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Abstract. The relationship between solar-wind conditions
and substorm activity is modelled with an approach based on
an echo state network. Substorms are a fundamental phys-
ical phenomenon in the magnetosphere–ionosphere system,
but the deterministic prediction of substorm onset is very dif-
ficult because the physical processes that underlie substorm
occurrences are complex. To model the relationship between
substorm activity and solar-wind conditions, we treat sub-
storm onset as a stochastic phenomenon and represent the
stochastic occurrences of substorms with a non-stationary
Poisson process. The occurrence rate of substorms is then
described with an echo state network model. We apply this
approach to two kinds of substorm onset proxies. One is a se-
quence of substorm onsets identified from auroral electrojet
intensity, and the other is onset events identified from activity
of Pi2 pulsations, which are irregular geomagnetic oscilla-
tions often associated with substorm onsets. We then analyse
the response of substorm activity to solar-wind conditions
by feeding synthetic solar-wind data into the echo state net-
work. The results indicate that the effect of the solar-wind
speed is important, especially for Pi2 substorms. A Pi2 pul-
sation can often occur even if the interplanetary magnetic
field (IMF) is northward, while the activity of auroral elec-
trojets is depressed during northward IMF conditions. We
also observe spiky enhancements in the occurrence rate of
substorms when the solar-wind density abruptly increases,
which might suggest an external triggering due to a sudden

impulse of solar-wind dynamic pressure. It seems that north-
ward turning of the IMF also contributes to substorm occur-
rences, though the effect is likely to be minor.

1 Introduction

Substorms are a fundamental physical phenomenon in the
magnetosphere–ionosphere system. Since substorms are the
main source of geomagnetic disturbances in the polar iono-
sphere causing geomagnetically induced currents (e.g. Vilja-
nen et al., 2006; Wei et al., 2021; Schillings et al., 2022),
prediction of substorms is an important issue. Substorms
are most likely driven by the solar wind, so it is essential
to understand the relationship between substorms and solar-
wind conditions for predicting substorms. In this context,
many studies have attempted to construct predictive models
of the auroral electrojet indices, AU and AL, which represent
the intensities of auroral electrojets in the polar ionosphere
(Davis and Sugiura, 1966). For example, Luo et al. (2013) de-
veloped a parametric model for predicting the AU and AL in-
dices from a time history of solar-wind data. There have also
been a number of studies which employed machine learn-
ing approaches for predicting the AU and AL indices from
given solar-wind conditions (e.g. Gleisner and Lundstedy,
1997; Takalo and Timonen, 1997; Amariutei and Ganushk-
ina, 2012). Our previous study (Nakano and Kataoka, 2022)
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(hereinafter referred to as NK22) also modelled the relation-
ship between the AU and AL indices and solar-wind vari-
ables using an echo state network (ESN) model, which is
a kind of recurrent neural network originally introduced by
Jaeger and Haas (2004).

However, a good prediction of the AU and AL indices
does not necessarily guarantee successful prediction of sub-
storm onsets. Many studies have argued that substorm onsets
are triggered by internal processes of the magnetosphere–
ionosphere system (e.g. Baker et al., 1996; Lui, 1996; Lyons
et al., 2018; Miyashita and Ieda, 2018). Considering that sub-
storms sometimes take place without any visible solar-wind
variations (e.g. Nakano and Iyemori, 2005), substorms may
be caused by complex magnetospheric processes which are
hard to predict. It would thus be difficult to deterministically
predict individual substorm onsets from a given time history
of solar-wind conditions. As a matter of fact, the ESN in our
previous study, NK22, did not always predict sharp decreases
of the AL index due to a substorm expansion. Figure 1 com-
pares the observed Kyoto AU and AL indices (World Data
Center for Geomagnetism, Kyoto et al., 2015) and the pre-
diction with the ESN. Although the prediction shown by the
red line roughly traces the actual AU and AL indices, it did
not reproduce many negative AL spikes.

In this study, we propose another approach for modelling
the relationship between substorm occurrences and solar-
wind input. To deal with the complexity underlying sub-
storm occurrences, we treat a substorm onset as a stochas-
tic phenomenon. The stochastic occurrence of substorms is
represented with a non-stationary Poisson process, which is
a probabilistic model describing event time series (e.g. Daley
and Vere-Jones, 2003). The occurrence rate of substorms is
then modelled with an echo state network (ESN) model. By
introducing the ESN, we can represent the dependence of the
occurrence rate on solar-wind conditions. Probabilistic pre-
diction of substorm onsets was also performed by Maimaiti
et al. (2019), who predicted a substorm occurrence for next
60 min from the time history of solar-wind data. In contrast,
the purpose of this study is to model the response of sub-
storm activity to given solar-wind condition. Our approach
thus sequentially processes the time series of solar-wind data
to obtain the instantaneous occurrence rate of onsets.

We applied the proposed ESN-based approach to two
types of substorm onsets. One is a sequence of substorm on-
sets identified from the SML index (Newell and Gjerloev,
2011a, b). The SML index is a proxy of westward auroral
electrojet intensity derived from the SuperMAG geomagnetic
data (Gjerloev, 2012) with the same algorithm as for the AL
index. However, since the events determined from the au-
roral electrojet intensity may contain non-substorm events
such as DP2-type convection enhancements (e.g. Nishida,
1968; Kamide and Kokubun, 1996), an increase of the au-
roral electrojet would not necessarily indicate a substorm
onset. To identify substorm onsets without relying on the
auroral electrojet intensity, we also analyse a sequence of

substorm onsets identified from the Wp index (Nosé et al.,
2009, 2012; World Data Center for Geomagnetism, Kyoto
and Nose, 2016). The Wp index corresponds to the amplitude
of low-latitude Pi2 pulsations. An onset determined from the
Wp index is thus regarded as a Pi2 event. After training the
ESN to model the two types of substorms, the relationship
between substorm activity and solar-wind conditions is dis-
cussed by analysing the response of the ESN outputs to syn-
thetic solar-wind inputs.

2 Method

We denote ν(t |β)dt as the probability of the occurrence of
an event within a small time interval dt , where β is a param-
eter determining the shape of the function ν. The function
ν is referred to as the intensity function, and it corresponds
to the instantaneous occurrence rate per unit time. Given a
sequence of event occurrence times τ1:N = {τ1,τ2, . . ., τN },
the likelihood of the parameter β is written as follows (e.g.
Daley and Vere-Jones, 2003):

L(β)= p(τ1:N |β)=

N∏
i=1
ν(τi |β)exp

− tK∫
t0

ν(t |β)dt

 , (1)

where p denotes probability density, t denotes time, and N
is the number of events. The log-likelihood thus becomes

logL(β)=
N∑
i=1

logν (τi |β)−

tK∫
t0

ν(t |β)dt. (2)

Discretising Eq. (2) in time, we obtain

logL(β)=
N∑
i=1

logν (τi |β)−
K−1∑
k=0

ν (tk|β)1t, (3)

where tk = t0+ k1t . The time interval 1t in Eq. (3) is set
to be 5 min in this study. If an event occurs at t = τi during
large ν, the first term on the right-hand side of Eq. (2) gets
larger. On the other hand, the second term on the right-hand
side of Eq. (2) becomes a large negative number if ν keeps
large values for the whole interval. The log-likelihood, logL,
thus becomes larger by choosing an intensity function which
becomes large when events frequently occur and small when
events do not occur. We want to obtain a good intensity func-
tion which describes the occurrence rate of events better.

We model the function ν with the ESN (Jaeger and Haas,
2004), used in NK22 and another recent study (Kataoka and
Nakano, 2021). Denoting the vector consisting of the state
variables of the ESN at time tk as xk , the ith element of xk ,
xk,i is updated at each time step according to the following
equation:

xk,i = tanh
(
wTi xk−1+u

T
i zk + ηi

)
, (i = 1, . . .,m), (4)
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Figure 1. Prediction of AU and AL indices with the ESN in NK22 (red) and actual AU and AL indices calculated by the World Data Center,
Kyoto (WDC Kyoto) (gray).

where zk is the vector of the input variables, wi is the vector
of the weights connecting the state variables, ui is the vec-
tor of the weights connecting the input variables and state
variables, andm denotes the dimension of the vector xk . The
dimension m is set to be 1000 in this study. The input vector
zk is given as follows:

zk =



Bx,k/SBx
By,k/SBy
Bz,k/SBz

(Vsw,k − bV )/SV
(Nsw,k − bN )/SN
(2sw,k − b2)/S2
cos(2πHk/24)
sin(2πHk/24)

cos(2πDk/364.24)
sin(2πDk/364.24)


, (5)

where Bz,k , By,k , and Bx,k respectively denote the z, y, and
x components of the interplanetary magnetic field in the geo-
centric solar magnetospheric (GSM) coordinates at time tk;
Vsw,k is the x component of the solar-wind velocity in the
GSM coordinates; and Nsw,k and 2sw,k are the solar-wind
density and temperature, respectively. These solar-wind vari-
ables are taken from the OMNI 5 min data (King and Pap-
itashvili, 2023). Hk and Dk respectively indicate universal
time (UT) in hours and the day from the end of 2000 (i.e.
Dk = 1 on 1 January 2001) for determining the UT depen-
dence and seasonal dependence (e.g. Cliver et al., 2000).
SBx , SBy , SBz , SV , SN , and ST are rescaling factors to ad-
just the value of each element of zk to a similar range, and
bV , bN , and bT are for adjusting the range of each element
of zk . According to NK22, we assume SBx = SBy = SBz =
10nT, SV = 500kms−1, SN = 20 cm−3, ST = 106 K, bV =
400kms−1, bN = 1 cm−3, and bT = 2× 105 K. The weights
{wi} and {ui} are randomly given in advance and are fixed.
The parameters {ηi} are also randomly given and are fixed.
Specifically, we randomly chose 90% of the weights {wi}
and {ui} and set them to 0. The non-zero elements of ui and
ηi were given randomly from a standard normal distribution.
The non-zero elements of wi were also drawn from a normal
distribution. The weights {wi} were then rescaled such that
the maximum singular value of the weight matrix is 0.99,

where the weight matrix W is an m×m matrix defined as

W= (w1 w2· · ·wm) . (6)

By setting the maximum singular value of W to be less than
unity, it is guaranteed that the ESN forgets distant past in-
puts and that the weights can be stably determined. Although
NK22 employed a leaky echo state network, this study uses
a network without a leak term, because the fitting of the sub-
storm occurrence probability was slightly degraded when the
leak term was introduced.

We represent the function ν as an exponential of the
weighted sum of the state variables as

ν(t |β)= exp
(
βT xk

)
, (tk ≤ t < tk+1) . (7)

Here, we have used the parameter vector β for the weights
for determining the output of the ESN. The value of β is
obtained with a Bayesian approach. We take the prior distri-
bution of β as a Gaussian distribution as

p(β)=
1√

(2πσ 2)m
exp

[
−
βT β

2σ 2

]
. (8)

where m denotes the dimension of xk and is 1000. We deter-
mine the standard deviation, σ , based on the marginal likeli-
hood (see Appendix A) to avoid overfitting and underfitting.
We set σ = 0.6 for analysing the SML substorm onsets in
Sect. 3 and σ = 1.4 for analysing the Wp onsets in Sect. 4.
We estimate β such that the following posterior probability
density is maximised:

p(β|τ1:N )=
p(τ1:N |β) p(β)

p (τ1:N )
. (9)

As p(τ1:N ) does not depend on β, we can obtain the optimal
β by maximising the following objective function:

J = log
[
p(τ1:N |β) p(β)

]
= logL(β)+ logp(β)

=

N∑
i=1

logν (τi |β)−
K−1∑
k=0

ν (tk|β)1t

−
βT β

2σ 2 −
m

2
log

(
2πσ 2

)
, (10)

using the Newton–Raphson method.
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3 Analysis of auroral electrojet substorms

First, we analysed the SuperMAG substorm list by Newell
and Gjerloev (2011a) derived from the SuperMAG data
(Gjerloev, 2012). This SuperMAG substorm list identifies
substorm onset times from the SML index, which indicates
westward auroral electrojet intensity. The SuperMAG list
thus enumerates the events in which a westward auroral elec-
trojet was developed. We refer to such events as auroral elec-
trojet substorms (AE substorms). We trained the ESN with
data for the 10 years from 2005 to 2014 so that the ESN
output represents well the occurrence rate of the substorm
onsets in the SuperMAG list. We used 5 min values of the
OMNI solar-wind data as the input. As in NK22, we start the
comparison after spin-up of the ESN for 72 steps so that the
ESN satisfactorily memorises the history of the input data. If
more than half of the data were missing for 1 h, we stopped
the prediction and spun up the ESN again for the subsequent
72 steps. We then predicted the intensity function ν which
represents instantaneous occurrence rate of substorm onsets.

Figure 2 shows an example of the prediction of the oc-
currence rate for the 3 d from 6 to 8 June 2015. In the top
panel, the red line indicates the occurrence rate ν (h−1) ob-
tained with the ESN. The AE substorm onset times in the
SuperMAG list are also plotted with blue triangles in this
panel. For comparison, the SMU and SML indices (Newell
and Gjerloev, 2011a, b), interplanetary magnetic field (IMF),
solar-wind speed, and solar-wind density are shown in the
second, third, fourth, and bottom panels, respectively. The
IMF shown in the third panel is expressed in GSM coordi-
nates, and the x, y, and z components are indicated with the
green, blue, and red lines, respectively. The predicted occur-
rence rate tended to increase when substorm onsets, indicated
with blue triangles, were frequently observed. This means
that the ESN predicted the occurrence pattern of the AE sub-
storms well.

To assess the performance of the ESN-based prediction,
we calculate the predicted probability of the substorm occur-
rence for each hour, obtained as

Pk = 1− exp

− tk+121t∫
tk

ν (t |β) dt


= 1− exp

[
−

12∑
j=1

ν(tk + (j − 1)1t |β)1t

]
. (11)

Note that 121t corresponds to 1 h because 1t was taken
to be 5 min. We classified the data into 10 classes by the
predicted probability (0≤ Pk < 0.1, 0.1≤ Pk < 0.2, . . . , and
0.9≤ Pk) and calculated the actual occurrence ratio for each
class. Figure 3 shows the actual occurrence ratio with re-
spect to the predicted probability for AE substorms in the
4 years from 2015 to 2018. For reference, the gray line indi-
cates the case where the occurrence ratio is equal to the pre-
dicted probability. The result with the red line shows that the

predicted probability obtained with the ESN agrees well with
the actual occurrence ratio except that the prediction slightly
overestimates the occurrence ratio for 0.4≤ Pk < 0.8.

The performance of a probabilistic prediction is often eval-
uated with the Brier score, defined as

B =
1
K

K−1∑
k=0

(rk −Pk)
2, (12)

where rk denotes the actual result. If the substorm occurred
during the period tk ≤ t < tk+1, rk = 1; otherwise, rk = 0.
For example, with a non-informative prediction when the
prediction Pk is always 0.5, (rk −Pk)2 = 0.25 for the en-
tire period, and the Brier score becomes B = 0.25. The Brier
score gets smaller as the prediction improves. For the data
from 2015 to 2018, the Brier score of the prediction with
the ESN was 0.100. This Brier score should be compared
with the case where we assume a stationary Poisson process
where the occurrence rate ν is constant. If a stationary Pois-
son process is assumed and ν is optimised to fit the same data
as used for training the ESN, the probability of substorm oc-
currence per hour is 15.6%. Using this value, the Brier score
with the stationary Poisson process becomes 0.136, which is
worse than the score with the ESN. The better score with the
ESN confirms that the information on the solar wind, which
is used as the input for the ESN, effectively improves the pre-
diction about the substorm occurrence.

4 Analysis of Pi2 substorms

In the following, we conduct a prediction of Pi2 substorms
with the same approach as used in the previous section. This
study identifies the Pi2 substorm onset using the Wp in-
dex (Nosé et al., 2009, 2012; World Data Center for Geo-
magnetism, Kyoto and Nose, 2016). The Wp index corre-
sponds to the amplitude of low-latitude Pi2 pulsations av-
eraged over the nightside longitudes, which is derived based
on the wavelet analysis (Nosé et al., 1998). Nosé et al. (2012)
proposed criteria for identifying Pi2 onsets from the Wp in-
dex. However, one of the criteria assumes quiescence of ge-
omagnetic activity before the onset. To take into account
Pi2 onsets during disturbed time, this study uses a different
method for identifying Pi2 onsets. Although the original Wp
index has a 1 min resolution, our identification recipe uses
moving averages with window sizes of 5 min to remove the
effects of noisy oscillations. We detect a time of a peak of the
moving averages, T , which satisfies the following:

Wp(T ) >Wp(T − 1min), (13)
Wp(T ) >Wp(T − 2min), (14)
Wp(T )≥Wp(T + 1min), (15)
Wp(T ) >Wp(T + 2min), (16)

where Wp(T ) denotes the moving average of the Wp index
at time T . We then find the time of the minimum Wp within
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Figure 2. Predicted occurrence rate ν (h−1) for AE substorm onsets (a), the SMU and SML indices (b), IMF (c), solar-wind speed (d), and
solar-wind density (e) for the 3 d from 6 to 8 June 2015. The blue triangles in the first panel indicate the substorm onsets in the SuperMAG
list. In the third panel, the x, y, and z components in GSM coordinates are plotted with the green, blue, and red lines, respectively.

the 15 min interval before the time of the peak and define it as
T−mmin (1≤m≤ 15). If Wp(T )−Wp(T−mmin) > θ nT,
we identify this increase of Wp as a Pi2 event. To determine
the onset time, we calculate the difference of Wp between
5 min apart:

1Wp(T − j min)=Wp(T − [j − 2]min)

−Wp(T − [j + 2]min) (17)

for j = 2, . . .,m. Finding j = j∗ which maximises
1Wp(T − j min), the time T − j∗min is regarded as
the onset time. We hereinafter refer to the Pi2 events
identified with the above criteria as Pi2 substorms, although
they may contain pseudo-breakups and other phenomena
which are not normally classified as substorms. In our event
detection method, the threshold θ is a tunable parameter
which determines the sensitivity of the detection. We set
θ = 0.1nT and considered two other cases: θ = 0.15nT and
θ = 0.2nT for comparison, as described later.

We trained the ESN with data for the 10 years from 2005 to
2014. Again, we used 5 min values of the OMNI solar-wind
data as the input. We started the comparison after spin-up
of the ESN for 72 steps. If more than half of the data were
missing for 1 h, we stopped the prediction and spun up the
ESN again for the subsequent 72 steps. We then predicted
the occurrence rate ν for substorm onsets. Figure 4 shows

Figure 3. Actual occurrence ratio with respect to the predicted prob-
ability for AE substorms in the 4 years from 2015 to 2018 (red). The
gray line shows the case where the predicted probability is equal to
the actual occurrence ratio.

the prediction of the occurrence rate of Pi2 substorms for
the 3 d from 6 to 8 June 2015, which is the same event as in
Fig. 2. When identifying the substorm onsets, the threshold θ
was set to be 0.1 here. In the top panel, the red line indicates
the occurrence rate (h−1) estimated with the ESN. The sec-
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Figure 4. Predicted occurrence rate ν (h−1) for Pi2 substorm onsets identified from the Wp index (a), the Wp index (b), SMU and SML
indices (c), IMF (d), solar-wind speed (e), and solar-wind density (f) for the 3 d from 6 to 8 June 2015. The blue triangles in the top panel
indicate the Pi2 substorm onsets identified from the Wp index. The meaning of the colour in the fourth panel is the same as in the third panel
of Fig. 2.

ond panel shows the Wp index, and the third panel shows
the SMU and SML indices. The fourth, fifth, and bottom
panels show the IMF in GSM coordinates, solar-wind speed,
and solar-wind density, respectively. Similarly to Fig. 2, the
predicted occurrence rate tended to increase when Pi2 sub-
storm onsets, indicated with blue triangles, were frequently
observed.

We also calculate the predicted probability of substorm oc-
currence for each hour defined in Eq. (11). As in the previous
section, we classified the data into 10 classes by the predicted
probability (0≤ Pk < 0.1, . . . , 0.9≤ Pk) and calculated the
actual occurrence ratio for each class. Figure 5 shows the ac-
tual occurrence ratio with respect to the predicted probabil-
ity for Pi2 substorms in the 4 years from 2015 to 2018. The
predicted probability obtained with the ESN mostly agrees
with the actual occurrence ratio although slightly underes-
timated. We also calculated the Brier score in Eq. (12). The
Brier score values were 0.208, 0.180, and 0.150 with θ = 0.1,

θ = 0.15, and θ = 0.2, respectively. If a stationary Poisson
process is assumed, the Brier score values were 0.236, 0.200,
and 0.165 with θ = 0.1, θ = 0.15, and θ = 0.2. The Brier
score gets smaller as the threshold θ increases due to the
number of events. If a larger threshold is taken, fewer events
are identified as substorms. This situation tends to depress
the predicted occurrence probability Pk . At the same time, as
the number of events decreases, rk in Eq. (12) takes a value
of 0 more frequently and (rk−Pk)2 accordingly decreases in
more cases. Thus the Brier score depends on the number of
events.

Comparing with the case of AE substorm onsets, the dif-
ference in the Brier score between the non-stationary and sta-
tionary Poisson process is likely to be smaller for Pi2 sub-
storms. This presumably indicates that predicting Pi2 sub-
storms is more difficult than AE substorms. Figure 6 is a
histogram of the frequency of Pk for Pi2 substorms identi-
fied with θ = 0.1, Pi2 substorms identified with θ = 0.2, and
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Figure 5. Actual occurrence ratio with respect to the predicted prob-
ability for Pi2 substorms in the 4 years from 2015 to 2018 with an
occurrence threshold of θ = 0.15 (red). The gray line shows the case
where the predicted probability is equal to the actual occurrence ra-
tio.

Figure 6. Histogram of frequency of Pk for Pi2 substorms identified
with θ = 0.1 (red), Pi2 substorms identified with θ = 0.2 (green),
and AE substorms (blue) for the period from 2015 to 2018.

AE substorms. For AE substorms, Pk was below 0.1 in most
cases. In contrast, it was relatively rare that Pk was lower
than 0.1 for Pi2 substorms with θ = 0.1. If Pk approaches to
1, we can confidently predict the occurrence of a Pi2 sub-
storm. If Pk approaches to 0, we can confidently deny the oc-
currence of a Pi2 substorm. However, Pk for Pi2 substorms
was between 0.2 and 0.6 for many cases, which means that it
is usually difficult to confidently predict whether a Pi2 sub-
storm will occur or not. If the threshold is taken to be θ = 0.2,
the frequency of Pk < 0.1 increased but it was still much less
than the case of AE substorms. Moreover, the frequency of
Pk ≥ 0.7 for Pi2 substorms with θ = 0.2 is less than that for
AE substorms. Overall, a Pi2 substorm onset seems to be less
predictable than an AE substorm onset.

5 Response to synthetic solar wind

To determine what the ESN learnt from the data, we con-
ducted an experiment analysing the response of the trained
ESN to synthetic solar-wind data. We used similar synthetic
solar-wind data to NK22 in which the solar-wind parameters
are fixed at constant values except that one of the parame-
ters varying as a rectangular wave of various periods. Fig-
ure 7 demonstrates the experiment with the synthetic solar-
wind data over 18 d. The top panel shows the occurrence rate
of AE substorms predicted with the ESN. The second panel
shows the occurrence rate of Pi2 substorms predicted with
the ESN. The third, fourth, and fifth panels display the IMF,
solar-wind speed, and solar-wind density, respectively. In this
experiment, the IMF Bx and By were set to 0 and the tem-
perature was fixed at 5× 105 K. In the first 3 d, IMF Bz var-
ied as a rectangular wave between −5 and 1nT with a pe-
riod of 20 min for the first day, 2 h for the second day, and
6 h for the third day, while the solar-wind speed was fixed at
400kms−1 and the density was fixed at 2 cm−3. In the next
3 d (Day 4 to Day 6), IMF Bz varied with the same pattern,
but the solar-wind speed became 600kms−1. Next, IMF Bz
was fixed at 1nT, and the solar-wind speed followed a similar
rectangular pattern for 3 d (Day 7 to Day 9). After that, IMF
Bz became −5nT and the solar-wind speed again followed
the same rectangular pattern for 3 d (Day 10 to Day 12). The
solar-wind speed was then fixed at 600kms−1, and the solar-
wind density was perturbed with a similar rectangular pattern
under a fixed IMF Bz of 1nT (Day 13 to Day 15) and −5nT
(Day 16 to Day 18).

The result suggests that both AE substorms and Pi2 sub-
storms tend to frequently occur when the IMF is southward
and the solar-wind speed is high. Newell et al. (2016) dis-
cussed the importance of the solar-wind speed based on the
analysis of substorm onsets identified from the SML index.
The second panel suggests that the Pi2 substorms are also
strongly dependent on the solar-wind speed. Indeed, the ef-
fect of the solar-wind speed seems to be more essential for
Pi2 substorms. From Day 4 to Day 6 when the solar-wind
speed was high, the occurrence rate of Pi2 substorms tended
to be high even under northward IMF situations, while the
frequency of AE substorms tended to be depressed by a
northward IMF. This is interpreted as showing that Pi2 pul-
sations can occur under geomagnetically quiet conditions
without an intense auroral electrojet, which would be con-
sistent with the result of Kwon et al. (2013). The existence
of Pi2 pulsations under quiet conditions explains the poor
predictability of Pi2 substorms suggested in Fig. 6. Since AE
substorms are rare during northward IMF, we can confidently
deny the occurrence of a substorm when the IMF is north-
ward. In contrast, since Pi2 substorms can often occur even
when the IMF is northward, it would be rare that we can con-
fidently deny the occurrence of a substorm.

In contrast with the response to the IMF and solar-wind
speed, the response to the solar-wind density variation is
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Figure 7. Occurrence rate ν (h−1) under synthetic data predicted with the ESN trained with the AE substorm data (a), occurrence rate ν
(h−1) under synthetic data predicted with the ESN trained with the Pi2 substorm data (b), the synthetic IMF (c), solar-wind speed (d), and
solar-wind density (e). In the top and second panels, the period from Day 13 to Day 18, when the solar-wind density is oscillated, is shaded
with green. In the second panel, momentary enhancements of the occurrence rate at the northward turning of the IMF are indicated with
blue arrows (see text). In the third panel, the y and z components of the IMF in GSM coordinates are plotted with the blue and red lines,
respectively.

spiky, especially for AE substorms (from Day 13 to Day 18,
shaded with green in the top and second panels). This may be
interpreted as showing that a substorm is triggered by a sud-
den impulse (SI) of solar-wind dynamic pressure, although it
is possible that the SI effect on the geomagnetic variation is
misidentified as a substorm occurrence. It is also notable that
a momentary enhancement of the occurrence rate is seen at
the northward turning of the IMF on Day 6 for Pi2 substorms
(blue arrows in the second panel). This might suggest that
Pi2 substorms tend to be triggered by a northward turning
of the IMF, as suggested by Lyons et al. (1997). However,
when we tried the same experiment with the ESN trained
with Pi2 substorms identified with a threshold of θ = 0.2, the
momentary enhancement of the predicted occurrence rate at
the northward turning became unclear. Thus, the response to
the northward turning of the IMF is not a distinct feature. As
suggested by other studies (Morley and Freeman, 2007; Wild
et al., 2009), the northward turning of the IMF is not likely
to be essential to substorm occurrence even though the north-

ward turning may give favourable conditions for a substorm
occurrence.

Excluding spikes of the substorm occurrence rate concur-
rent with jumps in the solar-wind density, a higher solar-wind
density is likely to have increased the occurrence rate from
Day 13 to Day 15 when the IMF was weak and northward.
In contrast, from Day 16 to Day 18 when the IMF was south-
ward, the occurrence rate did not show a clear change be-
tween before and after jumps of solar-wind density except
for spikes due to density jumps especially for AE substorms.
These results suggest that the effect of solar-wind density de-
pends on the IMF. When the IMF is weak and northward, the
substorm occurrence rate is higher when solar-wind density
is higher. Meanwhile, when the IMF is southward, the de-
pendence of the occurrence rate on the solar-wind density is
not clear except that the solar-wind density jumps can affect
the occurrence rate. This trend is similar to the compound
effect of the solar-wind density and IMF on auroral electro-
jets as identified by NK22 and other studies (Ebihara et al.,
2019; Kataoka et al., 2023). The solar-wind density effect on
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the occurrence rate may thus contribute to the dependence
of the auroral electrojet intensity on the solar-wind density.
However, according to NK22, a similar compound effect is
also observed in the AU index, which represents an eastward
electrojet. Since eastward electrojets are not considered part
of the substorm current system (e.g. Kamide and Kokubun,
1996), the occurrence rate cannot fully explain the compound
effect on the auroral electrojets indicated by NK22.

6 Concluding remarks

This study proposed an approach for analysing event time
series of substorm onsets with the occurrences influenced
by solar-wind conditions. We treat a substorm onset as a
stochastic phenomenon and represent the stochastic occur-
rences of substorms with a non-stationary Poisson process.
The occurrence rate of substorms is then described with an
echo state network model with a time series of solar-wind
data as an input. The echo state network allows us to di-
agnose the relationship between the substorm occurrence
rate and solar-wind conditions. We applied this proposed ap-
proach to a sequence of AE substorms and a sequence of Pi2
substorms. The ESN successfully predicted the probability
of occurrences of AE and Pi2 substorms.

We also conducted experiments with a synthetic solar-
wind data set and obtained the following results.

1. The occurrence rate is enhanced under a higher solar-
wind speed and southward IMF for both AE and Pi2
substorms. The solar-wind speed effect is more impor-
tant for Pi2 substorms than for AE substorms. While a
high-speed solar wind can bring Pi2 substorms even un-
der a northward IMF, AE substorms are rarely observed
under a northward IMF even if the solar-wind speed is
high.

2. The occurrence rate is enhanced at an abrupt jump of
the solar-wind density. A northward turning of the IMF
is also likely to momentarily enhance the occurrence
rate of Pi2 substorms, although the effect of a northward
turning seems to be minor.

3. A compound effect of the solar-wind density and IMF is
also suggested. When the IMF is weak and northward,
a higher solar-wind density is likely to cause a higher
occurrence rate of substorms. In contrast, when the IMF
is southward, the solar-wind density does not seem to
make a clear effect on the occurrence rate of substorms
except for spikes due to density jumps.

Appendix A: Parameter determination with marginal
likelihood

Parameters of a Bayesian prior distribution are often deter-
mined based on the marginal likelihood (e.g. Morris, 1983;

Casella, 1985). We determine the standard deviation of the
prior distribution, σ , by maximising the marginal likelihood
which is defined as

p(τ1:N |σ)=

∫
p(τ1:N |β) p(β|σ)dβ, (A1)

where we denote the prior distribution in Eq. (8) as the con-
ditional distribution given σ and p(β|σ). Using Eq. (10),
Eq. (A1) is reduced to

p(τ1:N |σ)=

∫
exp[J ] dβ. (A2)

Denoting the optimal value which maximising J as β̂, it
should satisfy∇J (β̂)= 0. The Taylor expansion of J around
β̂ is thus

J (β)= J (β̂)+
1
2
(β − β̂)T∇2J (β̂)(β − β̂)+ ·· ·, (A3)

where ∇2J (β̂) is the Hessian matrix at β = β̂. This Hessian
matrix is negative definite because J is maximised at β = β̂.
This second-order approximation of J yields an approxima-
tion of Eq. (A1) as follows:

p(τ1:N |σ)

≈

∫
exp

[
J (β̂)+

1
2
(β − β̂)T∇2J (β̂)(β − β̂)

]
dβ

=

√
(2π)m exp[J (β̂)]√
| −∇2J (β̂)|

, (A4)

where | −∇2J (β̂)| is the determinant of the Hessian matrix
of −J at β = β̂. This approximation is sometimes referred
to as Laplace’s approximation (e.g. Bishop, 2006). We chose
the standard deviation, σ , which maximises the logarithm of
the approximate marginal likelihood:

logp(τ1:N |σ)= J (β̂)−
1
2

log |−∇2J (β̂)|+
m

2
log2π. (A5)

Data availability. The AU and AL indices are available from
the website of the WDC for Geomagnetism, Kyoto (http://wdc.
kugi.kyoto-u.ac.jp/wdc/Sec3.html; World Data Center for Geomag-
netism, Kyoto et al., 2015). The SMU and SML indices are available
from the SuperMAG website (https://supermag.jhuapl.edu; Gjer-
loev, 2012). The SuperMAG substorm list can also be acquired
through the SuperMAG website. The Wp index is available via the
website of Masahito Nosé (https://www.isee.nagoya-u.ac.jp/~nose.
masahito/s-cubed/; World Data Center for Geomagnetism, Kyoto
and Nosé, 2016). The OMNI solar-wind data were acquired from
the OMNIWeb of NASA/GSFC (https://omniweb.gsfc.nasa.gov/;
King and Papitashvili, 2023).
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