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Abstract. An axi-symmetric two-dimensional magnetopause
model is constructed by making use of the conformal map-
ping in the complex plane. The model is an analytic continu-
ation of the power-law damped (or asymptotically elongated)
parabolic shape. The complex-plane expression of the mag-
netopause opens the door to properly map the magnetopause
and magnetosheath coordinates from one model to another.

1 Introduction

The magnetopause model proposed by Shue et al. (1997)
(hereafter the Shue model) is, to the authors’ knowledge, one
of the most successful structure models in space science. The
Shue model can be given in a simple analytic way by combin-
ing a parabolic shape with a power law, and has successfully
been tested against the magnetopause of the Earth and the
other planets, such as Mercury (Winslow et al., 2013).

Here we report our finding that the magnetopause model
can be formulated as a conformal mapping in the complex
plane. This mapping preserves local angles. Any analytic
function satisfies the conformal (angle-preserving) character
in the complex plane as long as there is a non-zero derivative.
Expression of the magnetopause as a conformal map is ideal
when dealing with different magnetopause models.

Our study is motivated to fill the gap between the property
of the bow shock models and that of the magnetopause mod-
els. The bow shock is often modeled as a conic section (either
as a parabola or as a hyperbola; see Cairns et al., 1995), and
the analytic expression for the conformal map is known (Dar-
boux, 1887; Sauer and Szabó, 1967; Encyclopedia of Mathe-
matics, 2020). The magnetopause shape (such as in the Shue
model) is, on the other hand, not a conic section, and the ex-
istence of conformal mapping remained a question for a long

time. We tackle the question by incorporating various con-
formal mappings.

2 Construction of conformal map

We start with the magnetopause model in polar coordinates
after Shue et al. (1997),

R = Rmp

(
2

1+ cosθ

)α
, (1)

where R is the radial distance to the planet, θ is the zenith
angle (measured from the planet center), and α is the power
index to designate the magnetopause shape in the tail region,
e.g., a parabolic shape (corresponds to α = 1), an elongated
shape (given by α = 1/2), or damped, converging shape (α <
1/2).Rmp denotes the magnetopause stand-off distance at the
subsolar point. In our work, we choose α = 0.5, which is sta-
tistically representative (Shue et al., 1997).

By introducing the transformation,

x =
R

Rmp
cosθ (2)

y =
R

Rmp
sinθ, (3)

the magnetopause location is given in the Cartesian form as

x2
=

4
4− y2 − y

2. (4)

The derivation of Eq. (4) is shown in Appendix. Note that x
and y are normalized to the magnetopause stand-off distance
Rmp for simplicity. The magnetopause model (Eq. 4) has the
following boundary conditions and asymptotic behavior:
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1. The stand-off distance is restored at the subsolar point,
i.e., x = 1 at y = 0.

2. The distance to the planet is y =±
√

2 at the terminator
(x = 0).

3. The distance to the Sun–Earth axis (or the x axis in geo-
centric solar ecliptic coordinates, GSE) is y =±2, when
x→∞.

Now we express Eq. (4) in the complex plane using the
variable z= u+ iv, so that the magnetopause location is
given as

f (z)= x+ iy. (5)

In other words,

x = Re(f (z)) (6)
y = Im(f (z)) , (7)

in the Cartesian representation. The complex-valued function
f (z) is an extension of the magnetopause location. The mag-
netopause is restored when choosing v = vmp = 1 (or vmp to
be evaluated as

√
Rmp when not normalized). The task is thus

to find the suitable function f (z).
To our task, we first transform the y coordinates onto the

imaginary axis as iy (where i is the imaginary unit), so that
the denominator in Eq. (4) is formulated from 4/(4−y2) into
4/(4+ (iy)2). Now we perform the analytic continuation of
the right-hand side of Eq. (4), and replace iy by z.

We find out that the combination of four sequential con-
formal mappings is a reasonable analytic continuation of
the magnetopause model: (t1) square transformation, (t2)
Joukowsky transformation (with shift), (t3) square root trans-
formation, and (t4) scaling and shifting (for the matching
with the boundaries). Each transformation is discussed be-
low.

2.1 Square transformation

In the first conformal mapping, the square transformation is
used with a unit coefficient and no shift. The transformation
is expressed as

t1 : z→ z2. (8)

The transformation yields the parabolic coordinates as

Re(z2)= u2
− v2 (9)

Im(z2)= 2uv, (10)

which can be arranged into a parabolic equation when elimi-
nating u as

Re(z2)=

(
Im
(
z2))2

4v2 − v2. (11)

Figure 1. Constant u lines (in gray) and constant v lines (in black)
for the conformal mappings t1, t2, t3, and t4.

In fact, the parabolic model of magnetopause is introduced
by Kobel and Flückiger (1994), which is equivalent to the
following transformation:

tK : z→−
1
2
z2
+

1
2
. (12)

Here, v = vmp corresponds to the magnetopause location.
Figure 1 in the top left panel displays the mapping of u=
const lines (in gray) and v = const lines (in black) for the
transformation t1. The “nose” of magnetopause is located on
the negative x side.

2.2 Shifted Joukowsky transformation

In the second conformal mapping, the parabolic shape of the
mapped curves are stretched using the poles at z=±i2. The
transformation is a variant of the Joukowsky transformation,
which deforms circles into ellipses (Joukowsky, 1910). We
perform the Joukowsky transformation by retaining the pole
terms z2

+ 4 as

t2 : z2
→

(
z2
+ 4

)
+

4
z2+ 4

. (13)

Figure 1 in the top right panel displays the mapping for
the transformation t2. The overall structure of v = const lines
still retains the parabolic shape, but the focal point shifts to a
larger value of x, and the distance from the x axis (the y = 0
line) is larger.

2.3 Shifted square root transformation

In the third conformal mapping, the Joukoswky-transformed
function t3 is compared to the magnetopause model (Eq. 4).
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The comparison yields a subtraction by 4 and a square root
operation as

t3 :
(
z2
+ 4

)
+

4
z2+ 4

→

[
(z2
+ 4)+

4
z2+ 4

− 4
]1/2

. (14)

Again, the poles are retained in this transformation. The
mapped function has a shape of magnetopause, but the focal
point is located in the far tail region, and the distance to the
magnetopause is smaller than the stand-off distance. Figure 1
in the bottom left panel displays the mapping for the transfor-
mation t3. The tail shape is elongated by this transformation
The focal point is moved close to the origin.

2.4 Scaling and shifting

In the final conformal mapping, the mapping is scaled by a
factor a and also shifted by an offset of f0. The transforma-
tion reads as

t4 :

[
z2
+

4
z2+ 4

]1/2

→ a

[
z2
+

4
z2+ 4

]1/2

+ f0, (15)

where the scale factor a =−2 is determined by the asymp-
totic behavior in the tail (distance of 2Rmp to the axis), and
the shift f0 = 1+ 2/

√
3 is determined by the stand-off dis-

tance at the subsolar point. Combining the four transforma-
tions, the scalable magnetopause shape is expressed as a con-
formal mapping with

f (z)=−2
[

4
z2+ 4

+ z2
]1/2

+

(
1+

2
√

3

)
. (16)

Figure 1 in the bottom right panel displays the mapping for
the transformation t4. The magnetopause nose is flipped to
the positive x side. and is scaled to match the magnetopause
asymptotic behavior in the tail, and the lines are shifted by
f0 along the x axis to meet the stand-off distance.

2.4.1 Magnetopause location

The magnetopause location is restored when choosing v = 1
in z= u+ iv. It is also worth noting that the function ob-
tained by the transformation t3 for v = 1 can analytically be
evaluated as

4
z2+ 4

+ z2
=

[
4
(
u2
+ 3

)(
u2+ 3

)2
+ (2u)2

+

(
u2
− 1

)]

+ i2u

[
1−

4(
u2+ 3

)2
+ (2u)2

]
, (17)

Figure 2. Magnetopause location generated by Eq. (16), with v = 1
in z= u+ iv (in black) and the magnetopause model by Shue et
al. (1997) (dotted gray). x and y coordinates are normalized to the
magnetopause stand-off distance Rmp.

which is used to determine the scale factor a and the shift
f0 in the transformation t4 by comparing with the square of
f (z) as

(f − f0)
2
= a2

(
4

z2+ 4
+ z2

)
. (18)

3 Applications and limits

3.1 Accuracy check

The function f (z)= x+ iy using Eq. (16) at v = 1 overall
reproduces the shape of the Shue model. Figure 2 shows the
comparison between the magnetopause model using Eq. (16)
and the Shue model. The subsolar point (x = 1 at y = 0) and
the asymptotic behavior (y→±2 at x→−∞) are repro-
duced as well. However, it should be noted that the differ-
ence occurs from the Shue model at the terminator (x = 0).
Our function shows the magnetopause distance at the termi-
nator at y =±1.3504, which is slightly underestimating that
of the Shue model, y =±

√
2=±1.4142. The difference be-

tween the two models is about 4.7 %. This mismatch indi-
cates that the analytic continuation is not exact but is of ap-
proximate nature. Thus, care should be exercised when work-
ing on the magnetopause around the terminator with our con-
formal mapping.

3.2 Curvilinear grid generation

The analytic nature of our function (Eq. 16) can be used for
the curvilinear grid generation around the magnetopause for
various numerical studies. Figure 3 displays the curvilinear
grid generated by Eq. 16) for values of u= {0.5,0.7, . . .,1.4}
(the C-shaped curves) and v = {0.0,±0.2, . . .,±1.4} (radial
to the planet or perpendicular to the x axis). The curves of
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Figure 3. Curvilinear grids generated by the conformal map
(Eq. 16) around the magnetopause (v = 1). The C-shaped curves
represent lines of constant v values. The innermost curve corre-
sponds to a line of v = 0.5. The v value for the curves are shifted as
0.5, 0.7, . . . , 1.4 (10 curves are shown). The radial curves represent
constant u values, and the curves are orthogonal to the curves of v
values. The subsolar direction Y = 0 is given by u= 0. The curves
are plotted for u values of 0, 0.2, 0.4, . . . , 4.4 (45 curves are shown).

constant u values are orthogonal to that of constant v values.
This property comes from the fact that Eq. (16) is an analytic
function, which is one of the solutions of the Laplace equa-
tion. In other words, Eq. (16) solves the Laplace equation for
the given magnetopause position (imposed by v = 1).

3.3 Variation of tail shape

Qualitatively speaking, different tail shapes can also be ob-
tained by generalizing the square root operation in t3 into a
power with the index α as

t ′3 :
(
z2
+ 4

)
+

4
z2+ 4

→

[(
z2
+ 4

)
+

4
z2+ 4

− 4
]α
. (19)

The magnetopause coordinates are plotted as grids for α of
0.2, 0.4, 0.6, and 0.8 in Fig. 4 by using the scale factor and
the shift in t4. A converged tail shape is obtained for α < 0.5
and a divergent tail shape for α > 0.5, which is in agreement
with the Shue model (Eq. 1).

4 Summary and outlook

Conformal mapping is a useful method in the model con-
struction when the axi-symmetry holds and the boundary is
modeled in the two-dimensional spatial domain. Our mag-
netopause model completes the scenario that both dayside
boundaries (bow shock and magnetopause) can be modeled
by conformal mapping, which opens the door to analytically

Figure 4. Magnetopause grids generated for different values of the
power index α in t ′3 transformation. Values of u are 0.6 (innermost
C-shaped curve), 0.8, . . . , 1.4 (outermost curve).

or semi-analytically map the magnetosheath scalar potential
by Kobel and Flückiger (1994) and the set of velocity po-
tential and stream function by Guicking et al. (2012) onto a
more realistic magnetosheath domain (cf. Soucek and Escou-
bet, 2012).

The easiest approach of magnetosheath coordinate map-
ping would be to introduce the transfinite interpolation in the
complex plane. Or, one could numerically solve the Laplace
equation for the given boundaries in order to generate strictly
orthogonal curvilinear coordinates.

Appendix A: Magnetopause location in Cartesian

In the case of α = 0.5, the magnetopause position in the Shue
model is given by

R = Rmp

√
`

1+ cosθ
, (A1)

where `= 2. Equation (A1) is transformed using the conver-
sion rule in Eqs. (2) and (3) into the following normalized
form:

r =

√
`

1+ x
r

, (A2)

where r = R/Rmp. After squaring and exchanging r with 1+
x/r , Eq. (A2) is expressed as

1+
x

r
=

`

x2+ y2 . (A3)
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We compute square of x/r in Eq. (A3) and obtain

x2

x2+ y2 =

(
`

x2+ y2 − 1
)2

, (A4)

which can be arranged into a fourth-order algebraic equation
with respect to y as

y4
+ x2y2

− 2`y2
− 2`x2

+ `2
= 0. (A5)

The factorized form of Eq. (A5) reads(
x2
+ y2

)(
y2
− 2`

)
+ `2
= 0. (A6)

Equation (A6) delivers the Cartesian representation of the
Shue model in a convenient form (Eq. 4).
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