2011; Maggs and Morales,
2011):

L(t)=
A

1+ ( t−t0
τ
)2
, (1)
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320 T. B. Leyser: Deterministic chaos

Figure 1. A BUM spectral feature observed in experiments at
the SURA HF facility in Russia, with f0 = 5.426 MHz, 4fe ≈
5.407 MHz, and 1fBUM ≈ 24 kHz (27 September 1998). Taken
from Leyser (2021), where it is adapted from Carozzi et al. (2002).

where A is the amplitude of the pulse of width τ centred
at time t = t0. The Fourier transform of L(t) is L̂(ω)=
Aτπ eiωt0 e−ωτ , such that its power spectrum is

P(ω)= A2τ 2π2 exp(−2ωτ). (2)

A signal time series containing Lorentzian pulses of approxi-
mately equal widths τ will thus exhibit an exponential power
spectrum P(f )∝ exp(−f/fs) with a scaling frequency of
fs = 1/(4πτ).

A simplified model of the E×Bg drift associated with
lower-hybrid (LH) oscillations localized in cylindrical geom-
etry across the geomagnetic field Bg (where E is the elec-
tric field of the LH oscillations) suggested that deterministic
chaos could also be excited by HF radio waves in the iono-
sphere (Leyser, 2021). It was shown that the drift trajectories
can be chaotic in the localized multi-cell standing-wave pat-
tern of the driving oscillations in the plane perpendicular to
Bg. This dynamic exhibits an exponential power spectrum
that is consistent with that of the BUM feature in the SEE
spectrum.

The frequency of the BUM fBUM follows the empirical
relation (Leyser et al., 1989; Leyser, 2001)

fBUM− f0 ≈ f0− sfe, (3)

where s ≥ 3. This dependence suggests that the BUM is
excited by a parametric four-wave interaction. Huang and
Kuo (1994) developed a one-dimensional analytical model
involving an electromagnetic pump wave with an angu-
lar frequency and wave vector (ω0, k0), electron Bern-
stein (EB) waves (ω1 . s ωe, k1), upper-hybrid (UH) waves
(ω2 = 2πfBUM & s ωe, k2), and non-resonant LH oscilla-
tions (ω3, k3). The matching conditions in their electrostatic

approximation are ω1+ω3 = ω0 = ω2−ω3 and k1+ k3 =

0= k2− k3. With this, ω3� ω1 . ω0 . ω2 (ωα = 2πfα for
α = 0,1,2,3). By assuming that the UH mode at ω2 > ω0 is
converted to electromagnetic emissions by the scattering off
of filamentary density striations, the emissions could prop-
agate to the ground to be detected as the BUM in the SEE
spectrum. The theoretical model was found to be consistent
with experimental results and has been verified by numeri-
cal simulations of an electrostatic particle-in-cell model with
one periodic space dimension and three velocity dimensions
(Xi and Scales, 2001).

In the present treatment, a two-fluid model of LH oscil-
lations excited by the beating of an electromagnetic pump
field is presented, with EB and UH oscillations assumed to
be localized in a cylindrical density depletion in the plane
perpendicular to Bg. This complements the study of para-
metric four-wave interactions by Huang and Kuo (1994) and
focuses on the effects of an important nonlinear term for LH
dynamics and considers two spatial dimensions. Further, the
treatment expands on the study of Leyser (2021) by including
the physics of LH oscillations instead of only the associated
E×Bg drift. Simulation results are obtained with parameter
values that are typical of those in electromagnetic pumping
of ionospheric F-region plasma and show deterministic chaos
in the LH dynamics and exponential power spectra that are
consistent with what is observed for the BUM.

2 Theory

LH dynamics are described by a magnetized electron fluid
and an unmagnetized ion fluid. For simplicity, the electron
and ion fluids are taken here to be cold; i.e. the electron and
ion temperatures are set to zero. All electric fields and veloc-
ities are considered to be in the x–y plane perpendicular to a
static and homogeneous geomagnetic field Bg = Bgẑ.

The electron density is taken to be ne = ns+n3+n1+n2 ≡

ns+n3+nh, where ns is the static background electron den-
sity, and nh contains the HF terms. The electron velocity is
ve = v0+ v1+ v2+ v3 ≡ vh+ v3, where vh contains the HF
electron velocity terms. For reference, the quantities describ-
ing the four interacting wave modes are shown in Table 1.
The force and charge continuity equations for v3 and n3 at
the LH timescale are as follows:

me
∂v3

∂t
=−eE3−ev3×Bg−me〈(vh ·∇⊥)vh〉−νemev3, (4)

∂n3

∂t
+∇⊥ · (neve)= 0, (5)

where ∇⊥ ≡ (∂/∂x)x̂+ (∂/∂y)ŷ; x̂ and ŷ are unit vectors
in the x and y directions, respectively; E3 is the LH elec-
tric field; and νe is the electron collision frequency (me and
−e are the electron mass and charge, respectively). The term
F =me〈(vh · ∇⊥)vh〉 is the ponderomotive force describing
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the nonlinear low-frequency effect of the HF waves on the
electrons, and the angular brackets denote an averaging of
the enclosed quantities over the HF oscillations.

With the expressions for ne and ve, Eq. (5) gives the fol-
lowing at the LH timescale:

∂n3

∂t
+ (ns+ n3)∇⊥ · v3+ v3 · ∇⊥n3 =−∇⊥ · 〈nhvh〉. (6)

The last (advection) term on the left-hand side is crucial to
include the chaotic dynamics but has commonly been ne-
glected in studies of nonlinear normal mode coupling of
parametric interactions. For simplicity, this term is not in-
cluded self consistently. To investigate the effect of the ad-
vection term, v3 is replaced by an externally provided drift
velocity vD. Equation (6) is further simplified by ns�

|n3|, neglecting the effect of static density inhomogeneity
(∇⊥ns = 0) and taking ∇⊥ · 〈nhvh〉 ≈ 0 (Istomin and Leyser,
1995), such that

∂n3

∂t
+ ns∇⊥ · v3+ vD · ∇⊥n3 = 0. (7)

By noting that the second term on the right-hand side of
Eq. (4) is the largest, v3 can be obtained by iteration (Istomin
and Leyser, 1995), giving

v3 =
e

meωe

( 1
Bg

E3×Bg−
1
ωe

∂E3

∂t

)
−

1
meωe

( 1
Bg

Bg×F +
1
ωe

∂F

∂t

)
−
νe

ωe

1
Bg

E3, (8)

where ωe = 2πfe = eBg/me, with the last term being in-
cluded to account for collisional damping. The ponderomo-
tive force is taken to be (Istomin and Leyser, 1995)

F =
1
8
e2

me

1
(ω0+ωe)2

∇⊥|Eh|
2. (9)

Eh =E0+E1+E2 is the total HF electric field. For sim-
plicity, an additional term that depends on the electron gyro
harmonic s derived by Istomin and Leyser (1995) has been
neglected.

Substituting Eq. (8) into Eq. (7) to eliminate v3 gives

∂n3

∂t
=

ens

meω2
e

(
∂

∂t
+ νe

)
∇⊥ ·E3+

ns

meω2
e

∂

∂t
(∇⊥ ·F ). (10)

With the Poisson equation ε0∇⊥ ·E3 = e(ni3−n3), an equa-
tion relating the electron density fluctuations n3 to those of
the ion density ni3 is obtained as follows (ε0 is the vacuum
permittivity):

∂n3

∂t
=
ω2

p

ω2
uh

∂ni3

∂t
+ νe

ω2
p

ω2
uh
(ni3− n3)−

ω2
e

ω2
uh

vD · ∇⊥n3

+
ns

meω
2
uh

∂

∂t
(∇⊥ ·F ), (11)

where ω2
uh = ω

2
p +ω

2
e , and ωp is the electron plasma fre-

quency.
The force and charge continuity equations for the unmag-

netized ion fluid are, similarly,

mi
∂vi3

∂t
= eE3− νimivi3, (12)

∂ni3

∂t
+ (ns+ ni3)∇⊥ · vi3+ vD · ∇⊥ni3 = 0, (13)

where νi is the ion collision frequency. Eliminating vi3 and
using, again, the Poisson equation to eliminate E3 results in(
∂2

∂t2
+ω2

pi+ νi
∂

∂t

)
ni3 = ω

2
pin3−

∂vD

∂t
· ∇⊥ni3

− vD · ∇⊥
∂ni3

∂t
. (14)

Equations (11) and (14) are a coupled set of equations for the
electron and ion densities, with n3 and ni3 being associated
with the LH dynamics driven by the external fields through
F and vD.

In order to relate the electromagnetic pump and EB, UH,
and LH fields to one another through F and vD, it is re-
called that the empirical relation in Eq. (3) suggests that the
BUM is excited by a parametric four-wave interaction. In
two-dimensional cylindrical geometry, the matching condi-
tions are (Karplyuk et al., 1970; Leyser, 2021)

ω1+ω3 = ω0 = ω2−ω3, (15)
m1+m3 =m0 =m2−m3, (16)

where mα is the azimuthal mode number (α = 0, 1, 2, 3). In
cylindrical geometry, there are no matching conditions for
the radial wave numbers krα .

The ponderomotive force F depends on the HF fields Eh.
With the electric fields having the time dependence Eα ∝

cos(ωαt), the following terms in relation to F include com-
ponents that can excite LH oscillations at ω3 according to the
matching condition of Eq. (15):

|Eh|
2
=E0 ·E1+E0 ·E2. (17)

The pump field is taken to be left-handedly circularly polar-
ized (for which the electric field rotates in opposition to the
electron gyro motion):

E0 =
E0
√

2

[
cos(ω0t)x̂− sin(ω0t)ŷ

]
. (18)

The EB (α = 1) and UH (α = 2) oscillations are taken to
have the potential

8α = Aα Jmα (krαρ) cos(mαϕ+1ϕα) cos(ωαt), (19)

such that Eα =−∇⊥8α , where Jmα is the Bessel function of
the first kind, ρ = (x2

+ y2)1/2, ϕ is the azimuthal angle in
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Table 1. Parameters for the four wave modes responsible for the broad upshifted maximum (BUM).

Mode Density Velocity Frequency Conditions

Ambient ns vs = 0 fs = 0 Stationary
Electromagnetic n0 v0 f0 Pump wave
Electron Bernstein (EB) n1 v1 f1 f1 . sfe
Upper hybrid (UH) n2 v2 f2 f2 = fBUM & sfe
Lower hybrid (LH) n3 v3 f3 f3 ≈ f0− f1 ≈ f2− f0
High frequency (HF) nh vh f0 nh = n0+ n1+ n2, vh = v0+ v1+ v2

the x–y plane, and 1ϕα accounts for a possible phase shift
between the EB and UH oscillations. With Eqs. (18) and (19)
being incorporated into Eq. (17), an expression for F , as in
Eq. (9), is obtained.

The largest contribution to v3 in Eq. (8) is the first term on
the right-hand side, which is proportional to E3×Bg. The
drift velocity vD, which has to be provided, is therefore taken
to be vD =ED×Bg/Bg, where ED is associated with the
beating of the HF fields that give contributions at ω3. For the
present purpose, ED =−∇⊥8D:

8D = [A01Jm3(kr1ρ)cos(m3ϕ)+A02Jm3(kr2ρ)

× cos(m3ϕ+1ϕ2)]cos(ω3t) e
−ρ/L, (20)

where A01 (A02) is the potential that results from the beating
at ω3 of the pump field and EB (UH) oscillations and is there-
fore proportional to the product of E0 and the amplitude A1
(A2) of the EB (UH) oscillations; see Eq. (19). However, it is
beyond the scope of the present treatment to derive a relation
between them. The focus here is to study the possible influ-
ence of the externally provided F and vD on LH dynamics.
The last factor in Eq. (20) is used to model the localization
of 8D in relation to LH oscillations in a cylindrical density
depletion, where L is the decay scale length of the potential
outside of the depletion.

3 Simulation scheme

Solutions to Eqs. (11) and (14) are computed numeri-
cally. Hereafter, the dimensionless density variables η3 ≡

n3(t,x,y)/ns and ηi3 ≡ ni3/ns will be used. Further, Eq. (14)
is of the second order in the time derivative. In order to solve
it numerically, it is converted into two first-order equations
by introducing η′i3 ≡ n

′

i3/ns. This gives the following set of
three equations:

∂η3

∂t
=
ω2

p

ω2
uh
η′i3+ (ηi3− η3)νe−

ω2
e

ω2
uh

vD · ∇⊥η3

+
1

meω
2
uh

∂

∂t
(∇⊥ ·F ), (21)

∂η′i3
∂t
= ω2

pi(η3− ηi3)− νiη
′

i3−
∂vD

∂t
· ∇⊥ηi3− vD · ∇⊥η

′

i3,

(22)

∂ηi3

∂t
= η′i3. (23)

To solve Eqs. (21) to (23) numerically, they are converted
into a system of coupled algebraic equations by replacing η3,
ηi3, and η′i3 with corresponding grid functions that are dis-
cretized in time t = tj = j1t (j = 0,1,2, . . . ,J ) and on
an equidistant spatial grid of x = xk = k1d and y = yl =
l1d (k, l = 0,1,2, . . . ,M), such that η3(tj ,xk,yl)≈ η

jkl

3 ,
ηi3(tj ,xk,yl)≈ η

jkl

i3 , and η′i3(tj ,xk,yl)≈ η
jkl

i3′ (Langtangen
and Linge, 2017).

The time derivatives of η3, ηi3, and η′i3 are approximated
with the forward Euler method for the finite differences; for
example, ∂η3/∂t ≈ (η

(j+1)kl
3 − η

jkl

3 )/1t . All spatial differ-
ences are computed at the time step j . Second-order spa-
tial derivatives are approximated by centred differencing; for
example, ∂2Eαx/∂x

2
≈ (E

j (k+1)l
αx −2Ejklαx +E

j (k−1)l
αx )/1x2.

The first-order spatial derivatives of η3, ηi3, and η′i3 in the
advection terms need a different treatment and are approxi-
mated by so-called upwind differencing. For example, in the
x direction, with η3, we take ∂η3/∂x ≈ (η

jkl

3 −η
j (k−1)l
3 )/1x

when vDx > 0 and ∂η3/∂x ≈ (η
j (k+1)l
3 − η

jkl

3 )/1x when
vDx < 0. The direction of the differencing is always against
the direction of the drift.

The spatial grid is 4.0× 4.0 m, with 1d ≈ 0.025 m. The
fields are localized around the centre of the grid (x,y)=
(0,0)m by multiplication of a factor exp(−ρ/L) with L=
0.4 m. All parameters are zero at the boundaries: ηj0l

3 =

η
jMl

3 = 0 and ηjk0
3 = η

jkM

3 = 0, ηj0l
i3 = η

jMl

i3 = 0 and ηjk0
i3 =

η
jkM

i3 = 0, and ηj0l
i3′ = η

jMl

i3′ = 0 and ηjk0
i3′ = η

jkM

i3′ = 0.
The time step is 1t = 2.5× 10−7 s. The initial conditions

of the spatial grid are taken such that η0kl
3 ∝8D(t = 0) in

Eq. (20):

η0kl
3 =

N3

(A2
01+A

2
02)

1/2

(
A01Jm1(kr1ρkl)cos(m1ϕkl)

+A02Jm2(kr2ρkl)cos(m2ϕkl +1ϕ2)
)
e−ρ/L, (24)

where A01 and A02 allow for different relative amplitudes of
the EB and UH potentials. Further, η0kl

i3 = (ω
2
uh/ω

2
p)η

0kl
3 , and

η0kl
i3′ = 0.
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Figure 2. Initial relative electron density distribution η0kl
3 for the

LH oscillations in the centre of the 4×4 m simulation plane accord-
ing to Eq. (24) (N3 = 1.0×10−7,A01 = A02 = 0.2 V,1ϕ2 = π/2).
The arrows indicate the direction of the ED×Bg drift. The dashed
lines delineate η0kl

3 = 0, constituting separatrices for the drift. The
white cross at (x,y)= (0.0,0.1)m marks the position where the
time signal and power spectrum are shown in the subsequent fig-
ures. The position is relatively near an initial separatrix of the drift.

4 Simulation results

As an example, the azimuthal mode numbers of the inter-
acting wave modes are taken to be m0 = 1, m1 =−1, and
m2 = 3, which, using Eq. (16), gives m3 = 2. In the exper-
iments, the transmitted electromagnetic pump wave is ap-
proximately a left-handed circularly polarized plane wave
on the small-spatial-scale lengths of interest here, propagat-
ing nearly parallel to Bg. However, its scattering on fila-
mentary density depletions with much-smaller-spatial-scale
lengths transverse to Bg compared to the electromagnetic
wavelength can give an azimuthal component of the pump
field (Istomin and Leyser, 2003). This is the motivation for
why m0 = 1 is taken here, which implies that m1 6=m2 for
m3 6= 0. Figure 2 shows the initial η0kl

3 , as given by Eq. (24),
in the centre of the simulation plane perpendicular to Bg.
The magnitude of N3 = 1.0×10−7 is chosen, such that F in
the right-hand side of Eq. (21) has an effect on the temporal
evolution, with reasonable values for the external amplitudes
E0, A1, A2 A01, and A02.

Figure 3 displays the computed electron and ion densi-
ties – ηjkl3 (blue) and ηjkli3 (red), respectively – at (x,y)=
(0.0,0.1)m for (a) E0 = 0.001 Vm−1 and A01 = A02 =

0.002 V and (b) E0 = 0.1 Vm−1 and A01 = A02 = 0.2 V,
with A1 = A2 = 0.2 V in both cases. Parameters typical
of the ionospheric F region were used: ωe ≈ 2π × 1.35×
106 s−1, as estimated from the experiments (Carozzi et al.,
2002) from which the spectrum in Fig. 1 was obtained, oxy-

gen ions; ωuh = s ωe, with s = 4, νe = 500 s−1, and νi =

5 s−1; and electron temperature Te = 2000 K. The frequen-
cies of the involved wave modes are related by the match-
ing condition of Eq. (15), where, for the present treatment,
ω1 = 4ωe−1ω1, where1ω1 = 2π×10×103 s−1. By keep-
ing ω1 constant, kr1 is constant, while, for the small value of
1ω1, we still have ω0 ≈ 4ωe for the different ω3 values to be
discussed. In the experiments, ω0 ≈ 4ωe commonly results
in the exponential slope of the BUM spectral feature that is
of interest here.

In Fig. 3a, the external driving due toE0 is weak, such that
vD and F in Eqs. (21) and (22) are small. The displayed os-
cillations are the LH resonance oscillations at about 7.6 kHz
that are weakly perturbed by the beating of the HF fields at
f3 = 20 kHz in vD and F . For comparison, a sinusoidal os-
cillation at f3 is shown in black. The oscillation frequency in
Fig. 3a agrees with the theoretical value of the LH resonance
frequency:

flh =
1

2π
ωpiωe

ωuh
=

(me

mi

)1/2(1−
1
s2

)1/2
fe ≈ 7.6kHz, (25)

where ωpi = (me/mi)
1/2ωp. The time step in the computa-

tions – 1t = 2.5× 10−7 s – implies 1t flh ≈ 1.9× 10−3. In
Fig. 3b, E0 is sufficiently strong, such that the temporal evo-
lution is instead determined by vD and F . The temporal evo-
lution contains narrow pulses that are even shorter than the
oscillations at the driving frequency f3 illustrated in Fig. 3a.

Figure 4 displays the temporal evolution (panel a) of ηjkl3
(blue) and η

jkl

i3 (red) and the corresponding power spec-
trum (panel b) for the longer time period from t = 0 s to
t = 0.0025 s, with the same parameter values as for Fig. 3b.
The power spectrum is approximately exponential as it has
a constant slope in the semi-logarithmic plot. The narrow
peaks at multiples of f3 = 20 kHz enter through vD and F

in Eqs. (21) and (22). The width of the LH spectrum is about
160 kHz, which is an order of magnitude larger than both flh
and f3.

In Figs. 5 and 6, some of the narrow pulses in the tem-
poral evolution of ηjkl3 in Fig. 4a are investigated. Figure 5a
shows ηjkl3 from t = 0.0005 s to t = 0.0025 s, which corre-
sponds to a timescale of 0.0005×flh ≈ 4 to 0.0025×flh ≈ 19
wave periods of LH resonance oscillations. The time pe-
riod excludes the initial overshoot behaviour of ηjkl3 seen in
Fig. 4a. The four pairs of vertical dashed red lines mark the
time periods with pulse-type features discussed in Fig. 5b
and c (t ≈ 0.00067 s) and Fig. 6 (t ≈ 0.00092, 0.00182,
and 0.00214 s). Figure 5b displays an expanded time period
marked by the vertical dashed red lines at t ≈ 0.00067 s,
which includes a single negative pulse-type feature in the
time series (blue dots) together with a fitted Lorentzian func-
tion in accordance with Eq. (1) (black curve). The width of
the Lorentzian pulse is τ ≈ 8.90× 10−6 s, such that τf3 ≈

0.18, which implies that the temporal pulse is much shorter
than the driving wave period (1/f3). The corresponding scal-
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Figure 3. Temporal evolution of ηjkl3 and ηjkli3 at k and l, such
that (x,y)= (0.0,0.1)m from 0 to 0.0005 s (f3 = 20 kHz, 1ϕ2 =
π/2). (a) E0 = 0.001 Vm−1, A1 = A2 = 0.2 V, and A01 = A02 =
0.002 V. For comparison, shown in black is an oscillation sin(ω3t)
at the driving frequency f3. (b) E0 = 0.1 Vm−1, A01 = A02 =
0.2 V, and other parameter values as for (a).

Figure 4. Temporal evolution (a) and power spectrum (b) of ηjkl3
(blue) and ηjkli3 (red) at (x,y)= (0.0,0.1)m for the time between
0 s and 0.0025 s, with the same parameter values as for Fig. 3b.

Figure 5. Fit of a Lorentzian function to a single pulse-type fea-
ture in the signal of ηjkl3 for the same time series as in Fig. 4
(f3 = 20 kHz and E0 = 0.1 Vm−1). (a) Temporal evolution from
t = 0.0005 s to t = 0.0025 s and (b) for a single pulse (blue dots).
The time period for the single pulse is marked by the leftmost pair
of vertical dashed red lines at t ≈ 0.0067 s in (a). The three remain-
ing pairs of vertical dashed lines indicate the time periods discussed
in Fig. 6. The solid black curve in (b) is a fitted Lorentzian pulse of
width τ ≈ 8.90×10−6 s, which corresponds to fs ≈ 9 kHz. (c) The
power spectrum for the time series in (a). The dashed line shows the
exponential slope P = 10−6 exp(−f/fs).

ing frequency is fs = 1/(4πτ)≈ 9 kHz. Figure 5c shows the
power spectrum (blue) of the time series in Fig. 5a, together
with P(f )∝ exp(−f/fs) (dashed black line). The width τ
and corresponding scaling frequency fs of the approximately
Lorentzian-shaped pulse in Fig. 5b correspond roughly to the
slope of the spectrum.

Figure 6 displays three additional pulse-type features in
the same time series of ηjkl3 (Figs. 4 and 5a) from the time
periods at (a) t ≈ 0.00092 s, (b) t ≈ 0.00182 s, and (c) t ≈
0.00214 s, marked by the three rightmost pairs of dashed
red vertical lines in Fig. 5a. In Fig. 6a, the fitted Lorentzian
pulse has a width of τ ≈ 6.15× 10−6 s and fs ≈ 13 kHz. In
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Fig. 6b, the fitted Lorentzian pulse is τ ≈ 7.23× 10−6 s and
fs ≈ 11 kHz. Most of the pulse-type features in the time se-
ries in Fig. 5a have a skewed shape, and only a few have
a reasonably symmetric Lorentzian form. Figure 6c shows
an example of a skewed pulse. A Lorentzian function can-
not be reasonably fitted to the pulse. In Fig. 6d, the same
spectrum as in Fig. 5c is displayed but with the spectral
slopes for the obtained fs of the Lorentzian functions: (a)
fs ≈ 13 kHz (dotted line) and (b) fs ≈ 11 kHz (dash-dotted
line). The Lorentzian pulse widths are consistent with the
slope of the spectrum. As different widths of Lorentzian
pulses give different fs values, an observed exponential slope
is associated with a temporal evolution containing predomi-
nantly Lorentzian pulses of approximately equal width, as
for Fig. 5b (fs ≈ 9 kHz), Fig. 6a (fs ≈ 13 kHz), and Fig. 6b
(fs ≈ 11 kHz).

The width τ of the approximately Lorentzian-shaped
pulses in the time series ηjkl3 at a given (x,y) depends on
the amplitudes E0, A1, A2, A01, and A02. Figure 7 displays
a case with E0 = 0.2 Vm−1, A01 = A02 = 0.4 V, and other
parameters, as for Figs. 4 to 6, for which E0 = 0.1 Vm−1

and A01 = A02 = 0.2 V. Figure 7a shows the time series
at (x,y)= (0.0,0.1)m. The two pairs of dashed red lines
at t ≈ 0.00057 s and t ≈ 0.00077 s indicate two examples
of negative pulse-type signatures that have approximately
Lorentzian shapes. In Fig. 7b, the pulse (blue dots) at t ≈
0.00057 s is displayed together with a fitted Lorentzian func-
tion (black line) with a width corresponding to fs ≈ 13 kHz.
In Fig. 7c, the pulse (blue dots) at t ≈ 0.00077 s is shown
with a fitted Lorentzian function (black line) with a width
corresponding to fs ≈ 15 kHz. The associated exponential
slopes agree approximately with that of the power spec-
trum of the time series seen in Fig. 7d. The pulse in Fig. 7c
with fs ≈ 15 kHz appears to have a slightly better fit to the
spectrum. The obtained scaling frequencies of fs ≈ 13 kHz
and fs ≈ 15 kHz are a few kilohertz higher than those in
Figs. 5 and 6, for which fs ≈ 9, 11, and 13 kHz. Stronger
driving through E0, A01, and A02 gives a larger drift – vD =

ED×Bg/Bg – and, thereby, narrower pulses with larger fs.

5 Discussion

Plasma drifts in multi-cell patterns may exhibit determinis-
tic chaos due to topological modulations of the flow (e.g. Shi
et al., 2009; Maggs and Morales, 2011, 2012). The topolog-
ical modulations result in the formation of narrow temporal
pulses of Lorentzian shape in the plasma flow. As the power
spectrum of a Lorentzian pulse is exponential, it follows that,
if the Lorentzian pulses in the time signal have approximately
the same widths, its spectrum will be exponential. Exponen-
tial power spectra are an inherent characteristic of determin-
istic chaos.

The BUM feature in the spectrum of electromagnetic
emissions stimulated by powerful radio waves in the iono-

Figure 6. Three examples of pulse-type features from the com-
puted time series ηjkl3 (blue dots) in Figs. 4 and 5a and fits of a
Lorentzian function (black lines). (a) Pulse at t ≈ 0.00092 s and
fitted Lorentzian function with fs ≈ 13 kHz (ηjkl3 was decreased
by 0.3× 10−7 to optimize the fit). (b) Pulse at t ≈ 0.00182 s and
fs ≈ 11 kHz (ηjkl3 was decreased by 0.6× 10−7 to optimize the
fit). (c) Pulse at t ≈ 0.00214 s. (d) The power spectrum (the same
as in Fig. 5c), with the black lines showing the exponential slope
P = 10−14 exp(−f/fs) for the pulses in (a) and (b).

sphere commonly exhibits an exponential high-frequency
flank, as shown in Fig. 1. The BUM has been attributed to
parametric four-wave interactions involving the electromag-
netic pump wave and electrostatic EB, UH, and LH waves
(Huang and Kuo, 1994), with matching conditions for the
high-frequency waves, as suggested by the empirical relation
in Eq. (3). In the theory, the UH oscillations at ω2 = ω0+ω3
are assumed to scatter off small-scale density irregularities
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Figure 7. Lorentzian pulse-type features in the computed time
signal of ηjkl3 at (x,y)= (0.0,0.1)m for E0 = 0.2 Vm−1, A01 =
A02 = 0.4 V, and other parameter values, as for Figs. 4 to 6. (a)
Temporal evolution from t = 0.0005 s to t = 0.0025 s. Two pulses
are indicated by the two pairs of vertical red dashed lines. (b)
Pulse (blue dots) at t ≈ 0.00057 s and fitted Lorentzian function
(solid black curve) of width τ ≈ 6.27× 10−6 s, which corresponds
to fs ≈ 13 kHz (ηjkl3 was decreased by 1.2× 10−7 to optimize the
fit). (c) Pulse (blue dots) at t ≈ 0.00077 s and fitted Lorentzian func-
tion (solid black curve) of width τ ≈ 5.25× 10−6 s, which corre-
sponds to fs ≈ 15 kHz (ηjkl3 was decreased by 0.9× 10−7 to opti-
mize the fit). (d) The power spectrum for the time series in (a). The
black lines show the exponential slope P = 10−14 exp(−f/fs) for
fs in (b) and (c).

into electromagnetic emissions that can escape the iono-
sphere and be detected as the BUM on the ground. Whereas
the initial theory by Huang and Kuo (1994) considered waves
in one spatial dimension, the present understanding is that,
on thermal timescales, wave modes perpendicular to Bg are
localized inside density depletions of small-scale striations
(Gurevich et al., 1997; Mjølhus, 1997; Istomin and Leyser,
1998). In two-dimensional geometry perpendicular to Bg,
excited localized wave modes will have standing multi-cell
oscillations inside the density depletions.

In the present treatment, results of numerical simulations
of relevant nonlinear wave processes are presented. LH os-
cillations are modelled by Eqs. (11) and (14) in the plane
perpendicular to Bg and are excited by nonlinear interac-
tions of the pump and EB and UH modes. Specifically, the
beating of the pump field with the EB and UH fields is in-
troduced through the ponderomotive force F and the drift
velocity vD in the advection terms in the equations. Figure 2
shows the initial condition for the electron density fluctua-
tions η0kl

3 . With η0kl
3 ∝8D(t = 0), the ED×Bg drift occurs

along equipotential lines around extrema in ηjkl3 . Thus, the
direction of the ED×Bg drift changes from clockwise to
anti-clockwise and vice versa in adjacent extrema in 8D and
η
jkl

3 . The resulting separatrices in the ED×Bg drift are il-
lustrated by dashed lines in Fig. 2. Also, the drift changes
direction with the change in sign of ED every half wave pe-
riod T3/2= 1/(2f3).

Figure 3 displays the temporal evolution of the LH elec-
tron ηjkl3 (blue) and ion ηjkli3 (red) density fluctuations at
(x,y)= (0.0,0.1)m for (a) E0 = 0.001 Vm−1 and A01 =

A02 = 0.002 V and (b) E0 = 0.1 Vm−1 and A01 = A02 =

0.2 V, with f3 = 20 kHz and A1 = A2 = 0.2 V in both cases.
In Fig. 3a, ηjkl3 and ηjkli3 oscillate at the LH resonance fre-
quency of 7.6 kHz, which is lower than at f3. Because of
the low E0, the external driving through F and vD at f3 is
too weak to have a noticeable effect on the time dependence.
However, in Fig. 3b, the temporal evolution is different, with
pulse-type features occurring seemingly erratically, some of
which are narrower than the driving frequency at f3, indi-
cated by the black curve in Fig. 3a.

Figure 4a shows the electron ηjkl3 (blue) and ion ηjkli3 (red)
oscillations for the same parameter values as in Fig. 3b but
for the longer time period between 0 s and 0.0025 s. As seen
in Fig. 4b, the power spectra of both ηjkl3 and ηjkli3 have an
approximately exponential slope. Figures 5 and 6, which are
for the same time period, show that some of the pulse-type
features in the time series have close to a Lorentzian shape.
The examples in Figs. 5 and 6 give, for the fitted Lorentzian
functions, the scaling frequencies fs ≈ 9 kHz (Fig. 5b), fs ≈

13 kHz (Fig. 6b), and fs ≈ 11 kHz (Fig. 6c). As the obtained
fs values agree approximately with the slope of the spectrum,
it is concluded that the power spectra in Figs. 4b, 5b, and 6d
are determined by Lorentzian pulses due to chaotic dynamics
and that the Lorentzian pulses have approximately the same
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widths. In the discussed model, with the frequency matching
conditions in Eq. (15), the spectrum of LH oscillations (ω3)
is upshifted to the UH mode according to ω2 = ω0+ω3. The
UH oscillations could then scatter off density irregularities of
the filamentary density striations into electromagnetic emis-
sions that can be detected as the BUM in the SEE spectrum
on the ground. It is therefore concluded that the experimen-
tally observed exponential high-frequency flank of the BUM
emission (Fig. 1) is evidence of deterministic chaos in wave
interactions along the lines of those shown in the present sim-
ulations.

The temporal evolution is chaotic for E0 = 0.1 Vm−1

(Figs. 3b, 4, 5, and 6) but not forE0 = 0.001 Vm−1 (Fig. 3a).
This is evidence that a threshold must be exceeded for
chaotic time dependence. Because of temporal modulations
in the multi-cell drift trajectories associated with8D, plasma
may cross separatrices in the ED×Bg drift. Deterministic
chaos seems to set in when the drift is fast enough for plasma
to drift sufficiently far to cross a separatrix to drift around
an adjacent potential extremum before the potential changes
sign every half wave period and the drift direction reverses.

Whereas some of the pulse-type features in the time se-
ries have an approximately Lorentzian form, most of them
are asymmetric, and the later pulse flank is generally steeper
than the earlier flank. This asymmetry may indicate non-
linear steepening of the pulses. A careful look reveals that
this is also the case for the reasonably symmetric Lorentzian
pulses in Figs. 5 to 7. It is interesting that the skewness of a
Lorentzian pulse does not affect its power spectrum (Maggs
and Morales, 2011; Garcia and Theodorsen, 2018), such that
asymmetric Lorentzian pulses contribute to an exponential
power spectrum. However, it is not clear whether some of
the skewed pulses observed in the present simulations can
actually be considered to be skewed Lorentzian forms. This
requires further investigation.

Finally, the scaling frequency fs in the present model de-
pends on E0, A01, and A02. Figure 7 shows a case for E0 =

0.2 Vm−1, A01 = A02 = 0.4 V, and other parameter values,
as for Figs. 4 to 6. The obtained fs values for the fitted
Lorentzian functions are typically a few kilohertz higher than
for E0 = 0.1 Vm−1 and A01 = A02 = 0.2 V (Figs. 5 and 6).
With increasing E0, fs increases. However, experiments on
pump power stepping at the SURA facility suggest that the
slope of the BUM high-frequency flank is independent of the
pump power (Wagner et al., 1999, their Fig. 9). The max-
imum effective radiated power (ERP) was about 150 MW,
and the BUM flank was observed to have similar slopes for
the pump power levels of −6, −3, and 0 dB relative to the
maximum ERP.

The present simulation results are not consistent with this
experimental result. As seen from Fig. 7, for which fs values
for the fitted Lorentzian functions in Fig. 7b and c are a few
kilohertz larger than in Figs. 5 and 6, fs depends on E0, A01,
and A02. At this stage, possible reasons for this discrepancy
may only be speculated upon. In the present study, only a

single density depletion associated with a single small-scale
striation is considered. In reality, many striations are excited
simultaneously. Theories (Mjølhus, 1983; Gurevich et al.,
1995; Hall and Leyser, 2003) and numerical computations
(Eliasson and Leyser, 2015) show that striations are electro-
magnetically coupled to one another through the electromag-
netic Z mode. It is brought into question whether, for suffi-
ciently high pump powers, the nonlinear processes of oscil-
lations localized inside a striation are nonlinearly saturated.
Increasing the pump power may then only result in more stri-
ations to be excited. This could account for the higher BUM
intensity at higher pump power but with fsl that depends on
the localized interactions independent of pump power. How-
ever, this requires modelling of the physics on a global scale,
with many striations and with nonlinear saturation for the in-
volved oscillation amplitudes, which is beyond the scope of
the present study.

6 Conclusions

The prominent BUM feature in the spectrum of electromag-
netic emissions stimulated by powerful HF radio waves in
the ionosphere commonly has an exponential high-frequency
flank for pump frequencies near a harmonic of the iono-
spheric electron gyro frequency. Exponential power spectra
have been shown to be a characteristic of deterministic chaos.
As the BUM has been interpreted in terms of parametric four-
wave interactions involving the electromagnetic pump field
and EB, UH, and non-resonant LH modes (Huang and Kuo,
1994), a simplified two-fluid model of parametrically excited
LH oscillations has been derived and studied by means of
numerical simulations. The LH oscillations were taken to be
localized in a cylindrical density depletion in the plane per-
pendicular to a homogeneous and static geomagnetic field.
As such, they form cylindrical modes characterized by the
frequency, an azimuthal mode number and radial wave num-
ber. The localized LH modes are associated with multi-cell
plasma drift patterns. For sufficiently strong driving fields,
the time signal of the LH electron and ion density fluctua-
tions at a fixed position in the simulation plane exhibit an ap-
proximately exponential power spectrum, thereby being ev-
idence of deterministic chaos. The exponential spectrum is
connected to pulse-type features of Lorentzian form in the
time signal.

As the parameter values in the simulations are reasonable
within the ionospheric experiments, it is proposed that the
observed exponential flank of the BUM is the result of deter-
ministic chaos in the LH dynamics. According to the model
of parametric interaction for the BUM, the beating of the LH
oscillations with the pump field shifts the LH spectrum to the
UH mode at frequencies above the pump frequency, where
they could be converted into electromagnetic emissions and
be observed on the ground. In view of the generality of the
physics of deterministic chaos, it may be that similar pro-
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cesses can occur in other regions of space plasma, for ex-
ample, in ionospheric single- or multi-cell convection that is
topologically modulated by fluctuations in the geomagnetic
field.
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