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Abstract. In previous works, we found Euler potentials for
the combined magnetic field of Earth’s dipole, field-aligned
currents, ring current, and the magnetopause surface currents
(represented by Dungey’s term) in the magnetosphere. Field-
aligned currents, also known as Birkeland currents, experi-
ence closure in the ionosphere through the shell current pat-
terns, also known as Pedersen and Cowley currents. Field-
aligned currents can be measured at an altitude of around
800 km and can be reconstructed in the entire magnetosphere
by means of tracing along the magnetic-field lines. The de-
termination of shell currents is more difficult. They can only
be measured in the ionosphere because they form a closure
of field-aligned currents in the ionosphere. Analytical model-
ing and numerical modeling of the shell currents are not easy
tasks and require knowledge of the conductivity tensor in the
ionosphere. We propose an alternative approach for shell cur-
rent modeling. In this paper, we determine the current density
distribution in a finite-thickness ionosphere. Our system con-
sists of the ionosphere, a region above it (outer region), and
a region below it (inner region). The dipole field is present
in the entire system. In addition, there is a field generated by
the field-aligned currents in the outer region. We search for a
continuation of these currents into the ionosphere, that is, for
shell currents.

1 Introduction

Kintner et al. (1974) deduced shell and field-aligned cur-
rents (FACs) during the 16 March 1973 substorm. They re-
ported a southward current density of 14.37 µAm−2, a west-
ward current density of 22.5 µAm−2, and an FAC density of
5 µAm−2. The latter current was concentrated at heights of
120–190 km. A southward electric field of 60 mVm−1 identi-

fied southward currents to be shell (Pedersen) currents. West-
ward (Cowley) currents were considered to be Hall currents,
flowing perpendicularly to the electric field due to the Hall
conductivity in the ionosphere. Rostoker and Hron (1975) ex-
plained eastward and westward electrojets in the ionosphere,
as well as their interrelations with convection in the magne-
tosphere. The electrojets are caused by precipitation of high-
energy electrons (E > 20 keV). Kamide and Brekke (1977)
determined the altitudes of the auroral electrojets in the iono-
sphere during disturbed periods. It was found that the east-
ward electrojet is located at 120 km, and the westward elec-
trojet is located at 100 km. Banks and Yasuhara (1978) stud-
ied the electric field of the nighttime ionospheric E region.
They found that relatively large electric fields can exist in the
absence of shell currents in the ionosphere because of insuf-
ficient particle precipitation. Troshichev et al. (1979) noticed
that the shell current effect on Earth’s surface can be signifi-
cant, and it is not canceled by distant FACs during moderate
and strong geomagnetic storms. Opgenoorth et al. (1983) de-
termined the structure of the electric-current system in the
vicinity of a westward-traveling surge. A counterclockwise
loop of currents around a leading edge of the surge was re-
vealed. Senior et al. (1982) noticed that the westward elec-
trojet in the ionosphere extends across the boundary between
region 2 and region 1 in the ionosphere morning sector and
that the region-2 FACs are closed by southward Pedersen cur-
rents within the ionosphere. Raghavarao et al. (1984) found
that the ionization density at 100 km increases by a factor of
2 to 10 from the time of sunset to midnight, and the plasma
density centered around 120 km altitude deepens by a fac-
tor of 2 to 5 during the same period. Baumjohann (1982) re-
viewed studies of field-aligned and shell currents. Araki et al.
(1989) investigated the geomagnetic effects of the Hall and
Pedersen currents flowing in the auroral ionosphere. They
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found that, in July 1987, the northward currents’ contribution
to the H component was 0.56 nT, while that of the eastward
currents was in the range of 0.14–0.20 nT. Kirkwood et al.
(1988) determined that the highest observed conductance for
northward ionospheric currents was 48 S, and that for east-
ward currents was 120 S. Werner and Ferraro (1990) showed
that the vertical profiles of the shell current density in the E
and D layers can be obtained with a high-power auroral stim-
ulation (HIPAS) heating facility. The behavior of these iono-
spheric currents can be deduced from a comprehensive study
of extremely low-frequency (ELF) signals received at a lo-
cal field site. Devasia and Reddy (1995) presented a method
to retrieve the height-varying east–west wind in the equato-
rial electrojet from the local wind-generated electric field or
from the radar-measured phase velocity of the type-II plasma
waves. Galand and Richmond (2001) proposed a simple pa-
rameterization for the Pedersen and Hall conductances pro-
duced by proton precipitation. Their derivation is based on
a proton transport code for computing the electron produc-
tion rate and on an effective recombination coefficient for
deducing the electron density. Amm (2001) utilized Cluster-
II mission data, providing the possibility of instantaneously
obtaining spatially distributed measurements of FACs from
a fleet of satellites, and presented the “elementary current
method” that combines such measurements mapped to the
ionosphere with two-dimensional ground magnetic data to
calculate actual ionospheric currents without the need for fur-
ther assumptions. Hosokawa et al. (2010) presented an ap-
pearance of the shell current layer carried by the electrons in
the auroral D region. Such a layer was detected by the EIS-
CAT VHF radar in Tromsø, Norway, when an intense pulsat-
ing aurora (PA) occurred. Amm and Fuji (2008) commented
on a long-standing debate regarding the extent to which the
strong upward FACs in a substorm breakup spiral are closed
by either downward FAC through Pedersen currents flowing
radially to the center of the spiral (local closure) or currents
that flow westwardly though a Cowling channel which ex-
tends into the region to the east of the spiral (Cowling clo-
sure). They showed that, for the pseudo-breakup spiral event
on 3 February 1999, 68 % of the upward FAC in the spiral
was closed via the local closure current system, and the re-
maining 32 % was closed via the Cowling closure current
system. Sheng et al. (2014) deduced, based on the Constel-
lation Observing System for Meteorology, Ionosphere, and
Climate (COSMIC) satellite observations from 2008 to 2011,
the height-integrated northward and westward conductivities
in both the E (100–150 km) and F (150–600 km) regions and
their ratio. The maximum ratio in the Northern Hemisphere
during summer is 5.5, which is smaller than that from the
Thermosphere-Ionosphere-Electrodynamics General Circu-
lation Model (TIE-GCM v1.94) simulation, which is 9. It was
assumed that the energy inputs into the F region may be un-
derestimated in the model. Tulegenov and Streltsov (2019)
investigated the role of the Hall conductivity in ionospheric-
heating experiments. Ionospheric heating by powerful X-

mode waves changes the Hall and Pedersen conductances in
the E and D regions, which leads to the generation of ultra-
low-frequency (ULF), ELF, or very-low-frequency (VLF)
waves when the electric field exists in the ionosphere. Tanaka
et al. (2020) identified shell currents in the ionosphere from
ground-based magnetic variations using Biot–Savart’s law.
Robinson et al. (2020) determined height-integrated conduc-
tances in the ionosphere from the electron densities measured
by means of a radar. Carter et al. (2020) parameterized the
height-integrated conductances in the ionosphere by means
of the interplanetary magnetic field.

In the following sections, we present an analytical descrip-
tion of the shell current system in the ionosphere, considered
to be a relatively thick layer. First, a smooth transition of the
tangential-to-the-layer component of the magnetic field from
zero below the ionosphere to a non-zero tangential compo-
nent above the ionosphere is provided for the layer. Sub-
sequently, the current density is determined from it. After
that, the Euler potentials are found for the ionosphere, which
opens the way for precise determination of electron and pro-
ton motions in the layer. The paper is organized in the fol-
lowing way. The method is described in Sect. 2. The results
of the calculations of the magnetic field, current density, and
Euler potentials are outlined in Sect. 3, followed by Sect. 4,
in which our conclusions are summarized.

2 Method

As our model ionosphere, we consider only a denser part of
the real ionosphere at heights of 100–400 km. The Euler po-
tentials of the inner region below the ionosphere (r < rin =
1.0157r0; height: 100 km above Earth’s surface) are

α = αd =
B0r

3
0 sin2θ

r
, βin = βd =−ϕ. (1)

The variables are spherical coordinates r , θ , and ϕ, with the
origin at Earth’s center and the z axis coinciding with the
magnetic axis and pointing northward. The angle ϕ is mea-
sured from an arbitrary equatorial point because our problem
is axially symmetric. Here, B0 is determined by the Earth’s
magnetic dipole (B0 = 31.2 µT in the present paper), and r0
is the Earth’s radius (6378 km). αd and βd are the Euler po-
tentials of a dipole. In the outer region above the ionosphere
(r > rout = 1.0627r0; height: 400 km), the Euler potentials
are

α = αd =
B0r

3
0 sin2θ

r
,

βout = βd+βt =−ϕ+
g0r

2 cosθ

r2
0 sin4θ

.

(2)

Here, g0 is a unitless quantity that determines the magnitude
of FACs. Its evaluation is described in Romashets and Van-
das (2020), where it is based on observations by Korth et al.
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(2010). The transition takes place in the layer of thickness
1r = rout− rin (300 km). Formulae for the ϕ component are
different for the ionosphere and the region above it, unlike
for the r and θ components, the formulae for which cover
both regions. The ϕ component changes from Bϕ,in = 0 in
the inner region to

Bϕ,out =
B0g0r0

r sinθ
(3)

in the outer region. This component in the layer experiences
a smooth change from its value below the ionosphere to that
above the ionosphere. Throughout the entire volume, in the
ionosphere, as well as above and below the ionosphere, it is
modeled by a step-up function, tanh:

Bϕ =
B0g0r0

2r sinθ

[
1+ tanh

6(r − rc)
1r

]
. (4)

Here, rc = (rin+rout)/2 is the distance from Earth’s center to
the middle point of the ionosphere. The ϕ component above
rout and below rin very rapidly approaches the values pro-
vided correspondingly by Eqs. (1) and (2). With Eq. (4), the
observed magnetic-field profiles are well described. The tran-
sition from the magnetic field determined by Eq. (1) to the
magnetic field determined by Eq. (2) happens mostly inside
the ionosphere. On the other hand, at a much smaller rate,
the transition continues outside of the ionosphere as well.
The currents that produce the change are mostly confined to
inside the ionosphere. This usage of the step-up function is
not new. It was utilized widely, for example, by Landau and
Lifshitz (1981) in applications of quantum mechanics for the
description of the potential energy of electrons in metals.

The Euler potentials for a magnetic field in the ionosphere
are searched for because the motion of charged particles
can be easily calculated with them (Romashets and Vandas,
2011, 2012; Vandas and Romashets, 2014, 2016). In order to
ensure that the ϕ component of the magnetic field in the layer
changes with r according to Eq. (4), we will keep α the same
as in Eqs. (1) and (2), while β is determined from

Bϕ =
1
r

(
∂α

∂r

∂β

∂θ
−
∂β

∂r

∂α

∂θ

)
. (5)

The latter equation can be solved for β by various approx-
imation methods. An important condition for β is that it
should be continuous in the layer and around it for proper
determination of the magnetic-field lines and particle trajec-
tories. One of the methods decomposes Eq. (4) into the sum

Bϕ =
B0g0r0

r sinθ

I∑
i=1

ci

(
r

r0

)ni
. (6)

The coefficients ci are determined from the best fit to the
step-up function

st(r)=
1
2

[
1+ tanh

6(r − rc)
1r

]
(7)

by the sum

sm(r)=
I∑
i=1

ci

(
r

r0

)ni
. (8)

There is a problem whereby it is not possible to decompose
Eq. (7) into the sum of power functions in Eq. (8) for the en-
tire interval (rin, rout), but this can be done for any fraction of
the interval with a length of one-third of the interval or less.
This follows directly from the fact that the corresponding
Taylor sum of the st function has a radius of convergence that
is one-sixth of the interval. Therefore, we used four smaller
overlapping intervals (subintervals), covering the entire inter-
val, and determined the coefficients ci for them separately.
Details are given in Appendix A. We used n1 =−1.8 and
ni =−1.8+ 19.8(i− 1)/30 for I ≥ i > 1 and I = 30 for all
subintervals. The choice of ni values for the selected I was
determined based on the best agreement between Eqs. (8)
and (7) by trial and error. We have found that a number I
larger than 30 does not improve the agreement between the
two functions in our calculations (using double precision).

The β potential in Eq. (5) is searched for in the following
form:

β =−ϕ+

I∑
i=1

ciRi(r)2i(θ). (9)

Here, Ri(r) is a function of r , and 2i(θ) is a function of
θ , which are to be found. Inserting this β into Eq. (5) and
equating the terms with the same ci between Eqs. (5) and (6),
we can determine Ri(r) and 2i(θ). Taking into account the
fact that α in Eqs. (1) and (2) depends on r as 1

r
, we conclude

that Ri should be

Ri = g0

(
r

r0

)ni+2

. (10)

On the other hand, 2i should satisfy

1
sinθ
=−sin2θ2′i − (2ni + 4)sinθ cosθ2i, (11)

which can be integrated by a method of variable coefficients.
The prime denotes a derivative. The solution is

2i =−
sgn(cosθ)

2(1+ ni)sin2θ
×

2F1

(
1
2
,1+ ni,2+ ni;sin2θ

)
.

(12)

Here, sgn is the signum function, and 2F1 is the hypergeo-
metric function. The entire interval (rin, rout) is divided into
four parts, as described in Appendix A, and β is found for
each part of the interval. β in the first part of the interval is

β1 =−ϕ+

I∑
i=1

c1,iR1,i21,i . (13)
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The coefficients c2,i , c3,i , and c4,i are determined for the re-
maining parts of the interval, which means that β is also de-
termined in these parts. The coefficients are different, and β
may initially experience jumps at the interfaces between one
part and another one and at the ends of the entire interval. The
jumps are removed with proper calibration of β. Romashets
and Vandas (2024) and Vandas and Romashets (2024) pro-
posed a technique which allows us to avoid the discontinu-
ities in β at interfaces. The β value in the second, third, and
fourth parts should be adjusted by the addition of functions
of α. Graphically, this can be explained as a plot of the differ-
ences between β from two adjacent intervals versus α along
the interface; see Vandas and Romashets (2024) for details.
Once this function f2(α) is determined, the continuous β, a
rectified β in the second part, is

β = β2+ f2(α). (14)

Similarly, in the third part,

β = β3+ f3(α), (15)

and this is analogous for the fourth part (see Appendix A for
details).

Knowledge of Bϕ in the transition layer – see Eq. (4) –
allows for explicit expressions of the current density compo-
nents and of the current density magnitude. Using the equa-
tion J = 1

µ0
∇×B, where µ0 is the vacuum magnetic perme-

ability, the components are

Jr = 0,

Jθ =−
3B0g0r0

µ01rr sinθ
sech2

[
6(r − rc)
1r

]
, (16)

Jϕ = 0.

The maximum current density is reached in the middle of the
layer.

3 Results

The ϕ component of the magnetic field in the entire in-
terval for θ = π/6 is shown in Fig. 1. We use g0 = 0.006,
which corresponds to significant geomagnetic activity levels
(Romashets and Vandas, 2020, 2022). The electric-current-
density θ component from Eq. (16) is depicted in Fig. 2.
The fit of the step-up function in the ionosphere is shown
in Fig. 3.

Using α from Eq. (1) and the rectified β value, we calcu-
lated the magnetic field using

B =∇α×∇β (17)

and numerical differentiation. The original ϕ component of
the magnetic field – see Eq. (4) – is compared to that calcu-
lated with Eq. (17) in Fig. 4. The coincidence is excellent.

Figure 1. The ϕ component of the magnetic field in the ionosphere
for θ = π/6 from Eq. (4). The interval (rin, rout) is marked by
dashed vertical lines.

Figure 2. The θ component of the electric-current density in the
ionosphere for θ = π/6 from Eq. (16). The interval (rin, rout) is
marked by dashed vertical lines.

4 Discussion

The transition from one region to another one in terms of
Cartesian coordinates can demonstrate the approach better.
Let us consider a planar layer −x0 < x < x0. The pair of Eu-
ler potentials in the layer is as follows:

α = B0

(
y−

x

2
−
x0

6
logcosh

3x
x0

)
, β = z. (18)

Then, the y component of the magnetic field calculated with
these α and β changes smoothly and has the following form:

By =
1
2
B0

(
1+ tanh

3x
x0

)
. (19)
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Figure 3. Fit of the step-up function of Eq. (7) (red line), obtained
by a sum of power functions, as in Eq. (8) (dashed blue line), in
the ionosphere. The interval (rin, rout) is marked by dashed vertical
lines.

Figure 4. The given (red line) and modeled (dashed green line) ϕ
component of the magnetic field in the ionosphere. The model Bϕ
was calculated from α and β by means of numerical differentiation.
The interval (rin, rout) is marked by dashed vertical lines.

This magnetic-field component is plotted in Fig. 5. There is
a smooth change from By ≈ 0 at x =−x0 to By ≈ B0 at x =
x0. The dependence of α on x is demonstrated in Fig. 6. The
current density in the layer has only a z component,

Jz =
3B0

2µ0

sech2 3x
x0

x0
. (20)

Its maximum (Jmax) is reached in the middle of the layer.
The profile of the electric-current-density z component given
by Eq. (20) is depicted in Fig. 7. In Cartesian coordinates,
one can easily deal with both of the tangential-to-the-layer

Figure 5. By in the layer.

Figure 6. Euler potential α in the layer for y = 0.

coordinates and provide a smooth transition from their values
in one region to those in another.

Returning to our spherical system in the ionosphere, it is
interesting to see that, in addition to the toroidal component
above the ionosphere, which is associated with the θ compo-
nent of the current density in the ionosphere, we can also con-
sider the transition of the poloidal (θ ) component of the mag-
netic field. The magnetic field above the ionosphere is pro-
vided by the scalar potential 9, applicable for θ1 > θ > θ2,
where the magnetic-field components are finite:

9 = B0r0g0
cosϕ
√

1− cosθ
√

1+ cosθ
. (21)
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Figure 7. Current density in the layer.

They are given by

Br = 0, (22)

Bθ =
B0r0g0 cosϕ
r(1+ cosθ)

, (23)

Bϕ =−
B0r0g0 sinϕ

√
1− cosθ

r sinθ
√

1+ cosθ
. (24)

This field is current-free. The magnetic field in the iono-
sphere has components as given by Eqs. (22)–(24), but with
each multiplied by the function st from Eq. (7). In a sim-
ilar fashion, as described in the Method section, the Euler
potentials and current density in the ionosphere are found.
Combining Eq. (3) and Eqs. (22)–(24), we can model locally
a real ratio between Pedersen and Hall currents. The radial
component is absent in Eqs. (22)–(24); this is a tangential
discontinuity due to the special selection of the harmonic in
Eq. (21), which does not depend on r .

The results of calculations depend on Bϕ outside of the
ionosphere; it is the input of the model. Different Bϕ values
will lead to different profiles in the ionosphere. We divide the
ionosphere into four intervals, which enables us to consider
inhomogeneities in the r direction. The tanh function is used
for every interval. On the other hand, because the problem of
finding the magnetic field in the ionosphere is solved locally,
for specific ϕ and θ , this will describe inhomogeneities in the
ϕ and θ directions as well.

5 Conclusions

It is important to construct the Euler potentials α and β for
the study of charged-particle motion in a given medium. It
is especially convenient to have α and β expressed in a com-
pact analytical form. In this work, we found continuous Euler
potentials in the finite-thickness contact discontinuity and ap-

plied them for the shell currents in the ionosphere. The result
opens the way for studies of the fine structure of such kinds
of discontinuities in solar wind, the magnetosphere, and in-
terstellar space. The procedure consists of three steps. First,
the magnetic field in the interface region is obtained, which
represents a smooth transition from the magnetic field on one
side to that on another side. Second, the region is divided
into four parts, and the Euler potentials are derived for each
of them. One of the potentials, α, is the same, but there are
four β functions, one for each part of the interval. Next, be-
cause the addition of a function of α to β does not change
the resulting magnetic field, we add needed functions to β
functions in each part of the interval and provide continuity
of β in the interface region (the ionosphere in our case) and
at its boundaries.

Appendix A: Determination of coefficients ci and
rectification of β

We divide the interval 〈rin, rout〉 into four subintervals of
equal length: 〈rin, r12〉, 〈r12, r23〉, 〈r23, r34〉, and 〈r34, rout〉,
where r12 = rin+(rout−rin)/4, r23 = rin+2(rout−rin)/4, and
r34 = rin+3(rout−rin)/4. For each subinterval, we determine
the coefficients separately. Let us consider the first subinter-
val. We require∫ 1

2 (rin+r12)+
1
61r

1
2 (rin+r12)−

1
61r

[sm(r)− st(r)]2dr

=

∫ 1
2 (rin+r12)+

1
61r

1
2 (rin+r12)−

1
61r

[
I∑
i=1

c1,i

(
r

r0

)ni
− st(r)

]2

dr

=min,

(A1)

where the integration is over an interval of length 1r/3,
which symmetrically overlaps with the subinterval in play.
Following the standard procedure for minimization, we dif-
ferentiate Eq. (A1) by c1,k and set it to zero, finally obtaining

∑I

i=1
c1,i

∫ 1
2 (rin+r12)+

1
61r

1
2 (rin+r12)−

1
61r

(
r

r0

)ni+nk
dr

=

∫ 1
2 (rin+r12)+

1
61r

1
2 (rin+r12)−

1
61r

st(r)
(
r

r0

)nk
dr,

(A2)

which, for k = 1, . . ., I , represents a set of linear equations
that are solved for c1,i . The integrals on the left-hand side
of Eq. (A2) can be calculated analytically. We proceed in
the same way for the remaining subintervals 2–4 and thus
obtain four sets of the ci coefficients, which determine four
functions, β1, β2, β3, and β4, by means of Eq. (13). These
functions are independent, and one cannot expect that neigh-
boring β functions will have the same values at the interface
(e.g., β1 and β2 at r12); Fig. A1a demonstrates this.
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Figure A1. The Euler potential β (a) before and (b) after additions of the functions f (α).

To make β continuous in the whole interval 〈rin, rout〉, we
follow a procedure of rectification described in Vandas and
Romashets (2024). This procedure relies on the fact that,
when a function of α is added to β, it has no effect on the
related magnetic field. We define β = β1 for r < r12. The β2
value is adjusted in the following way. The α value at the in-
terface r12, α = B0r

3
0 sin2θ/r12, is a function of θ only. We

introduce its inverse function:

θ12(α)= arcsin

√
αr12

B0r
3
0
. (A3)

The adjusted β2 value, denoted as β2a, is

β2a(r,θ,ϕ)=β2(r,θ,ϕ)+β1{r12,θ12[α(r,θ)],0}

−β2{r12,θ12[α(r,θ)],0}.
(A4)

We define β = β2a for r ∈ 〈r12, r23〉. Similarly, the adjusted
β3 value is

β3a(r,θ,ϕ)=β3(r,θ,ϕ)+β2a{r23,θ23[α(r,θ)],0}

−β3{r23,θ23[α(r,θ)],0},
(A5)

and this is analogically the case for β4a. We define β = β3a
for r ∈ 〈r23, r34〉 and β = β4a for r > r34. This rectified β is
shown in Fig. A1b.
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