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Abstract. Magnetic reconnection is a crucially important
process for energy conversion in plasma physics, with the
substorm cycle of Earth’s magnetosphere and solar flares
being prime examples. While 2D models have been widely
applied to study reconnection, investigating reconnection in
3D is still, in many aspects, an open problem. Finding sites
of magnetic reconnection in a 3D setting is not a trivial
task, with several approaches, from topological skeletons to
Lorentz transformations, having been proposed to tackle the
issue. This work presents a complementary method for quasi-
2D structures in 3D settings by noting that the magnetic field
structures near reconnection lines exhibit 2D features that
can be identified in a suitably chosen local coordinate system.
We present applications of this method to a hybrid-Vlasov
Vlasiator simulation of Earth’s magnetosphere, showing the
complex magnetic topologies created by reconnection for
simulations dominated by quasi-2D reconnection. We also
quantify the dimensionalities of magnetic field structures in
the simulation to justify the use of such coordinate systems.

1 Introduction

A long-standing issue in analysing data from magnetospheric
simulations has been the identification of topological fea-
tures in the magnetic field, especially in relation to recon-
nection and flux transfer events. These features include mag-
netic neutral lines; separators; and, loosely, X and O lines.
In a 2D configuration, the problem is tractable via the use

of a flux function (see Sonnerup, 1970, for an early exam-
ple, with details given in, for example, Servidio et al., 2009).
Recent examples of flux function use include Hoilijoki et al.
(2017), Palmroth et al. (2017) and Hoilijoki et al. (2019). A
generalized flux function can be defined in certain 3D con-
figurations (Yeates and Hornig, 2011). Global ideal magne-
tohydrodynamic (MHD) simulations present a relatively sim-
ple reconnection topology that is tractable via the four-field
junction (FFJ) method that identifies reconnection topologies
from global magnetic field connectivity (whether or not field
lines connect to Earth or to the solar wind) (Laitinen et al.,
2006). However, more detailed simulations, such as Vlasi-
ator ion-kinetic simulations, produce complex reconnection
topologies impossible for FFJ to parse completely (see Pfau-
Kempf et al., 2020). As such, the space physics community is
challenged to find and develop new tools for analysing these
topologies.

Reviewing the definitions of the topological structures of
reconnecting 3D magnetic fields by Parnell et al. (2010), we
can summarize three different but related concepts: magnetic
null points (with several subtypes), where the magnetic field
B completely vanishes; separatrices (also called separator
surfaces or separatrix surfaces), which are planes that delimit
different magnetic domains; and separators, which are lines
connecting magnetic null points, defined as intersections of
paired separatrix surfaces lying at the boundary of four dif-
ferent magnetic domains. The behaviour of magnetic null
points has been studied in much detail – in 3D as well (e.g.
Greene, 1988) – for their usefulness in reconnection analy-
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sis. Detection and classification of null points can be done
readily with existing methods: Olshevsky et al. (2015, 2016)
use the Poincaré index method to detect and characterize null
points (where B(r)= 0) in local MHD and particle-in-cell
(PIC) simulations, which can be applied to spacecraft data
as well. Haynes and Parnell (2007) detail methods of find-
ing null points within a cubic cell, using a tri-linear method
to find common zero-crossings for all magnetic field com-
ponents. Fu et al. (2015) introduced the first-order Taylor ex-
pansion (FOTE) method for reconstructing the magnetic field
topology around nulls and finding null points from multi-
point spacecraft data.

As, for example, Lau and Finn (1990) note that the mag-
netic field lines connecting specific null-point pairs – sepa-
rators – are important for reconnection. For example, Dorelli
and Bhattacharjee (2009) discuss topological changes in day-
side separators during flux transfer event (FTE) formation
in MHD simulations. Several methods for finding separa-
tor lines have been developed. For example, Komar et al.
(2013) trace related separators by stepping from magnetic
null points and inspecting magnetic connectivity of candi-
date points, which is akin to the FFJ method used by Laiti-
nen et al. (2006). This is used by Eggington et al. (2022) to
find the main magnetospheric separator through tracing mag-
netic connectivity; it is noted that they found it complicated
to find the initial magnetic nulls for tracing. On the other
hand, Olshevsky et al. (2016) show a plethora of null points
found in a magnetospheric simulation, representing a chal-
lenge for mapping the pairwise connections of null points.
Glocer et al. (2016) track magnetic separators in MHD simu-
lations and compare different techniques for it, while Haynes
and Parnell (2010) introduced generalized methods for con-
structing the topological skeletons of magnetic fields. This
includes null points, separatrices and the separator lines, not
tied to specific coordinate systems, with involved field line
tracing procedures. Recently, Bujack et al. (2021) also intro-
duced similar tools. Such tools are likewise being explored
in Vlasiator 3D magnetospheric simulations by Bouri et al.
(2023) in order to apply machine learning methods to the
topic. Machine learning methods have also seen use in the
analysis of plasma simulations by, for example, Bussov and
Nättilä (2021).

Closely related to the concept of separators are the mag-
netic X and O lines. As the intersections of separatrix sur-
faces, the separators delimit different magnetic domains. In
the classic picture of reconnection, inspecting the magnetic
field lines on a plane normal to the tangent of the reconnec-
tion line displays an X topology, with the in-plane compo-
nents of B changing signs at the X line (or an X point when
constrained to such a plane). This holds regardless of an out-
of-plane B component, as noted by Parker (1957) and Son-
nerup (1974): the hyperbolic structure remains visible in the
in-plane components. Likewise, the in-plane magnetic field
components change signs at an O line (or O point). This can
be used to extend the definition from a true null line, defined

as a continuous line with exactly zero B, which is structurally
unstable (Priest and Titov, 1996) and is expected to split into
null points connected by a separator. As this definition of a
null line is not consequently fulfilled in practice and because
we would like to identify null lines whether or not a mag-
netic guide field is present, we use the term in-plane null line
(and, more specifically, in-plane X and O lines) in this paper
to mean such sets of points that satisfy the zero-crossing con-
dition for the in-plane magnetic field components, allowing
for a common category of null lines that covers both X and O
lines, with and without guide field. It should be noted, how-
ever, that the notion of an in-plane null depends on the defini-
tion of the plane, and it is not clear what plane should be cho-
sen for this decomposition. This work proposes one possible
selection of a useful coordinate system via variance analysis
for this purpose. Other selections of a coordinate system are
possible, as shown by, for example, Genestreti et al. (2018).

For magnetic field structures such as current sheets (CSs),
null lines and flux ropes, it is useful to select a suitable coor-
dinate system that can exploit the properties of the structure
to simplify the problem at hand. Methods such as minimum
variance analysis (MVA, Sonnerup and Scheible, 1998) are
widely used in spacecraft observational studies to investigate
structures in amenable coordinate systems (Paschmann and
Daly, 1998). Observational methods for the construction of
local coordinate systems may require some situational ad-
justments, as in Gosling and Phan (2013) and Hietala et al.
(2018), with a hybrid MVA coordinate system. Indeed, Gen-
estreti et al. (2018) examine 14 different variations of gener-
ating local coordinate systems for a reconnection event ob-
served by the Magnetospheric Multiscale (MMS) mission.
The magnetic field structures that are more frequently inves-
tigated (such as CSs and flux ropes) often display more vari-
ability in some dimensions than in others, allowing for some
simplifications based on the dimensionality of the structures.
Methods for inspecting the dimensionality and for forming
local coordinate systems are reviewed by Shi et al. (2019).
Particularly, the minimum directional derivative (MDD) and
minimum gradient analysis (MGA) methods may be used to
define local coordinate systems based on the Jacobian of the
magnetic field B, which we will build upon in this work.
These are detailed in Sect. 1.1.

Global magnetospheric simulations use global coordinate
systems such as the Geocentric Solar Ecliptic (GSE) or Geo-
centric Solar Magnetospheric (GSM) systems, similarly to
spacecraft observations. However, local magnetic structures
are not necessarily aligned with the axis of the simulation
coordinate system. In particular CSs, flux ropes and recon-
nection topologies can develop unconstrained by the domain
boundaries and can be oriented in virtually any direction. In
this situation, methods developed to analyse spacecraft data
can inspire new ways to investigate data from global sim-
ulations. Palmroth et al. (2023) used justified assumptions
about the geometry of the problem to obtain useful proxies
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Figure 1. A schematic view of Earth’s magnetosphere under southward-IMF driving, with zoomed-in detail panels of the dayside magne-
topause and the magnetotail, sketched on the Vlasiator run described by Palmroth et al. (2023). The magnetosphere proper is delimited by
the magnetopause (purple surface). Magnetic field lines on the meridional plane are shown in black, with X (red, crosses; global FFJ line
annotated) and O (blue, discs; marked with FTE and plasmoid) topologies marked as lines close to the meridional plane (and one X topol-
ogy circling the near-Earth region with a northward magnetic field). The white and light-blue equatorial cross section follows the magnetic
Equator and the tail current sheet, with the north–south magnetic field marked, respectively, as out of and into the plane.

from global coordinate systems, and the aim of this paper is
to generalize the approach to a local coordinate system.

To review our region of interest, Fig. 1 shows a sketch
of Earth’s magnetosphere based on the Vlasiator simulation
described by Palmroth et al. (2023). Solar wind flows in
from the right, carrying with itself the interplanetary mag-
netic field (IMF), which is aligned purely southward in this
simulation. As the solar wind encounters Earth’s magnetic
field, a bow shock (grey) and a heated magnetosheath (light
brown) are formed (both are shown clipped along the merid-
ional plane). The magnetopause (purple, clipped along the
equatorial plane) delimits the magnetosphere proper: the vol-
ume in which Earth’s magnetic field dominates the plasma
behaviour. The solar wind driving draws the magnetosphere
into a long tail, with northern and southern tail lobes having
opposite magnetic fields and with the tail current sheet (CS,
light blue) separating the lobes. Southward IMF driving is
especially interesting as it allows for magnetic reconnection
on the dayside magnetopause, where the opposing magnetic
fields form X topologies (dark-red lines with crosses) and
allow for the transfer of energy and mass across the mag-
netopause and a change in global magnetic topology. The
global reconnection line described by Laitinen et al. (2006)
is correspondingly shown as the closed, dark-red line marked

as FFJ. The reconnected magnetic field lines form flux trans-
fer events (FTEs or plasmoids) characterized by O topolo-
gies (blue lines with discs). Similarly, the opposing magnetic
fields of the tail lobes may reconnect at the tail CS, forming
plasmoids in the tail current sheet. Palmroth (2023) shows
complex reconnection topologies that form in the tail, repre-
sented by the ellipsis-terminated red and blue lines in the tail
of Fig. 1, with similar sketches of multiple reconnection lines
and flux transfer events given on the dayside magnetopause.

In this paper we introduce and discuss alternative, physi-
cally motivated local methods for finding X and O lines in the
magnetic field of global 3D magnetospheric simulations by
inspecting the magnetic field on a suitable local coordinate
basis. To extend the global proxies used in Palmroth et al.
(2023), we introduce a local coordinate system based on the
work reviewed by Shi et al. (2019), with an approach simi-
lar to the one presented by Denton et al. (2010), and describe
both contouring and cell-wise FOTE methods for finding null
lines, both X and O, within a global magnetospheric plasma
simulation based on the magnetic field and its Jacobian ma-
trix.
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Figure 2. Schematic drawing of the (a) MGA and (b) MDD eigenvectors L̂,M̂ and N̂ , corresponding to the largest, middle and minimum
eigenvalues in a 1D CS, along the lines of Shi et al. (2019). For both eigensystems, the vector L̂ is well-defined, while the M̂ and N̂ vectors
lie on the plane perpendicular to the L̂ vectors.

1.1 Local coordinate systems and dimensionality

Let us consider two methods reviewed by Shi et al. (2019):
minimum directional derivative (MDD) and minimum gradi-
ent analysis (MGA, analogous to minimum variance analy-
sis), both defined using the Jacobian G=∇B of the mag-
netic field. Local, orthogonal coordinate directions can be
obtained from the eigenbases of GᵀG (MGA) and GGᵀ

(MDD). However, as these methods obtain the initial direc-
tions as eigenvectors that are defined up to a real scalar, the
directions (after normalization) are defined up to a factor
of ± 1.

MGA produces a set of basis vectors where the eigenvec-
tor that corresponds to the largest eigenvalue (λ1) is aligned
with the vector that has maximal variation (L̂MGA), the
second one (λ2) corresponds to the intermediate variation
(M̂MGA), and the third (λ3) corresponds to the least varia-
tion (N̂MGA). On the other hand, the MDD method produces
a set of basis vectors where the eigenvector corresponding
to the largest eigenvalue shows the direction of the displace-
ment which produces the largest variation in B (L̂MDD). Cor-
respondingly, for the eigenvectors corresponding to the in-
termediate and least eigenvalues we use M̂MDD and N̂MDD.
Denton et al. (2010) employ the MDD eigenbasis in their
method, while we use both MDD and MGA eigenvectors, as
described later in Sect. 2.1.

Both of these eigensystems have the same eigenvalues, but
the eigenvectors differ and are not necessarily aligned with
each other. We note here that, for a 1D structure, both of
these eigensystems have only one well-defined eigenvector.
For example, in a 1D Harris (1962)-type CS defined by

B(z)= B0 tanh(z)x̂ (1)

for some constant B0, the eigensystems are shown in Fig. 2,
with L̂MGA being aligned with x̂ and L̂MDD being aligned
with ẑ.

MDD also gives us a way to define the local dimensional-
ity of a structure (Rezeau et al., 2018) from the eigenvalues
of the matrix GGᵀ, with, for example, a purely 1D struc-
ture varying only as a function of a single coordinate. The
quantities D1, D2 and D3 describe the one-, two- and three-
dimensionalities of the magnetic field and are obtained from

Figure 3. Neutral point classification in a well-defined local coor-
dinate system. On the plane where BL = 0 and on the subset of
that plane where BN = 0, the O points have ∂BN/∂L < 0, and the
X points have ∂BN/∂L > 0. Note that this classification assumes a
right-handed coordinate system.

the ratios of square roots of the eigenvalues λ1 ≥ λ2 ≥ λ3 of
GGᵀ.

Definitions for D1, D2 and D3 are given below, modified
to use the square roots of eigenvalues, as suggested by Shi
et al. (2019) (as the square roots of the eigenvalues are then
in units of Tm−1):

D1 =

√
λ1−
√
λ2

√
λ1

, (2)

D2 =

√
λ2−
√
λ3

√
λ1

, (3)

D3 =

√
λ3
√
λ1
. (4)

These quantities are defined to lie in the range [0,1], and
their sum is 1. For D1 ≈ 1, the magnetic field structure is
primarily 1D, such as with a CS with B ≈ B(z) for a direc-
tion z normal to the CS. Correspondingly, for D2 ≈ 1, the
structure is primarily a function of two coordinates and so
on. These measures allow us to quantify whether or not the
local 2D treatment for neutral lines is well-founded, and we
return to the topic of dimensionality in Sect. 4.3.

1.2 Vlasiator

In this study, the methods discussed above will be ap-
plied to a global simulation of Earth’s magnetosphere per-
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formed with the hybrid-Vlasov code Vlasiator. Vlasiator is a
supercomputer-scale 6D (3D+3V – three spatial dimensions
and three velocity-space dimensions) ion-hybrid plasma sim-
ulation (von Alfthan et al., 2014; Palmroth et al., 2018),
solving the Vlasov equation for ion components and treat-
ing electrons as a charge-neutralizing, massless fluid. Pre-
viously, Vlasiator has been used to study reconnection in
5D (2D+3V) simulations for the global magnetosphere (e.g.
Hoilijoki et al., 2017; Palmroth et al., 2017) and locally in the
magnetopause in full 6D (Pfau-Kempf et al., 2020). Recently,
computational advances (Ganse et al., 2023) have expanded
the capabilities of the model to include fully 6D global simu-
lations (Palmroth et al., 2023; Horaites et al., 2023; Grandin
et al., 2023).

We use the global Vlasiator simulation described by Palm-
roth et al. (2023) as a prototype case for the discussed meth-
ods. The simulation is of Earth’s global magnetosphere, with
an approximate conducting-sphere inner boundary condi-
tion that does not include ionospheric coupling. The sim-
ulation uses the GSE coordinate system (centred on Earth,
with the x axis pointing towards the Sun, while the z axis
is normal to the ecliptic in the northward direction) and no
dipole tilt; thus, the dipole moment is aligned with the z
axis. The simulation is set up with a predefined mesh re-
finement with 1000 km maximum spatial resolution in the
tail CS and on the dayside magnetopause, with the simula-
tion domain spanning [−111,50]RE in the X direction and
[−58,58]RE in the Y and Z directions, with driving pro-
vided by the fast (Usw= 750 kms−1) solar wind at the tem-
perature of Tsw= 500 kK and the density of nsw= 1 cm−3 at
the inflow boundary and a purely southward magnetic field
BIMF= (0,0,−5) nT. Other boundaries employ copy condi-
tions. The initial condition for the simulation is comprised of
the velocity distribution functions initialized to Maxwellian
distributions, with moments at the inner boundary set to a
density of 1 cm−3 and a temperature of 5× 105 K with zero
velocity; these distributions are smoothly tapered to solar
wind values until the geocentric distance of 15.7RE (Ho-
raites et al., 2023).

Despite the solar wind and IMF being constant, the kinetic
physics involved in the simulation still produce a remarkably
dynamic environment. Palmroth et al. (2023) described the
dynamics of tail reconnection in the Vlasiator run, showing
the interplay of plasma instabilities and reconnection on the
tail CS. Notably, they presented a complex picture of small,
independent plasmoids being generated in a bursty fashion,
followed by a tail-wide reconfiguration through the merging
of smaller plasmoids and their reconnection lines. Notably,
the simulation setup is an idealized case, and with more re-
alistic solar wind and IMF inputs, including a flow-aligned
IMF component, dipole tilt and magnetosphere–ionosphere
coupling, we expect to see even more complex behaviour, in-
cluding, for example, tilted CSs (see e.g. Shen et al., 2008).

2 Methods: applying the local coordinate systems to
Vlasiator

2.1 Local LMN coordinates

If the eigenvalues are not well-separated, the directions ob-
tained from MGA and MDD may be ambiguous (see Shi
et al., 2019). For example, for the CS with dimensionality 1,
MGA obtains the field-aligned direction (above and below
the CS), while MDD obtains the normal direction in relation
to the CS, with two other directions being potentially am-
biguous. The directions obtained from MGA and MDD are,
however, approximately orthogonal at the CS. Since we are
especially interested in CS-like structures, we choose to use
the unit vectors L̂MGA and L̂MDD (described in Sect. 1.1) as
the basis on which to build our coordinate system.

The electric current density J ∝ ∇×B can be used to de-
fine a right-handed coordinate system by selecting L̂MGA as
a primary vector L̂, L̂MDD as a secondary vector and J as a
tertiary vector so that L̂×J ‖ L̂MDD. For example, on an ide-
alized CS (Eq. 1), we see that L̂ ‖ x̂, N̂ ‖ ẑ, and J ‖ L̂× N̂ .
L̂ and L̂MDD are exactly orthogonal in this case, as in Fig. 2.

To summarize the definition of our local LMN coordinate
system L̂,M̂,N̂ , we orthogonalize the set of basis vectors
with the following:

1. L̂= L̂MGA.

2. N̂ = L̂MDD− (L̂MDD · L̂)L̂, with N̂ multiplied by −1,
if necessary so that (N̂ × L̂) ·J > 0.

3. Lastly, M̂ = N̂ × L̂.

The above results in a right-handed coordinate system with
M̂ oriented in the same direction as J (but not necessarily
parallel). This still only requires data from G and allows for
a classification of a null line in relation to X and O in this LN
plane via inspection of ∂BN/∂L (see Fig. 3).

The sign of L̂ and N̂ in the global coordinates remains
unfixed: multiplying both L̂ and N̂ by−1 does not affect the
generality of the system. For now, this is left to be defined
depending on the specific application.

Figure 4 shows the global magnetosphere as reproduced
by the Vlasiator simulation, with Earth at the origin, the Sun
on the lower right (in the direction of the positive x axis), and
Earth’s dipole field aligned to have the North Pole on the pos-
itive z axis. The figure displays the absolute value of the dot
product L̂MGA · L̂MDD, a measure of non-orthogonality for
the primary and secondary vectors of our LMN coordinate
system on the Y = 0 and Z = 0 planes. In regions such as the
magnetopause (X ≈ 10RE at the subsolar point) and the bow
shock (X ≈ 15RE), hosting boundaries and CSs that are ex-
pected to be 1D structures, we see that the non-orthogonality
is low. The magnetotail lobes and parts of the magnetosheath
display consistent alignment of the primary and secondary
vectors, indicating that the most-varying component of B

varies most in the same direction, e.g. when approaching the
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Figure 4. Absolute value of the dot products of the primary and secondary vectors |L̂MGA · L̂MDD| used in the construction of the LMN
systems, shown on the planes Y = 0 and Z = 0. We note that the vectors are nearly orthogonal, especially in the vicinity of the magnetopause
and the tail current sheet, where we wish to employ the orthogonalized coordinate system.

polar regions along the magnetic field. This shows that care
must be taken when considering these LMN coordinates, es-
pecially in the lobes and inner magnetosphere. The transition
between the CS and the lobes in particular displays a com-
plex structure.

While the above local coordinate system is defined where
there is some variation in B, such that |L̂MGA · L̂MDD|< 1,
and a non-zero electric current density J , our interest lies in
reconnection-supporting CS structures, which naturally fulfil
these conditions.

2.2 Contouring method

2.2.1 Finding reconnection-supporting CSs

In Palmroth et al. (2023), the CS centre was defined by the
zero-crossing of the Earth-centred radial magnetic field com-
ponent, Br = 0. This selects the crossover plane between the
northern and southern lobes in the tail, with Br = 0 account-
ing for some radial component closer to the flanks. Bx = 0
gives similar results in this case.

The local coordinate system, as given above, allows us to
define an LMN system at each spatial cell of the simulation,
analogously to the definition at each time in a time series
for spacecraft observations. Finding BL = 0 surfaces shows

the centres of symmetric CSs where the locally most-varying
component of B changes its sign. While such a definition for
the centre of a general current sheet is not strictly correct,
it is sufficient for our purposes. These BL = 0 surfaces we
deem to be the most interesting on the basis of supporting
reconnection. However, with contouring algorithms, regions
of consistent orientation of the LMN system need to be se-
lected. As an example, the LMN coordinates of a Vlasiator
tail CS, as shown in Fig. 5, have been homogenized by re-
quiring L̂ · x̂ > 0 and have been focused onto the CS by re-
quiring |J |> 2 nAm−2. Figure 5 demonstrates, firstly, cor-
rect extraction of the CS midplane and, secondly, details of
the local LMN basis vectors: the L̂ vector tracks the orienta-
tion of the lobe fields, the N̂ vector tracks the CS normal, and
the M̂ vector is in-plane and pointing in the general direction
of the current.

2.2.2 Null lines

In Palmroth et al. (2023), the CS centre proxy Br = 0 serves
as a basis for finding null lines on the sheet via the additional
constraint of Bz = 0. An example of these proxies and the
flapping of the CS is shown in Fig. 6a. The sign of Bz serves
as a proxy for field topology (given as sheet colour). We note
that strong flapping of the CS causes the CS normal compo-
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Figure 5. A Vlasiator tail CS (t = 1267 s). The CS centre plane is located by a contouring algorithm for BL = 0, forming a wavy sheet, which
is coloured by the current density |J |. For reference, the current density is also shown on the X =−15RE plane, indicating a match with the
actual location of the CS. The local LMN basis vectors are shown on the CS (red: L̂, green: M̂ , blue: N̂ ) at arbitrary locations, and the B

vectors are shown above and below the CS on a Y =−9RE slice (magenta).

Figure 6. (a) Null lines obtained from Br = 0 and Bz = 0 on the Vlasiator tail CS – local zoom-in of the simulation within the domain
presented in Fig. 5. (b) LMN-contoured null lines. Both sheets are coloured by positive or negative Bz or BN, respectively, with the null lines
coloured by −∂rBz and ∂LBN, respectively. The strong CS flapping leads the former to miss a plasmoid on the flap, as shown by the field
lines (magenta).

nent to deviate strongly from the Z direction at points. Using
the LMN basis allows us to take into consideration the local
behaviour of the CS, improving upon the proxy model.

Finding the surfaces with BL = 0 and further intersect-
ing those with the surfaces of BN = 0 yields a set of con-
nected lines, as shown in Fig. 6b. For example, the contour-
ing operator used by VisIt (Childs et al., 2012) finds these
lines with topological connectivity. The left-hand side panel

of Fig. 6 shows an example of the Br = Bz = 0 contouring
missing a plasmoid at a prominent CS flap, whereas the LMN
method correctly finds the axis of the plasmoid. We note that
the overall structure of the tail X and O lines is still well-
described by the previous method outside of the region with
large-amplitude flapping.

Above, and in general, we assume the existence of the nor-
mal component BN for the detection of in-plane nulls. The
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Figure 7. Schema of LN sign ambiguity and its effect. The signs
of L and N vectors are not fixed by the construction and may vary
arbitrarily. On the left is a correct evaluation of a BN = 0 (vertical
dashed line) value between two points A and B, while on the right
there is an incorrect evaluation of a BN = 0 value (vertical dashed
line) between points B and C. The LN directions are locally correct
but not necessarily consistent between neighbouring cells.

potential degenerate case with BN = 0 over the entire CS (a
tangential discontinuity) is hardly encountered in practice.

To use the LMN coordinate system and the components of
magnetic field BL,BM,BN for contouring requires the LMN
coordinate systems to be consistently oriented: if the ambigu-
ity in the sign of L and N coordinates happens to flip between
neighbouring cells, the BL and BN components will naturally
change signs as well, as illustrated in Fig. 7. This is a source
of false detections, which can be fixed by re-orienting neigh-
bouring coordinate systems. In the magnetotail, for example,
the choice we make is for L to point sunward so that, if the
constructed LMN system has an initially tailward L, we mul-
tiply the L and N vectors by −1 in these cells. Automatic
determination of consistently oriented neighbourhood charts
could be considered in a future update. However, it may not
be possible to provide a consistent orientation for the LMN
coordinates in an entire domain, such as a global magneto-
spheric simulation. As long as there is a consistent orien-
tation, the simple contouring operation works for current-
sheet-like structures and produces topologically connected
neutral lines.

When there is no consistent orientation available, naïve
contouring does not work in an off-the-shelf manner. For ex-
ample, in the case of the upstream solar wind, where Vlasi-
ator shows very little variation in IMF, the LMN coordinate
system is dominated by numerical precision artefacts, lead-
ing to inconsistent orientation showing up as noise in these
contouring methods.

2.3 Cell-wise FOTE method

An alternative that does not require choices on orientation is
to use the local data of B and G to construct first the local co-
ordinate system and secondly a linear expansion of the com-
ponentsBL andBN at the cell centre. This sidesteps the ambi-
guity in the sign of the LN directions. Solving for the planes
of BL = 0 and BN = 0 and their intersection is then straight-
forward in this linear approximation: BL+∇BL · r = 0 is
solved via an exact, single-step gradient descent along the
negative gradient:

r =−
BL

|∇BL|
· ê∇BL , (5)

where ê∇BL is the unit vector in the direction of the gradient.
This defines the planeBL = 0 with the normal direction ê∇BL

and a point r relative to the cell centre. Similarly, we find
BN = 0 and the intersection line of these two planes.

The line where BL = 0= BN would then again signify a
null line, but the linear approximation can only be considered
to be good within a small neighbourhood, that is, in the cell.
It is then also straightforward to check whether or not this
line intersects with the cell being analysed in the simulation
coordinate system – if yes, we can consider the cell to contain
a neutral line. We minimize a signed distance function (SDF;
see e.g. Keinert et al., 2013) to the cell along the line, given
by the definitions adapted from Korndörfer et al. (2015):

d(r,b)= abse(r)− b, (6)
fbox(r,b)= ||maxe(d,0)|| +max(mine(d,0)), (7)

where ope denotes a component-wise operator (op) returning
a vector of the same dimensionality, r is the query point, b

is the upper corner of a rectangular cuboid centred at the ori-
gin and aligned with the coordinate system basis, and fbox is
the SDF of the query point with respect to the cuboid. The
SDF describes the distance of a point to the surface of an
object, with positive values indicating that the point lies out-
side the object and negative values indicating that the point
lies inside. Therefore, an SDF gives a continuous measure
of the distance of the line with the cell, with negative values
indicating the neutral line intersecting the cell and positive
values indicating no intersection. This allows some evalua-
tion and acceptance of near misses. A discriminating value
of SDF≈ 0.25. . .0.36 is found to produce uninterrupted null
lines in the tail, as expected based on field topology. Fig-
ure 8a shows examples of the FOTE method in use for Vlasi-
ator data.

Further, we may evaluate the derivative ∂LBN at the cell
and again classify the possible neutral line with it. Eigen-
values of G might as well be used for this purpose, as for
degenerate nulls in Parnell et al. (1996), but we opt to use
a straight derivative for a clear physical meaning. The main
disadvantage for now is that this method does not provide a
ready-made topology, only sets of cells that are considered to
contain a segment of an X or O line.
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Figure 8. (a) Komar et al. (2013) 150° case reproduction: FOTE null lines (translucent blue cells) compared to analytical separator (magenta)
and B field line stubs (light grey, from Y = 0 plane) after slight propagation; note that the analytical separator is contained almost everywhere
by the cells marked by the FOTE method. Bottom panels (b, c): LN slices atM = 0 with magnetic field lines of in-plane components in blue,
BL = 0 in black and BN = 0 in magenta. Background colour shows in-plane magnetic field magnitude. (b) This figure shows a detection of
an X line in the vacuum superposition case (origin at cell marked by arrow b). (c) This figure shows an unexpected but correct detection of
an X line in the vacuum superposition case (cell marked by arrow c).

3 Validation with an ideal case

We take the southward-IMF initial configurations of Hu et al.
(2009) and Komar et al. (2013) for a test case that has null
lines; the mentioned studies also provide analytical solutions
for the magnetosphere using the methods by Yeh (1976). For
the magnetic field configuration, we use as the constant IMF
background magnetic field BIMF = (0,32.5,−56.3) nT for a

field strength of 65 nT at a 150° clock angle and an unscaled
terrestrial dipole aligned with the z axis. The domain size
is (±2× 105 km)3, and the maximum spatial resolution is
3125 km. The current-free initial condition is not suitable to
apply our method to since we use the current density vec-
tor to define the handedness of our coordinate basis. How-
ever, we choose to propagate the initial condition for a small
time for the global plasma dynamics (7.048 ms). The back-
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Figure 9. Komar et al. (2013) 150° case reproduction: contoured null lines (blue tubes) compared to analytical separator (magenta) and B

field line stubs (light grey, from Y = 0 plane) along the lines of Hu et al. (2009) and Komar et al. (2013) after slight propagation.

ground plasma is initialized at a density of 1 cm−3 as a radial
taper of temperature and velocity from the inner boundary
values of 5 MK and zero velocity to the solar wind values of
0.5 MK and 750 km s−1 to break the exact current-free con-
dition. This enables the use of our methods to extract the X
line in the case with IMF clock angle θ = 150° (mostly south-
ward IMF). To guard against current-free edge cases, we can
use, as a fall-back case, the MGA maximum and medium
variance coordinates for L and N directions instead.

Figure 8a shows a comparison between the FOTE method
and the analytical solution. The cells detected by the FOTE
method enclose the analytical separator nearly everywhere,
but they show, in addition, a few extra null line segments
further away. Figure 8b and c show details of the X-line de-
tection by plotting L–N cross sections of the in-plane nulls.
The origins of these cross sections are placed in the cells with
FOTE-detected in-plane nulls, with the cross sections taken
at M = 0. The LMN basis is the local basis from the detec-
tion cell, extrapolated to the immediate neighbourhood. The
slices show projections of the magnetic field lines in the LN
plane and zero-crossing lines for BN and BL. The cross sec-
tions confirm these cells do contain in-plane null lines, as per
our definition, but these are not described by the analytical
solution for the separator. Figure 8 shows that these are in-
deed valid detections with an X topology. Notably, these de-

tections are not present when inspecting the initial state with
an MGA-only coordinate system and are likely a result of
the initial velocity and temperature gradients causing minor
perturbations.

Figure 9 shows a comparison between the contouring
method and the analytical solution. Here, the LMN coordi-
nate system has been regularized so that the L direction is
chosen to fulfil L̂ · ẑ> 0. For this particular case, the LMN
contouring of the superposition field produces prominent
conical artefacts (not shown) where the coordinate system
is not oriented consistently with this particular choice, and
the data to be contoured are filtered to lie within one cell of a
FOTE null line as a way to choose compact neighbourhoods
of regularized orientation. Less stringent filtering can be used
for other, more local cases (see, e.g. Sect. 4.1). Good agree-
ment with the analytical solution is also seen in this case.

4 Results in Vlasiator

4.1 CS null lines in detail

Figure 10a and b show a section of the Vlasiator tail CS (a
subset of Fig. 5). Firstly, panel (a) shows the in-plane null
lines as found by the contouring method, coloured with ∂LBN
(with red colours signifying X topologies and blue lines sig-
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Figure 10. (a) The tail CS from Vlasiator simulation (EGI, t = 1267 s). Similar format to Fig. 6 LMN plot, with contoured X and O lines.
(b) FOTE detections of X and O topologies (outlined cubic cells) compared with the contoured detections of panel (a) (black curves). Panels
(c) and (d) show details from points marked by c and d, specifically a slice of the local L–N plane with in-plane magnetic field lines from
streamline plotting of the in-plane magnetic field components and with zero contours of these components being annotated. The slices show
that point c is correctly identified as an O topology, and point d is correctly identified as an X topology. The background colour is the strength
of the in-plane magnetic field.

nifying O topologies). Evidently, the method struggles at the
site of strong current sheet flapping. The CS is coloured by
BN, positive values are coloured blue, and negative values
are coloured beige, extending the north–south classification
in Fig. 6a to a flapping CS. The LMN coordinate bases are
shown at some locations on the sheet as red–blue–green ar-
rows. Further, two in-plane null line locations marked as (c)
and (d) are chosen as examples (noting that these coincide
with the flap seen in Fig. 6a), and for these locations the lo-
cal LN plane magnetic field is plotted below in the corre-
sponding panels (c) and (d), showing that these null lines are
indeed correctly found and classified.

To validate the observed null lines with both methods in
the case of the tail CS, Fig. 10b shows both contouring and
FOTE detections at work, with the contoured in-plane null
lines shown as black curves and the FOTE-detected null-
line containing cells as wireframes coloured with ∂LBN. The
methods agree well, even if the FOTE method may have
some stray detections. These strays are found to be a mi-
nor issue, showing up on the current sheet as isolated cells
flagged as containing null lines, while the true detections
form coherent structures.

We may note that the local coordinate systems spanned by
our LMN basis describe well the in-plane X and O lines in
the simulation. However, this leads to the observation that
the X and O line axes might not be aligned with the M̂ di-
rection, as also observed by Pathak et al. (2022) with MMS
data. Figure 10 demonstrates this in the Vlasiator tail CS,
with X and O lines necessarily breaking their alignment from
the M̂ direction when forming into loops, for example at
X =−17RE, Y = 3RE. The effect of this misalignment on
reconnection in Vlasiator simulations is an ongoing subject
of study.

4.2 Null lines in global Vlasiator 6D magnetosphere

To extend our analysis to the global Vlasiator magneto-
sphere, we use the generic FOTE method that is not lim-
ited by construction of consistently oriented neighbourhoods.
The FOTE method reveals a sinuous and alternating neutral
line structure on the magnetopause flanks, shown in Fig. 11.
The O lines are marked with blue cells signifying dayside
FTEs extending onto the flanks as a part of the sinuous pat-
tern. The figure uses a magnetopause proxy from the β∗ pa-
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Figure 11. Dawn flank of the magnetosphere, with FOTE detections as outlined cells, using the β∗ parameter on the vertical slice and on a
magnetopause proxy at β∗ = 0.5.

rameter of Xu et al. (2016), defined as

β∗ =
Pthermal+Pdynamic

PB
. (8)

Regions with small values of |∂LBN| (grey) should be in-
spected for their validity, in general, as these signify low vari-
ability in the magnetic field. These regions may be suscepti-
ble to local, insignificant perturbations fulfilling the FOTE
criterion. The alternating pattern on the magnetopause at
X < 20 still suggests that these are indeed real magnetic
structures, with alternating positive and negative BN regions.
We note, however, that the behaviour of the magnetopause on
the flank in the present simulation is not yet studied in detail,
and the shown time state (1267 s) may still contain initializa-
tion artefacts deep in the tail.

4.3 Dimensionality of magnetic structures in Vlasiator

The applicability of the LMN coordinate system should be
inspected in terms of dimensionality of the magnetic struc-
tures to ensure that the structures inspected are locally quasi-

2D. Figure 12 shows an overview of the dimensionality mea-
sures D1, D2 and D3 (Eqs. 2–4, described in Sect. 1.1) ap-
plied to a Vlasiator 6D simulation. Red colour corresponds
to regions dominated by 1D variation (sheet-like structures),
green corresponds to regions dominated by 2D structures
(e.g. plasmoids and flux ropes), and blue corresponds to re-
gions dominated by 3D structures. The upstream appears to
be noisy as the magnetic field is nearly constant. The regions
of interest for reconnection are naturally found in CSs, that
is, mostly 1D structures with some embedded 2D features.
These can be used to constrain the local basis analysis to
compatible regions.

An interesting finding in the dimensionality parameters in
the 6D Vlasiator run can be observed in the lack of domi-
nantly 3D structures, as shown in Fig. 13. Magnetic struc-
tures exhibiting D3 dominance appear to be limited: the oc-
currence of cells is increasingly rare as D3→ 1. The promi-
nent collection of cells having D3 =D1 is found to be dom-
inated by cells in the lobe regions of the magnetosphere.
Whether or not these features are related to the divergence-
free condition ∇ ·B, intrinsic properties of the magnetic field
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Figure 12. Overview of local MDD dimensionality, shown on the planes Y = 0, Z = 0. The dimensionality values D = (D1,D2,D3) ∈
[0,1]3 are mapped to RGB colour channels via rgb=D/2+ (0.5,0.5,0.5) to obtain a three-channel representation of the triplet. See the
ternary diagram at the top left for reference: the more red there is, the more 1D the local magnetic field structure is; green dominance signifies
two-dimensionality, and blue dominance signifies three-dimensionality.

being convected by plasma, the boundary condition or other
constraints remains to be studied.

5 Discussion and conclusions

Here, we have presented two local methods to acquire X and
O topologies of the magnetic field from plasma simulations
of Earth’s magnetosphere, enabling fast and efficient identifi-
cation of possible reconnection sites and flux transfer events.
The algorithms work on O(N) complexity, i.e. operating once
per grid cell (and possibly using a contouring algorithm of
similar complexity) without requiring field line or separa-
tor tracing such as that used by Haynes and Parnell (2010).
These methods use solely the magnetic field and its Jacobian,
and so the found X lines may or may not be actively recon-
necting – other methods need to be used to characterize the
reconnection activity at the found sites, but the present meth-
ods have the advantage of being constrained to a local neigh-
bourhood and only requiring knowledge about the magnetic
field and its derivatives.

Using the dimensionality measures introduced by Rezeau
et al. (2018) shows well that the magnetopause, the bow

shock and the tail CS are essentially 1D structures, with
intermittent, embedded 2D features. As we have a purely
southward-IMF driving in the prototype case, this is con-
sistent with Zeiler et al. (2002) observing that non-guide-
field reconnection is mostly 2D. Future simulations including
an IMF By component will provide stronger guide field re-
connection and possibly different dimensionality of detected
structures.

The construction of the local coordinate system involves
some choices. The first in-plane direction L̂ is given by the
local MVA analogue (MGA). The normal direction N̂ is cho-
sen to be the primary eigenvector of the MDD system, or-
thogonalized with respect to L̂, to ensure good behaviour in
nearly 1D CSs; the vector∇BL could be a conceivable option
to supplant the secondary MDD vector, but this vector is not
readily available from the magnetic field and its Jacobian.

For the contouring method, the limitation of requiring con-
sistently oriented local coordinates is a slight issue. It could
be mitigated by automated construction of local neighbour-
hood charts of consistent orientation, as well as automati-
cally finding the extents where the local coordinate charts
are sensible. As presented here, the contouring method relies
on manual restriction of neighbourhoods for analysis. The
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Figure 13. Local dimensionality of a Vlasiator simulation obtained
via the MDD analysis; ternary histogram over most of the magneto-
sphere. Each cell outside of the inner boundary with r > 5RE and
constrained to −40RE <X < 20RE and ± 40RE in Y and Z is
shown here. The lack of completely 3D structures indicates that the
in-plane approximation is usable.

FOTE method is given as a generalized alternative, operating
cell-wise in the full domain, with the caveat that, in contrast
to the contouring method, the FOTE method does not pro-
duce topological connectivity for the in-plane null lines; that
is, it can be used to mark cells containing null lines but not
which neighbouring cells those lines connect to. In contrast,
the contouring method outputs line topologies from the iso-
contours of BL = 0= BN.

In comparison to topological methods, such as the mag-
netic skeleton method of Haynes and Parnell (2010), the
present method does not require field line tracing or knowl-
edge on boundary flows like the method proposed by Titov
et al. (2009). On the other hand, Lapenta (2021) proposed
a local Lorentz transformation method using both magnetic
and electric fields, the latter of which the present method
does not require. The present method can acquire useful null
line objects via contouring, presenting something of a mid-
dle ground between local and topological analyses, adding
another tool for studies of reconnection.

The presented FOTE and contouring methods are fun-
damental to investigate magnetic structures in a physi-
cally meaningful coordinate system, supporting reconnec-
tion studies in quasi-2D current sheets. The quantification
of dimensionalities of magnetic structures may also provide
new insights into plasma processes: for example, the mag-
netospheric tail lobes were found to be characterized by
D1 ≈D3.
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made available via Zenodo by Pfau-Kempf et al. (2022)
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