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Abstract. F10.7, the solar flux at a wavelength of 10.7 cm
(F10.7), is often used as an important parameter input in var-
ious space weather models and is also a key parameter for
measuring the strength of solar activity levels. Therefore, it is
valuable to study and forecast F10.7. In this paper, the tempo-
ral convolutional network (TCN) approach in deep learning
is used to predict the daily value of F10.7. The F10.7 series
from 1957 to 2019 are used. The data during 1957–1995 are
adopted as the training dataset, the data during 1996–2008
(solar cycle 23) are adopted as the validation dataset, and
the data during 2009–2019 (solar cycle 24) are adopted as
the test dataset. The leave-one-out method is used to group
the dataset for multiple validations. The prediction results for
1–3 d ahead during solar cycle 24 have a high correlation co-
efficient (R) of 0.98 and a root mean square error (RMSE)
of only 5.04–5.18 sfu. The overall accuracy of the TCN fore-
casts is better than the autoregressive (AR) model (it only
takes past values of the F10.7 index as inputs) and the results
of the US Space Weather Prediction Center (SWPC) fore-
casts, especially for 2 and 3 d ahead. In addition, the TCN
model is slightly better than other neural network models
like the backpropagation (BP) neural network and long short-
term memory (LSTM) network in terms of the solar radiation
flux F10.7 forecast. The TCN model predicted F10.7 with a
lower root mean square error, a higher correlation coefficient,
and a better overall model prediction.

1 Introduction

Solar activity has a significant impact on the Earth’s climate,
electromagnetic fields, and communication systems, among
other things. F10.7 (2800 MHz, 10.7 cm solar flux) is a typical
parameter for characterizing solar activity levels, represent-
ing the cyclical variability of solar activity (Tapping, 2013).
The F10.7 index is an important parameter for predicting at-
mospheric density for spacecraft orbits and ionospheric fore-
casts affecting communication. For example, F10.7 is used
as a control parameter in ionospheric models to calculate
the variation of radio signal properties (Ortikov et al., 2003).
F10.7 is also widely used for satellite, navigation, communi-
cation, and terrestrial climate (Huang et al., 2009; Yaya et al.,
2017). Therefore, accurate forecasting of F10.7 is not only of
great value for the conduct of application but is also of com-
parative importance in the scientific study of space weather
forecasting (Katsavrias et al., 2021; Simms et al., 2023).
F10.7 has a clear periodicity, e.g., 27 d, 11 years. But the

cycles are not simply repetitive but have similar but differ-
ent fluctuations, so the core of the F10.7 prediction problem
for time series data is to uncover the potential patterns of
historical data and predict the future data as far as possible
(Lampropoulos et al., 2016). The F10.7 index forecast model
is based on a time series model. Many researchers have used
different methods to build predictive models for F10.7. Mord-
vinov (1986) used a multiplicative autoregressive model to
forecast the monthly mean F10.7, but the model had a large
error in predicting it. Warren et al. (2017) built optimized
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independent models for each forecast date, and the results
showed that this approach typically had better prediction skill
than autoregressive methods. Zhong et al. (2010) utilized
the singular-spectrum analysis signal processing technique to
predict the F10.7 index of solar activity for the next 27 d. The
research result indicated that the method performed well in
predicting the periodic variations of the F10.7 index. Henney
et al. (2012) predicted F10.7 using the global solar magnetic
field generated by the energy transport model, with a Pearson
correlation coefficient of 0.97 for 1 d ahead. Liu et al. (2018)
applied two models by Yeates et al. (2007) and Worden and
Harvey (2000) to predict short-term variability in F10.7 . Dur-
ing low levels of solar activity, the predicted values of the
model were closer to the observed values.

With the rapid development of machine learning and neu-
ral networks, researchers are increasingly intrigued by the
powerful learning capabilities of machine learning and neu-
ral networks, using them to study variations in solar activity.
The support vector machine regression method was used by
Huang et al. (2009) to predict daily values of solar activity
F10.7. Xiao et al. (2017) used the backpropagation (BP) neu-
ral network to forecast the daily-mean F10.7 index of solar ac-
tivity for short-term prediction. The results showed that using
BP neural networks to predict the solar activity daily F10.7
index was superior to the results of Huang et al. (2009). Luo
et al. (2020) proposed a method for predicting the 10.7 cm
radio flux in multiple steps. The method is a combination
of the empirical mode decomposition (EMD) and BP neural
network to construct an EMD–BP model for predicting F10.7
values. The method significantly reduces the prediction error
for high levels of solar activity compared to support vector
machine regression (SVR) and the BP neural network. Zhang
et al. (2022) proposed a short-term forecast of the solar activ-
ity daily-mean F10.7 index using a long short-term memory
(LSTM) network method. The forecast had a high correla-
tion coefficient (R) of 0.98 and a low root mean square error
(RMSE) range of 6.20–6.35 sfu. Although the above recur-
rent neural network (RNN)-based architecture and its vari-
ants achieved a good prediction accuracy of F10.7, the train-
ing process of a model often spends a significant amount
of time and computational memory and also frequently en-
counters issues such as gradient explosion or vanishing gra-
dients during network training (Lipton et al., 2015; Yang et
al., 2021). To this end, Bai et al. (2018) proposed a neural
network called the temporal convolutional network (TCN),
in which long input sequences can be processed as a whole
in the TCN. TCNs use convolutional operations for efficient
parallel computation. In addition, the backpropagation path
of TCNs is different from the time direction of the sequence,
which makes TCNs avoid the gradient problem in RNN.
Given the above advantages and for the variability character-
istics of F10.7 time series data, this paper introduces machine-
learning-based TCN-related theories and techniques into the
forecasting of F10.7 and compares the results of TCN predic-

tion with other classical models to verify their effectiveness
and feasibility in short-term forecasting.

2 Data and method

2.1 Data source and data processing

F10.7 represents the solar radiation flux at a wavelength of
10.7 cm, and the magnitude of this index describes the in-
tensity of solar activity. The 10.7 cm solar flux is given in so-
lar flux units (1 sfu= 10−22 W m−2 Hz−1). The 10.7 cm daily
solar flux data were obtained from the website of the Na-
tional Oceanic and Atmospheric Administration. Three flux
determinations are done each day. Each 10.7 cm solar flux
measurement is expressed in three values: the observed, ad-
justed, and URSI Series D values (absolute values). The ob-
served value is the number measured by the solar radio tele-
scope. This is modulated by two quantities: the level of so-
lar activity and the changing distance between the Earth and
Sun. Since it is a measure of the emissions due to solar ac-
tivity hitting the Earth, this is the quantity to use when ter-
restrial phenomena are being studied (Tapping, 1987). When
studying the Sun, it is undesirable to have the annual modula-
tion of the 10.7 cm solar flux caused by the changing distance
between the Earth and Sun. However, during the ephemeris
calculations required for the solar flux monitors to accurately
acquire and track the Sun, one of the byproducts obtained is
the distance between the Sun and the Earth. Therefore, we
generate an additional value called the adjusted value, which
takes into account the variations in the Earth–Sun distance
and represents the average distance. Absolute measurements
of flux density are quite difficult. Astronomers attempt to
match the solar flux density data at various frequencies with
a frequency spectrum by applying a scale factor. By combin-
ing each wavelength with the calibrated spectrum, a series of
D flux is obtained, whereD flux equals 0.9 multiplied by the
adjusted flux (Tanaka et al., 1973).

Between March and October measurements are made at
17:00, 20:00 (local noon), and 23:00 UT. However, the com-
bination of location in a mountain valley and a relatively high
latitude makes it impossible to maintain these times during
the rest of the year. Consequently, from November to Febru-
ary, the flux determination times are changed at 18:00, 20:00,
and 22:00, so that the Sun is high enough above the horizon
for a good measurement to be made. Therefore, we chose
the adjusted flux value of F10.7 measured at 20:00 UT (local
noon). The data during 1957–1995 are adopted as the train-
ing dataset, the data during 1996–2008 (solar cycle 23) are
adopted as the validation set, and the data during 2009–2019
(solar cycle 24) are adopted as the test set. Figure 1 shows
the data. The black line represents the training dataset, the
red line represents the validation dataset and the blue line is
the testing dataset.
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Figure 1. The daily values of the F10.7 index from 1957 to 2019.
The black line represents the training set (solar cycles 19–22), red
represents the validation set (solar cycle 23), and blue represents the
test set (solar cycle 24).

In this paper, the hardware environment used for the so-
lar radiation flux F10.7 experiment is NVIDIA® GeForce
940MX, CPU is Inter® Core™ i5-6200. We build a model
using Python and utilize some efficient frameworks includ-
ing Pandas, Matplotlib, TensorFlow, and Sklearn. Pandas is a
powerful data analysis library that provides several methods
for processing and analyzing the parameters of the solar flux
F10.7, such as selective sorting, merging, and aggregating.
Matplotlib is a plotting Python library that provides a rich set
of customization options for this paper to visualize the pre-
dicted results of the solar flux F10.7 as well as to analyze the
related results. Sklearn is an open-source, third-party library
for machine learning model training and big data mining that
provides a unified interface for many machine learning al-
gorithms and a number of tools for evaluating model perfor-
mance and tuning hyperparameters. TensorFlow is also an
open-source machine learning library for building, training,
and deploying a variety of model types, including regression,
classification, and convolutional neural network and recur-
rent neural network construction. In this paper, the network
construction, training, parameter tuning, and evaluation of
the prediction model for solar radiation flux F10.7 are based
on the above two machine learning libraries.

2.2 Method

The TCN was proposed by Bai et al. (2018). Some scholars
have demonstrated that the TCN not only achieves better per-
formance but also reduces the computational cost for train-
ing, compared to that of RNN (Lea et al., 2017; Bai et al.,
2018; Dieleman et al., 2018). The TCN combines both RNN
and convolutional neural network (CNN) architectures and
is a convolutional neural network variant designed to han-
dle time series modeling problems. The TCN is well adapted
to the temporal nature of the data using both causal and ex-
tended convolutional structures to extract feature informa-
tion. The convolutions in the TCN are causal, meaning there
is no information leakage from future time steps. This distin-
guishes the TCN from other recurrent neural networks such

Figure 2. Diagram of F10.7 sequence data prediction. The blue part
represents the original sequence, the green part represents the in-
put subsequence, and the orange part represents the overlap and the
actual predicted lengths.

as LSTM and GRU (gated recurrent unit) networks, which re-
quire gate mechanisms. As a result, the TCN achieves higher
accuracy and longer memory without the need for gate mech-
anisms. Long input sequences can be processed as a whole
in the TCN. The TCN does not have the advantages of gra-
dient disappearance and gradient explosion problems. Here,
the TCN is introduced to model the prediction of F10.7.

For the prediction of a univariate time series, the TCN
model takes lagged observations of the time series as inputs
and predicts future F10.7 sequence values as outputs. Each set
of input patterns consists of moving a fixed-length window in
the time series. The principle of forecasting is represented in
Fig. 2. The original F10.7 data are lengthy, and during train-
ing, a continuous subsequence needs to be inputted. The out-
put and input lengths of the temporal convolutional network
(TCN) are equal, meaning the length of the output sequence
generated by the TCN is equal to the specified input length.
To meet the prediction requirements, the specific number of
steps to forecast (referred to as output length) should not ex-
ceed input length, allowing for partial overlap between the
input and output sequences.

Supposed the input of F10.7 is x = (x0,x1, . . .,xT ), the
desired output sequence is y = (y0,y1, . . .,yT ), where the
two sequences x,y satisfy the causal relationship. The in-
put x0,x1, . . .,xt−1 observed at the previous moment be used
to predict the output yt at moment t . The modeling objec-
tive of the TCN is to generate any hidden function mapping,
which means that the prediction of the F10.7 sequence can be
represented as

ŷ1, . . ., ŷT+1 = f (x0,x1, . . .,xi, . . .,xT ), (1)

where xi and ŷi are the observed and predicted values of
F10.7 at time i, respectively, and f is the mapping of the func-
tion trained by the TCN.

The TCN is one of the algorithms developed on the basis
of the convolutional neural network (CNN). The CNN uses
a one-dimensional convolutional network, consisting of an
inflated causal convolution and a residual module.
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One-dimensional convolution operates on time series and
extracts various features, but as the length of the time se-
ries grows, a regular convolutional network requires more
convolutional layers to receive longer sequences. Extended
convolution, on the other hand, improves on convolution by
allowing interval sampling of the input for convolution with
a number of layers L and a convolution kernel of size k with
an acceptance domain of

r = 2(L−l)k. (2)

The causal extended convolution operation F for element
s in a time series is defined as

F(s)= (x∗f )(s)=

k−1∑
i=0

f (i) · xs−d·i, (3)

where x = (x0,x1, . . .,xT ) is the input vector, d is the expan-
sion factor, ∗ is the causal expansion convolution operator, f
is the convolution kernel vector, k is the convolution kernel
size, and s− d · i indicates the past direction of the input.

The expanding causal convolution for a convolution ker-
nel size k of 3 is illustrated in Fig. 3, where the output y1 at
moment t is determined by the current input as well as the
previous inputs; i.e., x0,x1, . . .,xn. This shows that the pre-
dicted output is not affected by future information and there-
fore avoids information leakage. In addition, the introduction
of the expansion factor d to the input of the convolutional
layer matrix is sampled at intervals. In the first hidden layer,
the sampling interval rate d = 1, which represents each point
of the input, is sampled. In the second hidden layer, the sam-
pling interval rate d = 2; i.e., every two points are taken, ig-
noring one neuron. At higher layers, d grows exponentially,
thus allowing for fewer layers to achieve a larger receptive
field with fewer layers. The expanding causal convolution
can be adjusted by varying the number of layers, perceptual
field size, convolution kernel size, and expansion coefficient.
This helps to address the challenge in CNNs where the length
of temporal modeling is limited by the size of the convolution
kernel. Compared to traditional neural networks like LSTM
and BP, the TCN overcomes issues such as gradient vanish-
ing and exploding. At the same time, the TCN possesses ad-
vantages such as lower memory consumption, stable gradi-
ent, improved parallelism, and flexible perceptual field.

The structure of the residual module in the TCN is shown
in Fig. 4. ReLU (rectified linear unit) is used as an activa-
tion function. To avoid the problem of gradient explosion,
the weight normalization layer is added. To avoid overfit-
ting, a dropout layer is added for regularization. The resid-
ual links allow the network to pass information across layers,
thus avoiding information loss due to too many layers. Resid-
ual convolution is introduced for layer hopping, and 1× 1
convolution is performed to ensure that the input and output
remain consistent.

Figure 3. Expansion causal convolutional structure diagram.

Figure 4. Expansion causal convolutional structure diagram.

2.3 Selection of training parameters

A key component of the machine learning model training
process is called the loss function, which gives direction
to the optimization of the model by measuring the differ-
ence between the model output ŷ and the observation y.
The smaller the loss function, the better the robustness of
the model. The L1 norm loss function is extensively utilized
in deep learning tasks (Zhao et al., 2017). It possesses a no-
table advantage of being insensitive to outliers and excep-
tional values, consequently avoiding the gradient explosion
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issue. Moreover, the loss function provides a more robust so-
lution by offering stability. Therefore, the L1 loss function is
chosen to construct the loss function for the predicted and ob-
served values of the F10.7 sequence. The function is defined
as

L(ŷ,y)=

n∑
i=0
|ŷi − yi |, (4)

where ŷi is the predicted value of F10.7 at moment i, and yi
is the observed value of F10.7 at moment i.

To build the TCN model that is not merely a linear regres-
sion model, it is essential to introduce nonlinearity by adding
a ReLU activation function at the top of the convolutional
layers. The function is defined as

f (x)=max(0,x), (5)

where x = (x0,x1, . . .,xT ) is the input vector.
To counteract the problem of gradient explosion, weights

are normalized at each convolutional layer. To prevent over-
fitting, each convolutional layer is followed by a dropout for
regularization. After several training sessions, the optimal
parameters for model training are shown in Table 1.

2.4 Forecast evaluation criteria

In order to quantify the forecast performance of the model,
we chose five evaluation metrics. The chosen performance
metrics include the mean absolute error (MAE), the mean
absolute percentage error (MAPE), and the root mean square
error (RMSE) for accuracy; the correlation coefficient (R) for
association; and the error (σ ) for bias. Five commonly used
model evaluation metrics were employed to assess predictive
performance (Liemohn et al., 2021).

MAE=
1
N

N∑
i=1
| fi −Fi | (6)

RMSE=

√√√√ 1
N

N∑
i=1
(fi −Fi)

2 (7)

MAPE=
1
N

N∑
i=1
| fi −Fi |

fi
(8)

R =

N∑
i=1
(fi − f )(Fi −F)√

N∑
i=1
(fi − f )2

√
N∑
i=1
(Fi −F)2

(9)

σ = fi −Fi, (10)

where MAE denotes the mean absolute error, MAPE denotes
the mean absolute percentage error, RMSE denotes the root

mean square error, R denotes the linear correlation coeffi-
cient, N denotes the number of samples, fi denotes the fore-
cast, Fi denotes the observation, f is the mean of fi , and F
is the average of Fi . Each indicator evaluates the model in a
different perspective. Among them, MAE represents the av-
erage absolute error between predicted values and actual val-
ues. RMSE represents the root mean square error between
predicted values and actual values. R represents the degree
of trend fitting between predicted values and actual values.
σ represents the error between predicted values and actual
values. Therefore, the smaller the MAE, MAPE, and RMSE
and the larger the R, the better the model prediction.

3 Results and discussion

The TCN model is used to predict the values of F10.7 for
1–3 d ahead. Table 2 shows the evaluation metrics of TCN
model predictions compared to observations for different
years of the 24 solar cycle. The table represents the perfor-
mance of the TCN model in different years. In Table 2, it
can be seen that the TCN model predicts F10.7 with a root
mean square error (RMSE) ranging from 1 to 9 sfu for 1 d
ahead and an average absolute error (MAE) ranging from
0 to 6 sfu. The highest correlation coefficient reaches up to
0.98. For 2 and 3 d ahead, the RMSE ranges from 1 to 9 sfu,
the MAE ranges from 1 to 6 sfu, and the highest correlation
coefficient remains at 0.98. Irrespective of the lead time, be it
1, 2, or 3 d, the TCN model demonstrates consistent perfor-
mance with relatively small ranges of root mean square error
and mean absolute error, accompanied by a consistently high
correlation coefficient. The results demonstrate the stability
of the TCN model. However, the magnitude of prediction er-
rors for 1–3 d ahead forecasts varies across different years.
For example, the RMSE for a 1 d ahead forecast is 1.09 sfu
in 2009, while its value is 8.88 sfu in 2014. Li et al. (2023)
defined the years in which the mean value of F10.7 is greater
than 110 sfu as having high solar activity and the years in
which the mean value is less than 110 sfu as having low solar
activity. In this paper, the annual average of F10.7 from 2011
to 2015 is greater than 110 sfu, so the years from 2011 to
2015 are called high-solar-activity years, and the remaining
years are called low-solar-activity years. Table 2 shows that
solar activity has a periodic effect, and the prediction accu-
racy of the model is negatively correlated with the intensity
of solar activity. The magnitude of error is related to the year
of high and low solar activity.

To further validate the performance of the model, we use
the leave-one-out method for cross-validation (Aminalragia
et al., 2020). We leave iteratively one solar cycle out as a
test dataset and rerun the model each time (e.g., keep solar
cycle 23 as the test dataset and train the model with the re-
maining solar cycles and then keep solar cycle 22 as the test
dataset and train the model with the remaining solar cycles).
The results of the tests are shown in the Table 3. It can be
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Table 1. Training parameters of the TCN model.

Parameter Value Parameter explanation

batch_size none Batch size
time_steps 20 Step length
epochs 30 Number of training sessions
input_dim 1 Dimension
input_shape 20 Input shape size
tcn_layer.receptive_field / Perceptual wildness of the convolutional layer
Dense(1) / Fully connected layer
optimizer Adam Optimizer
loss L1 Loss function
activation= ReLU Activation function
filters 64 Number of channels for the input and output of the convolution kernel
kernel_size 3 Convolution kernel size
stacks 1 Determination of the depth of the network
dilations {1,2,4,8,16,32} Expansion coefficient
padding causal Fill factor

Table 2. The prediction errors (MAE, RMSE) and R of the TCN model for the F10.7 data during 2009–2019.

Year 1 d ahead 2 d ahead 3 d ahead

MAE RMSE R MAE RMSE R MAE RMSE R

(sfu) (sfu) (sfu) (sfu) (sfu) (sfu)

2009 0.77 1.09 0.9279 1.05 1.29 0.9308 1.20 1.49 0.9274
2010 1.66 2.27 0.9131 1.59 2.14 0.9146 1.82 2.44 0.9093
2011 3.37 5.11 0.9774 3.37 5.11 0.9773 3.47 5.19 0.9771
2012 4.39 6.53 0.9375 4.40 6.60 0.9353 4.43 6.61 0.9363
2013 3.59 4.88 0.9690 3.62 4.96 0.9673 3.58 4.95 0.9677
2014 5.87 8.88 0.9460 5.87 8.96 0.9442 5.65 8.97 0.9451
2015 4.12 8.28 0.9099 4.13 8.25 0.9100 4.00 8.23 0.9107
2016 2.15 2.99 0.9662 2.24 2.99 0.9654 2.20 3.02 0.9662
2017 1.97 4.64 0.9072 2.16 5.51 0.8696 2.23 5.51 0.8778
2018 0.84 1.15 0.9323 1.26 1.50 0.9330 1.12 1.43 0.9292
2019 0.80 1.17 0.9044 1.19 1.52 0.9073 1.15 1.47 0.9048

Total 2.69 5.04 0.9860 2.80 5.16 0.9852 2.81 5.18 0.9854

seen that cycles with stronger solar activity are found to have
larger model forecast errors. For cycles with weaker solar ac-
tivity, the results are better. Solar cycles 20 and 24 have about
the same intensity of solar activity and are both weaker. The
model forecasts are better. Solar cycles 21 and 22 have about
the same intensity of solar activity and are both stronger. The
model forecasts are poorer. However, the overall average pre-
diction results do not change much compared to solar cycle
24. The prediction accuracy of the model is negatively cor-
related with the intensity of solar activity. The results show
that the change of prediction accuracy of the model is related
to the intensity of solar activity. The F10.7 data have a solar
cycle effect. The TCN model does not largely affect the final
F10.7 forecasts due to specific properties of the data.

Figure 5 displays the frequency distribution of the differ-
ence between the observed value and the predicted value of

the model. To maintain the compactness of the histogram,
differences greater than 15 sfu and smaller than −15 sfu are
not displayed. As can be seen from Fig. 5, the prediction dif-
ferences for 2 d ahead are skewed towards the right. The dif-
ferences in predictions for 3 d ahead are skewed towards the
left. Despite these differences, frequency is maximized when
the difference between the observed and predicted values is
in the vicinity of zero, and most predictions (88.5 % of the
1–3 d ahead forecast) were located within ±6 sfu of error.

The high-solar-activity years of 2013–2014 and the low-
solar-activity year of 2018 are chosen for comparison in so-
lar cycle 24. We chose predicted values from 15 January to
15 February in 2013, 2014, and 2018 to compare with ob-
served values and improve image representation. Figure 6
shows the predicted effects for high-solar-activity years in
panels (a)–(b) and the low-solar-activity year in panel (c)
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Table 3. The prediction errors (MAE and RMSE) and R of the TCN model for the F10.7 data during different solar cycles.

Solar cycle 1 d ahead 2 d ahead 3 d ahead

MAE RMSE R MAE RMSE R MAE RMSE R

(sfu) (sfu) (sfu) (sfu) (sfu) (sfu)

19 4.35 9.03 0.9880 4.29 7.84 0.9908 4.42 8.51 0.9897
20 3.35 5.16 0.9924 3.86 5.76 0.9928 3.40 5.37 0.9926
21 4.59 7.51 0.9921 4.48 7.16 0.9927 4.65 7.45 0.9930
22 4.71 7.89 0.9908 5.36 8.57 0.9908 4.75 8.05 0.9903
23 3.76 6.46 0.9917 4.30 7.01 0.9915 3.91 6.73 0.9912
24 3.03 5.60 0.9846 2.78 5.49 0.9833 3.23 5.52 0.9850

Mean 3.97 6.94 0.9899 4.18 6.97 0.9903 4.06 6.94 0.9903

Figure 5. Frequency distribution of the difference between the observed values and the model predictions during 2009–2019 (solar cycle 24)
for 1 d ahead (a), 2 d ahead (b), and 3 d ahead (c).

in solar cycle 24. The black line represents observed val-
ues, while the blue dots represent predicted values. As can
be seen from Fig. 6, it shows that the TCN model effectively
predicts the trend of F10.7 and exhibits good agreement in
terms of magnitude between the observed and predicted val-
ues for the majority of the time. Especially during the peak of
F10.7, the TCN model’s predictions align well with the actual
values, and it performs exceptionally well during periods of
high solar activity.

To assess the model’s effectiveness, we compare the
TCN model’s forecasting results with those of the
US Space Weather Prediction Center (SWPC) fore-
cast (https://www.swpc.noaa.gov/sites/default/files/images/
u30/F10.7SolarFlux.pdf, last access: 9 April 2024) and the
AR model (Du, 2020) for 1–3 d ahead. Furthermore, we com-
pare the predictions with the BP model (Xiao et al., 2017)
and LSTM (Zhang et al., 2022) for 3 d ahead.

Figure 7 shows the prediction results of the SWPC com-
pared to the TCN model for 1 d ahead in panel (a), 2 d ahead
in panel (b), and 3 d ahead in panel (c). The blue bars rep-

resent the predicted outcome parameters for the SWPC, and
the yellow bars represent the predicted outcome parameters
for the TCN model. Figure 7 shows that the TCN model’s
predictions are generally better than the forecasts of the
SWPC. Compared with F10.7 values for 1–3 d ahead, the
TCN model’s prediction for 1 d ahead is only 0.07 sfu higher
than the SWPC forecast in 2012, while in other years, the
TCN model consistently outperformed the SWPC forecast.
Particularly for predictions 2 and 3 d ahead, the TCN model’s
performance is significantly better than the SWPC forecast.
The RMSE of the TCN is 5.11 sfu for 1 d ahead, while the
RMSE of the SWPC is 5.61 sfu in 2011. The RMSE of the
TCN is 0.50 sfu lower than the SWPC, representing a rela-
tive decrease of 10 %. For prediction 2 d ahead, the RMSE of
the TCN is 5.11 sfu, while the SWPC of RMSE is 9.17 sfu in
2012. The RMSE of the TCN is approximately 4.06 sfu lower
than the SWPC, representing a relative decrease of 79 %.
For prediction 3 d ahead in 2011, the RMSE of the TCN
is 5.19 sfu, while the RMSE of the SWPC is 11.46 sfu. The
RMSE of the TCN is approximately 6.27 sfu lower than the
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Figure 6. Predicted effects for high-solar-activity years in (a)–(b) and the low-solar-activity year in (c) for 1 d ahead in solar cycle 24. The
black line represents observed values, while the blue dots represent predicted values

SWPC, representing a relative decrease of 120 %. All these
results show that the TCN model proposed in this paper has
a better performance relative to the SWPC model. The TCN
model is feasible for F10.7 prediction.

Figure 8 shows the prediction results of the AR model
compared to the TCN model for 1 d ahead in panel (a), 2 d
ahead in panel (b) and 3 d ahead in panel (c). The blue
bars represent the predicted outcome parameters for the AR
model, and the yellow bars represent those for the TCN
model. As can be seen in Fig. 8, the TCN model outper-
forms the AR model overall in forecasting for 1–3 d ahead.
The TCN model only has forecasts that are 0.96 and 0.04 sfu
larger than the AR model pattern for 1 d ahead in 2014 and
2019, respectively. In addition, the TCN model outperforms
the AR model in forecasting for both 2 and 3 d ahead. The
RMSE of the TCN is only 5.19 sfu for predicting outcomes
for 3 d ahead in 2011, while the RMSE of the AR model is
10.43 sfu. The stability and prediction accuracy of the TCN
model in predicting F10.7 are again verified.

A comparison of the TCN model with other commonly
used neural network models, like the BP model (Xiao et al.,
2017) and LSTM model (Zhang et al., 2022), for prediction
3 d ahead is shown in Table 4. The RMSE of BP and LSTM
models in predicting F10.7 in the high-solar-activity year of
2003 is 14.28 sfu and 7.04 sfu, respectively. However, the
RMSE of the TCN 3 d ahead is 4.71 sfu in 2003. The mean
absolute percentage error (MAPE) of BP and LSTM models
in predicting F10.7 in the low-solar-activity year of 2009 is
1.84 and 1.05, respectively. However, the MAPE of the TCN
3 d ahead is 1.49 in 2009, which is better than that of other
classical models. The TCN model predicts F10.7 better than
the LSTM and BP model. There could be three reasons for
such results. Firstly, the TCN model uses a structure of con-

volutional layers and residual connections, which enables it
to better capture long-term dependencies in time series data
(Bai et al., 2018). In comparison, although the LSTM model
can also handle long-term dependencies in sequential data,
its gated unit structure may not fully capture the complex
nonlinear relationships in the data (Zhang et al., 2022). On
the other hand, the BP model is simpler and lacks special-
ized structures for handling time series data, which may re-
sult in an ineffective capture of temporal features (Xiao et
al., 2017). The residual connections in the TCN model can
help mitigate the vanishing gradient problem and improve
the stability of the model. This is particularly important for
long-term prediction tasks, as the model needs to propagate
gradients through multiple time steps. In contrast, the LSTM
model may encounter issues of vanishing or exploding gradi-
ents in long-term prediction, leading to difficulties in training
and unstable predictions (Zhang et al., 2022). The BP model,
as a traditional feedforward neural network, may also face
similar problems. The TCN model possesses higher flexibil-
ity and adaptability, being able to automatically learn appro-
priate feature representations based on the characteristics of
the data. In comparison, the LSTM and BP models require
manual feature design and selection, which may not fully
leverage the information in the data. The adaptive nature of
the TCN model helps it better adapt to different time series
data and improve the accuracy of predictions. Therefore, it
is precisely because of the advantages mentioned above that
the TCN performs better in F10.7 prediction.

4 Conclusion

The F10.7 solar flux is an important indicator of solar activity.
Its applications in solar physics include serving as an indica-
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Figure 7. Comparison of the prediction performance of the SWPC and TCN for (a) 1 d ahead, (b) 2 d ahead, and (c) 3 d ahead during different
years.

Figure 8. Comparison of the prediction performance of the AR model and the TCN for (a) 1 d ahead, (b) 2 d ahead, and (c) 3 d ahead during
different years.

tor of solar activity level and predicting solar cycle charac-
teristics. In view of the long observation time and certain pe-
riodicity of F10.7, this paper introduces, for the first time, the
theory and technique related to the TCN based on machine
learning into the F10.7 sequence prediction of space weather.

Firstly, we analyze the ability of the TCN model to predict
daily F10.7 during solar cycle 24 using training samples from
1957 to 1995. In addition we use the leave-one-out method
for cross-validation. The results show that the change of pre-

diction accuracy of the model is related to the intensity of
solar activity. The TCN model does not large affect the fi-
nal F10.7 forecasts due to specific properties of the data. This
proves that the TCN model is robust to some extent.

Secondly, we compared the predictive performance of the
TCN model with the SWPC forecast results and autoregres-
sive (AR) model forecast results. The results show that the
TCN model outperformed the SWPC and AR models in
terms of prediction accuracy. The predictive accuracy of the

https://doi.org/10.5194/angeo-42-91-2024 Ann. Geophys., 42, 91–101, 2024



100 L. Wang et al.: Deep temporal convolutional networks for F10.7 radiation flux short-term forecasting

Table 4. Results of the TCN model’s forecast performance 3 d ahead compared to other models.

Year BP/TCN LSTM/TCN

RMSE MAPE R RMSE MAPE R

(sfu) (%) (sfu) (%)

2003 14.82/4.71 8.15/3.63 0.9937/0.9704 7.04/4.71 3.70/3.63 /
2004 9.74/3.14 7.05/3.12 0.9960/0.9612 5.14/3.14 3.22/3.12 0.9603/0.9612
2008 2.15/1.22 2.11/1.11 0.9996/0.9198 1.22/1.22 1.20/1.11 0.9200/0.9198
2009 1.84/1.49 1.91/1.40 0.9996/0.9540 1.05/1.49 1.07/1.40 /

TCN model does not significantly vary with the lead time
of short-term forecasts (1, 2, and 3 d). This demonstrates the
stability of the TCN model’s predictions.

Thirdly, the TCN model has been compared to other clas-
sic models such as the BP model and the LSTM model. The
TCN model outperformed these models with a lower root
mean square error (RMSE) and mean absolute percentage
error (MAPE). This validates the effectiveness and reliabil-
ity of the TCN model in predicting the F10.7 solar radio flux.
The TCN model is capable of capturing sudden increases or
decreases in F10.7, indicating extreme enhancements in solar
activity. Therefore, the TCN model has significant implica-
tions for predicting F10.7, as it can help us better understand
and forecast changes in solar activity.

Although the TCN method has proven to be a viable
method for predicting F10.7, there is still room for further
improvement in its predictive ability. Future work could at-
tempt to introduce the variable of sunspot number into the
model and use a more scientific approach to improve the gen-
eralization ability of the model.
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