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Abstract. The steady-state magnetosheath model has various
applications for studying the plasma and magnetic field pro-
file around the planetary magnetospheres. In particular, the
magnetosheath model is analytically obtained by solving the
Laplace equation for parabolic boundaries (bow shock and
magnetopause). We address the question, how can we uti-
lize the magnetosheath model by transforming into a more
general, empirical, non-parabolic magnetosheath geometry?
To achieve the goal, we develop the scalar-potential mapping
method which provides a semi-analytic estimate of steady-
state flow velocity and magnetic field in the empirical mag-
netosheath domain. The method makes use of a coordinate
transformation from the empirical magnetosheath domain
into the parabolic magnetosheath domain and evaluates a set
of variables (shell variable and connector variable) to uti-
lize the solutions of the Laplace equation obtained for the
parabolic magnetosheath domain. Our model uses two in-
variants of transformation: the zenith angle within the mag-
netosheath with respect to the direction to the Sun and the
ratio of the distance to the magnetopause and the thickness
of magnetosheath along the magnetopause-normal direction.
The use of magnetopause-normal direction makes a marked
difference from the earlier model construction using the ra-
dial direction as reference. The plasma flow and magnetic
field can be determined as a function of the upstream con-
dition (flow velocity or magnetic field) in a wide range of
zenith angles. The scalar-potential mapping method is com-
putationally inexpensive, using analytic expressions as much
as possible, and is applicable to various planetary magne-
tosheath domains.

1 Introduction

Steady-state plasma flow and magnetic field can be regarded
as a realization of potential field in the planetary magne-
tosheath region when the vorticity and the electric current
are ignored. In such a case, the potential is obtained by solv-
ing the Laplace equation, which was elegantly and analyti-
cally solved by Kobel and Flückiger (1994) for a parabolic
shape of magnetosheath (hereafter KF). The KF potential
was further extended to the stream function in the magne-
tosheath by Guicking et al. (2012). The KF solution made a
series of breakthroughs in magnetosheath research. One of
the most successful applications is the ability to track the
plasma parcel along the streamline in the modeled magne-
tosheath. The tracking method was extensively used to ob-
servationally study the mirror mode growth (e.g., Tatrallyay
et al., 2002; Génot et al., 2011) and the streamwise turbu-
lence evolution in the magnetosheath (Guicking et al., 2012).
Predictive models of plasma flow and magnetic field serve as
a useful tool when combined with the numerical simulation
or the observational data.

The KF potential is obtained using the assumption that
the planetary bow shock and magnetopause have a parabolic
shape sharing the same focal point. Empirical models of the
bow shock and magnetopause (fitted to the spacecraft data),
on the other hand, are not necessarily parabolically or co-
focally shaped. For example, the empirical Earth bow shock
model by Farris et al. (1991) and Cairns et al. (1995) has a
parabolic shape, but the focal point differs from that of the
KF solution. The empirical magnetopause model by Shue
et al. (1997) applies a power-law scaling to the parabolic
shape such that the magnetic field lines appear stretched in
the tail region. The gap between the KF parabolic magne-
tosheath and the empirical magnetosheath needs to be filled
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when applying the KF potential in the empirical magne-
tosheath.

Naively speaking, one wishes to find a conformal mapping
(angle-preserving mapping) from the KF parabolic mag-
netosheath onto a non-parabolic empirical magnetosheath
shape such as the analytic extension of magnetopause shape
(Narita et al., 2023). However, no general mathematical algo-
rithm is known so far to obtain the conformal mapping when
the spatial domain is not properly bounded. The problem lies
in the fact that the magnetosheath is bounded only by two
sides, i.e., the standing shock and the magnetopause in the
radial direction to the planet, but it is not bounded along the
flow in the tail region. The algorithms of numerical confor-
mal mapping are so far proposed for spatially bounded do-
mains (Papamichael and Whiteman, 1973; Chakravarthy and
Anderson, 1979; Fornberg, 1980; Karageorghis et al., 1996)
or domains with a closed shape of internal boundaries (Wei
et al., 2014).

Here we address the question, how can we utilize the
KF magnetosheath model by transforming into a more gen-
eral, empirical, non-parabolic magnetosheath geometry? To
achieve the goal, we develop a mapping method which pro-
vides a semi-analytic estimate of steady-state flow velocity
and magnetic field in the empirical magnetosheath domain.
Our scalar-potential mapping method is computationally in-
expensive by using the analytic expression as much as possi-
ble, and it is applicable to various planetary magnetosheath
domains.

This work is organized in the following fashion. Af-
ter reviewing the magnetosheath model constructed by Ko-
bel and Flückiger (1994) (Sect. 2) and discussing different
mapping methods (Sect. 3), the detailed procedure of the
magnetopause-normal mapping is presented (Sect. 4) and
discussed (Sect. 5), with concluding remarks (Sect. 6).

2 Revisiting the magnetosheath scalar potential

2.1 Parabolic coordinates

In the KF parabolic coordinates, the shell variable v (iso-
contour lines enveloping the magnetosphere) and the con-
nector u (iso-contour lines connecting from the bow shock to
the magnetopause) play an important role in computing the
flow velocity and magnetic field in the magnetosheath. These
variables are explicitly evaluated using Cartesian coordinates
and the radial distance from the focal point as

v =
√
r0+ (xk− x0), (1)

u=
√
r0− (xk− x0), (2)

where r0 is the distance to the focus at x0:

r0 =

√
(xk− x0)2+ y

2
k + z

2
k. (3)

The focus is along the x axis and is defined as

x0 =
1
2
Rmp. (4)

xk, yk, and zk are the Cartesian representation of the KF
magnetosheath model (i.e., with the pre-fixed bow shock and
magnetopause shapes) obtained by projecting the position
vector onto the unit vectors ex , ey , and ez:

xk = r(k) · ex, (5)

yk = r(k) · ey, (6)

zk = r(k) · ez. (7)

To complete the variable set for computing the potentials and
the stream function, the azimuthal angle φ is introduced as

φ = atan(zk/yk). (8)

2.2 Velocity potential

In the frame of potential field theory, the flow velocity U is
obtained either from the velocity potential (a scalar potential)
8(vel) or from the stream function (also a scalar potential) 9
as

U =−∇8(vel)
=−∇ ×

(
9eφ

)
. (9)

The symbol eφ is the unit vector in the azimuthal direction
around the symmetry axis (Sun-to-planet direction). Kobel
and Flückiger (1994) and Guicking et al. (2012) obtained the
analytic expression of the velocity potential 8(vel) using the
shell variable v and the connector variable u.

8(vel)
=−Ux

(
v2

mpv
2
bs

v2
bs− v

2
mp

)(
u2
− v2

2v2
bs
+ lnv

)

−
1
2
Ux

(
u2
− v2

)
+8

(vel)
0 , (10)

where Ux is the upstream flow velocity, vmp is the shell vari-
able at the magnetopause, vbs is the shell variable at the bow
shock, v is the shell variable, u is the connector variable,
and 8(vel)

0 is a free parameter (integration constant) which
is set to zero without loss of generality. The boundary shell
values vmp and vbs contain the information on the stand-off
distances (Rmp and Rbs) in the subsolar region, and they are
defined by Kobel and Flückiger (1994) as

vmp =
√
Rmp, (11)

vbs =
√

2Rbs−Rmp. (12)

2.3 Stream function

Guicking et al. (2012) transformed the KF potential and ob-
tained analytically the stream function 9 as a function of the
shell variable and the connector variable:

9 =−
1
2
Ux

(
v2

mpv
2
bs

v2
bs− v

2
mp

)
u

v

(
v2

v2
bs
− 1

)
−

1
2
Uxuv. (13)
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Hereafter, one may setUx =−1 so that the velocity poten-
tial8(vel) is normalized to the upstream velocity. Iso-contour
lines of the stream function represent the streamline.

2.4 Magnetic scalar potential

The magnetic field in the magnetosheath is derived from the
scalar potential in the same fashion as the flow velocity; that
is,

B =−∇8(mag). (14)

The magnetic potential is a function of the shell variable v
and the connector u (Kobel and Flückiger, 1994):

8(mag)
=−

v2
mpv

2
bs

v2
bs− v

2
mp
×

[(
B
(up)
y cosφ+B(up)

z sinφ
)
u

(
1
v
+

v

v2
bs

)

+B
(up)
x

(
u2
− v2

2v2
bs
+ lnv

)]
−B

(up)
x (−x)−B

(up)
y y−B

(up)
z z+8

(mag)
0 , (15)

where B(up)
x is the sunward component of the upstream mag-

netic field (corresponding to the GSE-X in near-Earth space),
and B(up)

y and B(up)
z are two components of the upstream

magnetic field perpendicular to the x direction. φ is the az-
imuthal angle of the position around the symmetry axis (the
y direction is given by the angle φ = 0). The integration con-
stant is chosen as 8(mag)

0 = 0. The magnetic potential can-
not be further transformed into the form of a stream func-
tion since the magnetic field distribution is essentially three-
dimensional in the magnetosheath.

3 Mapping method comparison

3.1 Mapping problem

Our task is to find the shell variable v and the connector u in
the empirical magnetosheath by finding a suitable mapping
of the position vector from the empirical magnetosheath (de-
noted by r) onto the KF parabolic system (denoted by r(k)).
The evaluated v and u are then readily used to obtain the
scalar potentials and the stream function. The flow velocity
and the magnetic field in the empirical magnetosheath are
obtained by computing the gradient of the respective poten-
tial.

A practically useful mapping procedure to utilize the KF
potential is proposed by Soucek and Escoubet (2012) by
using the radial direction as a reference. While the radial
mapping can reasonably (i.e., with a relatively high accu-
racy) transform the KF potential into the empirical magne-
tosheath domain on the dayside, the mapping quality be-
comes degraded in the flank region due to the conversion

effect associated with the non-orthogonal grid construction.
Our approach differs from the radial mapping by using
the magnetopause-normal direction as a reference. The az-
imuthal coordinate φ is still orthogonal to the u and v coordi-
nates. We briefly compare between the two mapping methods
here.

3.2 Radial direction as reference

Soucek and Escoubet (2012) presented in their pioneering
work an algorithm of radial mapping by transforming the
KF magnetosheath model into a general, empirical magne-
tosheath shape by referring to the radial direction from the
planet and scaling the radial position in the magnetosheath
to the KF model. While the radial mapping can reasonably
(i.e., with a relatively high accuracy) transform the KF poten-
tial into the empirical magnetosheath domain on the dayside,
the mapping quality becomes degraded in the flank region
due to the strongly non-orthogonal grids. Figure 1 displays
a comparison of the radial grids between the KF magne-
tosheath model and the empirical magnetosheath model. The
grids span the radial direction to the planet and transfinite
interpolation between the bow shock and the magnetopause.
The radial mapping has a drawback in a stronger grid non-
orthogonality effect, which causes an artificial converging
flow pattern in the flank region (velocity potential shown in
Fig. 2) when the scalar potential is directly transformed. In
the Soucek–Escoubet method, the problem of the flow con-
version effect was avoided by solving the magnetohydro-
dynamics (MHD) Rankine–Hugoniot relation and tracking
the streamline iteratively between the KF parabolic magne-
tosheath model and the empirical magnetosheath model.

Although the method introduced by Génot et al. (2011)
and later adapted by Soucek and Escoubet (2012) is compu-
tationally less expensive than global magnetosheath simula-
tions, the density and velocity fields from the bow shock to
a given point in the magnetosheath still need to be computed
along the streamline in an incremental way. Moreover, the
Rankine–Hugoniot relations need to be solved before cal-
culating iteratively the streamline, the flow velocity vector,
to track the plasma density flow velocity along the stream-
line. Naturally, the uncertainty in this calculation depends on
the step size (larger uncertainties for larger step sizes), and
the errors accumulate along the streamline. The method in-
troduced in this work overcomes this issue by constructing
a magnetopause-normal grid system such that computational
efforts are improved (no need to solve the Rankine–Hugoniot
relations, and the error does not accumulate in the flank re-
gion).

3.3 Magnetopause-normal direction as reference

Our mapping method differs from the radial mapping method
in that the magnetopause-normal direction is used as a
reference to the magnetopause. Our method guarantees
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Figure 1. Grid pattern generated by the radial mapping for
the Kobel–Flückiger parabolic magnetosheath (a) and the non-
parabolic, empirical magnetosheath (b).

Figure 2. Velocity potential in the Kobel–Flückiger model (a) and
its radial mapping onto the non-parabolic empirical boundaries (b).
Note that the same function is plotted here for different mapping
methods. Contours represent the velocity potential normalized to
the solar wind, 8(vel)/Ux , which is in units of the planetary radii.
The gray range is chosen for the visual demonstration purpose from
0.2RE to 90RE (a) and from 2RE to 200RE (b).

the grid orthogonality around the magnetopause both on
the dayside and in the flank region. The magnetopause-
normal grids are shown in Fig. 3 for the KF magnetosheath
model (with parabolic boundaries) and the empirical mag-
netosheath model (with non-parabolic boundaries). Even
though the exact conformal mapping is not available, the
magnetopause-normal mapping method retains the grid or-
thogonality around the magnetopause. This feature (orthogo-
nality around the magnetopause) plays a crucial role in map-
ping the scalar potentials. An example of the scalar-potential
mapping by referring to the magnetopause-normal direction
(our final results) is shown in Sect. 4.8.

4 Magnetopause-normal mapping

4.1 Overview of the procedure

The magnetopause-normal mapping is performed with two
transformations. In the first transformation, the position vec-
tor is mapped from the empirical magnetosheath r onto
the KF magnetosheath model rk. This is based on the as-
sumption that the distance to the magnetopause along the
magnetopause-normal direction when scaled to the magne-

Figure 3. Mesh pattern used in the magnetopause-normal mapping
in this work for the parabolic boundaries (a) and the non-parabolic,
empirical boundaries (b).

tosheath thickness (defined as the distance from the magne-
topause to the bow shock along the magnetopause-normal di-
rection) remains constant. The azimuthal angle φ is the same
between the empirical magnetosheath and the KF model. The
first transformation is divided into computing the distance
to the magnetopause (step 1), the thickness of the empiri-
cal magnetosheath (step 2), the thickness of the KF magne-
tosheath (step 3), and the mapping of the position vector onto
the KF model (step 4).

In the second transformation, the mapped position vector
is used to compute the shell variable v and the connector vari-
able u (step 5) and to obtain the potentials and the stream
function in the empirical magnetosheath using Eqs. (10),
(13), and (15) (step 6). Here again, the azimuthal angle φ
is treated as the same.

Figure 4 illustrates the mapping procedure and graphically
explains the variables that need to be determined to perform
the mapping such as the zenith angle θmp associated with the
minimum distance to the magnetopause the distance from the
planet to the bow shock rbs, the distance from the planet to
the magnetopause rmp, the relative distance to the magne-
topause αemp, and the magnetosheath thickness α(bs)

emp. The
position vector r , the bow shock stand-off distance Rbs, the
bow shock shape, the magnetopause stand-off distance Rmp,
and the magnetopause shape are assumed to be known in our
mapping.

4.2 Setup

We begin with a position vector in the empirical magne-
tosheath domain, and we express the position vector as r =

xex + yey + zez. Hereafter, we present the mapping proce-
dure in the two-dimensional plane spanning the x and y di-
rections for simplicity, but the computation in three dimen-
sions is straightforward by representing the y component of
position vector in the cylindrical fashion as ρ cosφ and the z
component as ρ sinφ using the distance ρ to the x axis. The
boundaries (bow shock and magnetopause) are specified by
the users and do not need to be parabolic. In this paper, we
use the following bow shock and magnetopause models.
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Figure 4. Variables used in the magnetopause-normal mapping with
the zenith angle θmp along the direction nearest to the magne-
topause, the radial distance to the bow shock and magnetopause
along the magnetosheath-normal direction (rbs and rmp, respec-
tively), the distance from the magnetosheath to the magnetopause
αemp, and the magnetopause thickness α(bs)

emp. The position vector is
denoted by r . The bow shock and magnetopause stand-off distances
are denoted by Rbs and Rmp, respectively.

– The empirical bow shock position expressed in GSE
(Geocentric Solar Ecliptic) coordinates proposed and
discussed by Farris et al. (1991) and Cairns et al. (1995):

x = Rbs− bemp y
2, (16)

where Rbs is the bow shock stand-off distance, and bemp
is the empirical flaring parameter. We note here that
the original Farris empirical bow shock model is not
a paraboloid model; it is an ellipsoid model (with an
eccentricity of 0.81), describing the bow shock on the
dayside. It is not a proper representation of the far-
flank bow shock. Also, the Cairns paraboloid bow shock
model does not properly represent the far-flank bow
shock. The distant bow shock shape approaches that of
a hyperboloid.

– The empirical magnetopause position by Shue et al.
(1997):

x2
+ y2
−

4R4
mp

4R2
mp− y

2 = 0, (17)

in the Cartesian representation and

rmp = Rmp

√
2

1+ cosθ
(18)

in the polar representation.

We use a specific exponent for the Shue model (with
an alpha exponent of 0.5) in an effort to show that the
analytic model is “simple”. The solar wind conditions
for which this exponent is applicable is not often en-
countered (e.g., interplanetary magnetic field has the Bz
component larger than +8 nT, with specific values of
solar wind dynamic pressure).

In our setup, the radial distance from the planet to the bow
shock is expressed as

rbs =
1

2bemp sin2θ

(
− cosθ+

√
1− (1− 4bempRbs)sin2θ

)
. (19)

By introducing the zenith angle θ and inserting x =

rbs cosθ and y = rbs sinθ in Eq. (16), we obtain the equation
for the radial distance to the empirical bow shock:

bemp r
2
bssin2θ + rbs cosθ −Rbs = 0. (20)

Equation (20) can be algebraically solved, and we take the
positive value of the solution as presented in Eq. (19).

The radial distance to the magnetopause is given conve-
niently by Eq. (18). The Shue model reproduces the mag-
netopause stand-off distance Rmp in the subsolar direction
(θ = 0), and the cylindrical distance asymptotes to 2Rmp in
the tail. It is worth noting here that one needs to compute the
radial distance from the planet to the bow shock or magne-
topause as a function of the zenith angle when using different
shapes.

4.3 Step 1: measuring the distance to magnetopause

In the first step, the distance from the given position in
the magnetosheath to the nearest magnetopause is com-
puted (see Fig. 5). We express the position vector along the
magnetopause-normal direction as

r = rmp+αemp emp, (21)

where rmp is the magnetopause position nearest to the posi-
tion vector, and emp is the unit vector in the magnetopause-
normal direction. The unit vector points away from the planet
and satisfies the condition

rmp · emp > 0. (22)

The symbol αemp is the distance to the magnetopause along
the magnetopause-normal direction emp in the empirical
magnetosheath.

The nearest magnetopause position is obtained by search-
ing for the zenith angle θmp for the minimum distance from
the sample position to the magnetopause. The distance D is
defined as

D =

√
(rx − rmp cosθmp)2+ (ry − rmp sinθmp)2. (23)

The search for the minimum distance is implemented in a
brute-force fashion as a function of µmp = cosθmp in our
study.

Using the minimum distance to the magnetopause rmp
and the zenith angle θmp, we are ready to compute the
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Figure 5. Measuring the distance to the empirical magnetopause
(step 1).

magnetopause-normal direction and the distance αemp. To
obtain the magnetopause-normal direction, we define the
magnetopause shape function fmp as

fmp = x
2
+ y2
−

4R4
mp

4R2
mp− y

2 , (24)

and we compute the normal direction by the gradient of fmp
as

∂fmp

∂x
= 2x, (25)

∂fmp

∂y
= 2y

[
1−

4R4
mp

(4R2
mp− y

2)2

]
. (26)

The magnetopause-normal direction is obtained by nor-
malizing the gradient vector (∂xfmp,∂yfmp) and represent-
ing it with the basis vectors (ex and ey) as

emp =
sgn√

(∂xfmp)2+ (∂yfmp)2
×

(
∂xfmp ex+ ∂yfmp ey

)
, (27)

evaluated at the magnetopause (x = rmp cosθmp and y =

rmp sinθmp). The magnetopause-normal vector emp has a unit
length, and the sign (sgn=±1) is chosen such that the nor-
mal vector is pointing outward (Eq. 22). The distance αemp
to the magnetopause along the normal direction is obtained
from Eq. (21) as

αemp =
(x− rmp cosθmp)+ (y− rmp sinθmp)

emp · ex + emp · ey
. (28)

Equation (28) is constructed to be robust against the singular
behavior on the dayside (emp ·ey = 0) and in distant tail (emp ·

ex = 0).

4.4 Step 2: computing the thickness of empirical
magnetosheath

In the second step, the magnetosheath thickness is com-
puted using the position vector and the magnetopause nor-

Figure 6. Computing the magnetosheath thickness in the empirical
model (step 2).

mal direction (Fig. 6). For our mapping purpose, the distance
αemp is normalized to the magnetosheath thickness α(bs)

emp such
that the relative distance αemp/α

(bs)
emp serves as an invariant

of the mapping from the empirical magnetosheath onto the
KF magnetosheath. To achieve this, we combine Eq. (16)
with Eq. (21) and analytically determine the thickness from
the bow shock to the magnetopause in the empirical magne-
tosheath. That is, the thickness α(bs)

emp is obtained by rewriting
the bow shock quadratic equation (Eq. 16) for the position
vector using the variable α(bs)

emp (Eq. 21) extended to the bow
shock location. The equation is again quadratic, and the so-
lution is algebraically obtained as:

α(bs)
emp =

1
2bemp e2

mp,y
×[

−(emp,x + 2bemp ympemp,y)
2
+ dα

]
, (29)

where dα is an auxiliary variable defined as

dα = [(emp,x + 2bemp ymp emp,y)
2
−

4bemp e
2
mp,y×

(xmp+ bemp y
2
mp−Rbs)]

1/2. (30)

In the subsolar direction (ymp = 0), the thickness is simply
given as

α(bs)
emp = Rbs−Rmp. (31)

Equation (29) becomes singular in the subsolar direction,
and Eq. (31) needs to be set separately.

4.5 Step 3: computing the magnetosheath thickness in
the KF system

In the third step, the magnetosheath thickness is computed
in the KF model (Fig. 7). We repeat the procedures of steps
1 and 2 for the KF system and determine the KF magne-
tosheath thickness as reference. We treat the zenith angle θmp
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and the relative distance αemp/α
(bs)
emp as invariants of the map-

ping between the empirical magnetosheath and the KF sys-
tem. The KF bow shock location is given as

x = Rbs− bky
2, (32)

where the KF bow-shock flaring parameter bk is pre-fixed as
(Kobel and Flückiger, 1994)

bk =
1

4Rbs− 2Rmp
. (33)

The radial distance from the planet to the KF bow shock is

r
(k)
bs =

1

2bksin2θ
×(

−cosθ +
√

1+ (4bkRbs− 1)sin2θ

)
. (34)

The KF magnetopause is defined in Kobel and Flückiger
(1994) as

x = Rmp−
1

2Rmp
y2. (35)

From Eq. (35), the radial distance from the planet to the
KF magnetopause is computed as

r(k)mp =
Rmp

sin2θ

(
−cosθ +

√
1+ sin2θ

)
. (36)

To obtain the magnetopause-normal direction in the KF
system, we compute the gradient of the magnetopause shape
function:

f (k)mp = x−Rmp+
1

2Rmp
y2. (37)

The gradient is analytically given as

∂f
(k)
mp

∂x
= 1. (38)

∂f
(k)
mp

∂y
=

y

Rmp
. (39)

The magnetopause-normal direction e
(k)
mp is then obtained

by applying Eqs. (38) and (39) to Eq. (27), which reads as

e(k)mp =
sgn√

(∂xf
(k)
mp )2+ (∂yf

(k)
mp )2
×

(
∂xf

(k)
mp ex+ ∂yf

(k)
mp ey

)
. (40)

The thickness in the KF system α
(bs)
k is determined by

combining the bow shock shape (Eq. 32) with the position
vector at the bow shock:

r
(k)
bs = r(k)mp+α

(bs)
k e(k)mp. (41)

Figure 7. Computing the magnetosheath thickness in the KF model
(step 3). The same zenith angle as that in step 2 is used.

Equation (32) becomes again a quadratic equation with re-
spect to the thickness α(bs)

k , and the solution reads

α
(bs)
k =

1

2bk (e
(k)
mp,y)2

×

[−(e(k)mp,x + 2bk ymp e
(k)
mp,y)+ d

(k)
α ], (42)

where the auxiliary variable d(k)α is defined as

d(k)α = [(e
(k)
mp,x + 2bk ymp e

(k)
mp,y)

2
−

− 4bk (e
(k)
mp,y)

2(xmp+ bk y
2
mp−Rbs)]

1/2. (43)

4.6 Step 4: mapping the position vector onto the KF
system

In the fourth step, the mapping of the position vector is
performed from the empirical magnetosheath onto the KF
system (Fig. 8). An assumption is made such that the rela-
tive distance to the magnetopause along the magnetopause-
normal direction is the same between the two systems. The
distance from the magnetosheath position vector to the mag-
netopause along the magnetopause-normal direction in the
KF system αk is then determined by the relative distance in
the empirical magnetosheath αemp, the thickness of the em-
pirical magnetosheath αbs

emp, and magnetosheath thickness in

the KF system α
(bs)
k as

αk = αemp α
(bs)
k /α(bs)

emp. (44)

The mapped position vector is then computed as

r(k) = r(k)mp+αk e(k)mp, (45)

using the nearest magnetopause position r
(k)
mp (Eq. 36), the

magnetosheath-to-magnetopause distance αk (Eq. 44), and
the magnetopause-normal direction e

(k)
mp (Eq. 40).
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Figure 8. Mapping the position vector onto the KF magnetosheath
model (step 4).

Figure 9. Evaluating the shell variable v and the connector variable
u in the KF magnetosheath model (step 5).

4.7 Step 5: evaluating the shell and connector variables

In the fifth step, the shell variable v and the connector vari-
able u are computed from the mapped position vector r(k)

using Eqs. (1) and (2), respectively. The variables v and u are
the same as the parabolic coordinates used in the KF poten-
tial with a focus at x0 = Rmp/2. In our algorithm, the focus is
explicitly given in Eqs. (1), (2), and (3). The azimuthal angle
around the symmetry axis φ is treated in the same way as in
the KF model.

Figure 10 compares the iso-contours of the shell v and the
connector u represented in the KF system (left panel) and the
empirical magnetosheath (right panel) for a bow shock stand-
off distance of 12.8 RE (Génot et al., 2011), a bow shock flar-
ing of 0.0223 R−1

E (Farris et al., 1991; Cairns et al., 1995),
and a magnetopause stand-off distance 9.8 RE (Génot et al.,
2011). The shell variable v is characterized by the lines with
the curvature center on the right side in the panel and con-
tains the parabolic bow shock (at v = vbs) and magnetopause
(at v = vmp) marked by thick lines. The connector variable
u has the curvature center on the left side in the panel, and
the iso-contour lines are orthogonal to the bow shock and
magnetopause. The computation of the u and v variables and
their gradient and curl is performed in Cartesian coordinates
so that the connection represented by the Christoffel symbol

Figure 10. Iso-contour lines with u= const. (center of curvature on
the left side) and that with v = const. (center of curvature on the
right side) in the KF magnetosheath model (a) and the empirical
magnetosheath model (b). The bow shock stand-off distance is 12.8
Earth radii and the magnetopause stand-off distance is 9.8 Earth
radii.

vanishes in the computation. Computation in the Cartesian
domain is also beneficial to the practical application because
spacecraft trajectories are often represented in Cartesian co-
ordinates.

4.8 Step 6: computing the potentials and stream
function

The scalar potentials (velocity potential and magnetic poten-
tial) and the stream function are obtained from the shell v and
the connector u using Eqs. (10), (13), and (15). The velocity
potential (normalized to the upstream flow) is displayed in
Fig. 11 left panel, and the stream function is displayed in the
right panel. The iso-contours of the velocity potential repre-
sent the lines of the same flow velocity. The iso-contours of
the stream function represent the streamlines in the magne-
tosheath. The flow is deflected around the nose of the mag-
netopause (the subsolar point), and the streamlines are tan-
gential to the magnetopause. Due to the grid orthogonality
around the magnetopause, the streamlines are constructed as
tangential to the magnetopause shape, which qualifies the
magnetopause-normal mapping method as a useful tool for
the magnetosheath model.

The magnetic potential and the derived magnetic field are
displayed in Fig. 12. The magnetic potential and the mag-
netic field (the gradient of the potential multiplied by the
minus sign) depend on the upstream field. Figure 12 shows
an example with an upstream field angle of 135° to the
x axis (i.e., 45° to the upstream flow direction). The mag-
netic field is computed using the central difference scheme.
Near the boundaries (bow shock or magnetopause), the mesh
resolution is enhanced so that the mesh points do not cross
the boundary when computing with the central difference
scheme. The upstream field is deflected on the positive y
side (right panel, lower half plane) and is draping the magne-
topause on the negative y side (right panel, upper half plane).
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Figure 11. Velocity potential (a) and stream function (b) in the em-
pirical magnetosheath domain obtained by mapping onto the shell
variable v and the connector variable u. Note that two different
functions are plotted here for the same grid and mapping method.
The gray range is chosen for the visual demonstration from 5.5RE
to 314RE (a) and from 0RE to 15RE (b).

Figure 12. Magnetic potential for the upstream magnetic field with
an angle of 135° to the x axis (45° to the upstream flow direction
(a) and sampled magnetic field vectors obtained by the negative gra-
dient of the magnetic potential (b). The gray range of the magnetic
potential is from −35RE to 348RE.

5 Discussion

5.1 Extension of the mapping approach

It is straightforward to extend our method to different shapes
of the Shue magnetopause model. The following form of gra-
dient can be used for a general value of the Shue exponent
αmp:

∂fmp

∂x
= cosθ +

2αmpRmpα

r
(1+ cosθ)−(αmp+1)sin2θ, (46)

∂fmp

∂y
= sinθ −

2αmpRmpα

r
(1+ cosθ)−(αmp+1) cosθ sinθ, (47)

where fmp in Eqs. (46)–(47) is defined as

fmp = r −Rmp

(
2

1+ cosθ

)αmp

. (48)

Figure 13. Mesh pattern applied to different values of the Shue ex-
ponent for an open-type magnetopause αmp = 0.6 (a) and a closed-
type magnetopause αmp = 0.4 (b).

Mesh pattern applied to different values of the Shue ex-
ponent for an open-type magnetopause αmp = 0.6 (Fig. 13a)
and a closed-type magnetopause αmp = 0.4 (Fig. 13b).

Also, our method can be extended to a three-dimensional,
non-axisymmetric geometry of magnetosheath (e.g., Dim-
mock and Nykyri, 2013). To achieve this goal, a suitable
set of the variables needs to be found for the mapping: the
shell variable, the connector variable, and the azimuthal an-
gle around the subsolar axis (solar wind direction intersecting
the planetary magnetic dipole). Namely, one needs to give a
non-axisymmetric bow shock shape and a non-axisymmetric
magnetopause shape; compute the magnetopause-normal di-
rection and construct grids in the magnetosheath; measure
the distance to the magnetopause and the bow shock; scale
and relate the distance to the KF model; and evaluate the
scalar potentials through the u, v, and φ variables.

5.2 Other approaches

It is possible to obtain the steady-state magnetosheath poten-
tial in different ways.

– First, one may numerically solve the Laplace equation
for a given set of boundary shapes (bow shock and mag-
netopause). Various numerical solvers are known for
solving the Laplace equation such as the Jacobi method,
the Gauss–Seidel method, and the successive over-
relaxation (SOR) method. These Laplace solvers are nu-
merically more expensive than the mapping method, but
the computation in 3-D is feasible with the contempo-
rary computational resources. On the other hand, the
magnetosheath is not bounded but extends in the tail di-
rection. The challenge here is thus to construct a prop-
erly bounded area for the Laplace equation.

– Second, one may expand the magnetosheath magnetic
field in different orthogonal functions. The KF solu-
tion makes use of the Bessel functions (Kobel and
Flückiger, 1994). For flexible magnetopause and bow
shock boundary models, a magnetosheath magnetic
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field model is constructed by making use of Legendre
polynomials (Romashets and Vandas, 2019).

– Third, one may introduce a suitable conformal map-
ping by limiting the magnetosheath modeling to a com-
plex plane (two-dimensional domain). The harmonic
functions such as the KF solution are transformed
from the parabolic magnetosheath shape into the non-
axisymmetric magnetosheath shape. The problem here
is that finding the conformal mapping is not an easy
task, because the magnetosheath is not a spatially-
closed domain and one has to set the boundary in the
magnetosheath to complete the domain bounded by the
bow shock, the subsolar axis, and the magnetopause.

– Fourth, one may solve the Rankine–Hugoniot relations
and track the streamline stepwise by referring to the KF
solution, as is done in Soucek and Escoubet (2012). This
method computes the magnetosheath flow and magnetic
field along the streamline, and the computing for the en-
tire magnetosheath domain is numerically expensive.

6 Concluding remarks

Our potential mapping method may be regarded as an up-
dated version of the radial mapping method (Soucek and Es-
coubet, 2012) by retaining the orthogonality near the mag-
netopause in the flank to tail region and also by computing
the field through the potential mapping. Velocity potential,
stream function, and magnetic potential are evaluated in the
empirical magnetosheath.

The advantages of our methods are as follows:

1. The method makes extensive use of the exact solution
of the Laplace equation (the Kobel–Flückiger potential
and the Guicking stream function). The plasma flow and
magnetic field can be determined semi-analytically in a
wide range of zenith angles in the magnetosheath when
the solar wind conditions and the boundary shapes are
given.

2. The method is applicable to a non-parabolic shape of
magnetosheath domain, opening the door to develop a
tool to assist numerical simulations and spacecraft ob-
servations of not only the Earth but also the planetary
magnetosheath domain.

3. The method is computationally inexpensive. In partic-
ular, if the shapes of bow shock and magnetopause are
analytically given, most of the computational steps in
the potential mapping method have an analytic expres-
sion.

As stated in Sect. 1, one ideally needs to find a conformal
mapping from the KF magnetosheath model onto the empir-
ical magnetosheath. While the conformal mapping is known

both for the empirical bow shock and the empirical magne-
topause, the conformal mapping of the entire magnetosheath
domain still remains a challenge. There are two problems
with this approach. First, the closing boundary (the u con-
tours) connecting between the bow shock and the magne-
topause is not known, and moreover, the uniqueness of find-
ing such a boundary is not guaranteed. Second, the gradients
along u are not the same between the empirical bow shock
and the empirical magnetopause such that a naive transfinite
interpolation ends up with highly non-orthogonal grids in the
magnetosheath.

Our method of computing the plasma flow and magnetic
field should be compared against the observations and sim-
ulations. For example, THEMIS and ARTEMIS spacecraft
(Angelopoulos, 2008) and MMS spacecraft (Burch et al.,
2016) are providing a huge amount of data on both sides of
the bow shock in the equatorial plane; Cluster spacecraft (Es-
coubet et al., 2001) are collecting data in polar orbit; ACE
spacecraft data (Stone et al., 1998) may be used as an up-
stream monitor; and Earth Flyby data of planetary missions
(such as Cassini, BepiColombo) cover the far-distance tail
region. In reality, non-axisymmetric structure arises in the
magnetosheath. There is no restriction regarding the choice
of the magnetopause model. The magnetopause-normal di-
rection needs to be computed either analytically using the
gradient of the magnetopause function as ∇fmp or numeri-
cally for a user-defined magnetopause shape.
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