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Abstract. Spacecraft constellations consisting of multiple
satellites are becoming more and more interesting not only
for commercial use but also for space science missions. The
proposed and accepted scientific multi-satellite missions that
will operate within Earth’s magnetospheric environment, like
HelioSwarm, require researchers to extend established meth-
ods for the analysis of multi-spacecraft data to more than four
spacecraft. The wave telescope is one of those methods. It is
used to detect waves and characterize turbulence from multi-
point magnetic field data, by providing spectra in reciprocal
position space. The wave telescope can be applied to an arbi-
trary number of spacecraft already. However, the exact limits
of the detection for such cases are not known if the space-
craft, acting as sampling points, are irregularly spaced.

We extend the wave telescope technique to an arbitrary
number of spatial dimensions and show how the character-
istic upper detection limit in k space imposed by aliasing,
the spatial Nyquist limit, behaves for irregularly spaced sam-
pling points. This is done by analyzing wave telescope k-
space spectra obtained from synthetic plane wave data in 1D
up to 3D. As known from discrete Fourier transform meth-
ods, the spatial Nyquist limit can be expressed as the greatest
common divisor in 1D. We extend this to arbitrary numbers
of spatial dimensions and spacecraft. We show that the spa-
tial Nyquist limit can be found by determining the shortest
possible basis of the spacecraft distance vectors. This may
be done using linear combination in position space and trans-
forming the obtained shortest basis to k space. Alternatively,
the shortest basis can be determined mathematically by ap-
plying the modified Lenstra–Lenstra–Lovász (MLLL) algo-
rithm combined with a lattice enumeration algorithm. Thus,

we give a generalized solution to the determination of the
spatial Nyquist limit for arbitrary numbers of spacecraft and
dimensions without any need of a priori knowledge of the
measured data.

Additionally, we give first insights into the application to
real-world data incorporating spacecraft position errors and
minimizing k-space aliasing. As the wave telescope is an
estimator for a multi-dimensional power spectrum substitut-
ing spatial Fourier transform, the results of this analysis can
be applied to power spectral density estimation via Fourier
transform or other methods making use of irregular sampling
points. Therefore, our findings are also of interest to other
fields of signal processing.

1 Introduction

The interaction of the solar wind with intrinsic planetary
magnetic fields creates interaction regions like the mag-
netosheath or the foreshock region (e.g., Baumjohann and
Treumann, 2012) that exhibit energy transport and transfer
via turbulence or plasma waves (e.g., Narita, 2012). Multi-
point measurements provided by the CLUSTER (Escou-
bet et al., 2001), THEMIS (Angelopoulos, 2008) and MMS
(Burch et al., 2016) space missions have become a standard
in Earth-bound plasma observations for more than 2 decades.
They allow for the study of these processes and phenomena
within a 3D picture.

However, especially with regard to turbulence, energy dis-
sipation happens on different spatial and temporal scales
(Frisch and Kolmogorov, 1995; Narita et al., 2006, 2011).
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Additionally, plasma waves and modes observed within ter-
restrial magnetospheric regions exhibit frequencies and wave
vectors on different spatial scales (e.g., Borovsky and Val-
divia, 2018), depending on plasma environmental conditions
and the specific region. Thus, to understand these transfer
processes as a whole, multi-scale observations on different
spatial scales simultaneously are required. The HelioSwarm
mission (Klein and Spence, 2021) with its nine spacecraft
(S/C) to be launched in 2028 provides a unique possibility for
such a multi-scale analysis. Furthermore, mission proposals
such as the Plasma Observatory (Retino, 2021) demonstrate
the current focus towards multi-scale multi-point missions.

For multi-point missions, different analysis techniques
have been developed to use multi-point measurements. The
wave telescope is an inversion technique to determine energy
spectra that are dependent on both the frequency ω and the
wave vector k. Thus, it enables us to identify dominant wave
vector contributions in spatial magnetic field measurements,
supporting the characterization and identification of plasma
waves and turbulence phenomena (Motschmann et al., 1996;
Narita et al., 2022). The wave telescope has been applied suc-
cessfully to CLUSTER and MMS data among others (e.g.,
Glassmeier et al., 2001; Pinçon and Glassmeier, 2008; Narita
et al., 2016). Its algorithm is able to handle an arbitrary num-
ber of multi-point measurements. However, when analyzing
discrete data, analysis limits like the Nyquist limit are appli-
cable. This applies in frequency space but also in wave vec-
tor space, the k space (Narita and Glassmeier, 2009). Here-
after, we call this limit in k space the spatial Nyquist limit.
Working in 3D space, four equally spaced S/C are sufficient
to determine the spatial Nyquist limit as known from solid-
state physics and the concept of the Brillouin zone (Brillouin,
1930; Kittel, 1991). In this case, the number of required S/C
n is just n=m+ 1, where m is the number of spatial di-
mensions. However, if n > m+ 1, an overdetermined equa-
tion system arises for determining the spatial Nyquist limit.
In this case, the Nyquist limit determination is not trivial any-
more. A zero-order approximation of the limit was recently
provided by Zhang et al. (2021) for the wave telescope appli-
cation.

Here, we derive a more precise formulation of the spatial
Nyquist limit for an arbitrary number of S/C and dimensions
using synthetic data models of multi-point measurements.
In Sect. 2, a short recap of the wave telescope technique is
given, extending the known formulae to arbitrary dimensions
while focusing on the version used for the here-presented
synthetic data models. Additionally, the known definitions
of sampling restrictions, namely, the Nyquist limit in both
time and space, are presented. Afterwards, Sect. 3 provides
an introduction to what is already known about the (spatial)
Nyquist limit for irregular sampling points – mostly in low-
dimension problems from other fields of research – and, on
the other hand, shows our extension to this current knowl-
edge by our findings considering the wave telescope, large
S/C numbers and also high-dimension problems. The math-

ematical generalization is formulated, and algorithms for the
computation of the spatial Nyquist limit are shown. Section 4
then focuses on the generation and improvement of real-data
spectra by incorporating position errors and making use of
spectra of subsets of S/C. We conclude our results and pro-
vide an outlook on the possible applications of our findings
to other research areas (Sect. 5).

2 Physical and mathematical basis

The following section provides the fundamentals of alias-
ing and its transfer to multi-dimensional reciprocal location
space, namely, k space. The phenomenon of aliasing is a gen-
eral one in the analysis of discrete signals, also in k space.
Nevertheless, here we focus on its implications for the wave
telescope technique, which will be introduced first before
showing a general derivation of the aliasing limit in k space
for regularly (evenly) spaced sampling points. Despite the
focus on the wave telescope technique, the findings and con-
sideration presented in this study regarding the aliasing in
k space are of a general nature and can be applied to other
spectrum estimation techniques.

2.1 The wave telescope technique for an arbitrary
number of dimensions

The wave telescope technique enables the estimation of a
wave-vector-dependent spectrum from a limited number of
measurement points (Motschmann et al., 1996). The tech-
nique allows for the estimation of wave power in k space
(Narita et al., 2022). It is based on the maximum-likelihood
technique applied to seismic wave data (Capon et al., 1967;
Capon, 1969), which was later extended to observations in
the context of electromagnetic waves (Pinçon and Lefeu-
vre, 1991). Adaption to the use of magnetic field data with
solenoidality as an additional constraint was provided by
Motschmann et al. (1996). This wave telescope was intro-
duced as a new analysis method for the CLUSTER mission.
It uses Capon’s minimum variance projection (Narita, 2019),
also known as the minimum variance distortionless response
(MVDR) estimator (Haykin, 1991; Toepfer et al., 2020). For
a detailed derivation of the method, the reader is referred to
the previously mentioned references. Here, we will just fo-
cus on the estimator itself for an arbitrary number of S/C n,
based on the description in Motschmann et al. (1996). How-
ever, the dimension m is chosen arbitrarily. By dimension,
we mean the considered number of vector components of the
physical quantity, in our case the magnetic field. In this work,
this number of dimensions is always chosen to be equal to the
number of spatial dimensions. Thus m is at maximum 3.

Suppose that the magnetic field vector b(t,r) is sampled at
the S/C positions r1, . . .,rn. The time resolution of magnetic
field data shall be sufficient to allow for a Fourier transform
in time (consider Eq. 9 below), delivering b(ω,r). An (m ·n)
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column vector is introduced to combine all measurements:

B(ω)=

b(ω,r1)
...

b(ω,rn)

 . (1)

With that, a data covariance matrix is defined by taking an
ensemble average

M= 〈B(ω)B†(ω)〉. (2)

This is a square matrix of size (m ·n×m ·n), where † denotes
the Hermitian transpose. To estimate this ensemble average
from a time series of finite length, we divide the original time
series interval into Q sub-intervals bq(t) (Glassmeier et al.,
2001). Fourier transformation in time of each sub-interval
yields bq(ω), which may then be condensed to Bq(ω), using
Eq. (1). This procedure assumes stationarity and homogene-
ity of the time series analyzed. With this, the data matrix can
be written as

M=
1
Q

Q∑
q=1

Bq(ω)B†
q(ω). (3)

The number of sub-intervals should be chosen sufficiently
large so as to minimize the random error compared to the
estimate itself (cf. Bendat and Piersol, 1971). Thirty-two de-
grees of freedom are considered sufficient; that is, Q= 16
(Glassmeier et al., 2001).

A model matrix H is introduced, representing the assumed
model, which is in our case the plane wave assumption:

H=

Im eikr1

...

Im eikrn

 , (4)

which is of the size (m · n×m), with Im being the identity
matrix of size m. Different underlying models can be cho-
sen such as spherical waves (Constantinescu et al., 2006) or
phase-shifted waves (Plaschke et al., 2008). With a plane
wave model, the wave telescope technique can be inter-
preted as a power spectrum estimator substituting power
spectral density estimation via a spatial Fourier transform
(Motschmann et al., 1996; Plaschke et al., 2008; Narita and
Glassmeier, 2009).

To guarantee the divergence-free nature of the magnetic
field, a filter matrix can be introduced:

V= Im+
k

|k|
⊗

k

|k|
= Im+

kkT

|k|2
, (5)

where⊗ denotes the dyadic product. The spectral energy ma-
trix P of size (m×m) is estimated via

P=
(

V†H†M−1HV
)−1

. (6)

The spectral power P at a specific k is defined as the trace of
the spectral energy matrix P:

P = tr(P). (7)

The determination of P requires the existence of M−1. This
may be achieved by applying so-called diagonal loading to
the data matrix by adding artificial noise σ 2

d such as described
in further detail by Toepfer et al. (2020):

Md =M+ Im·n · σ 2
d . (8)

For discrete data, this procedure provides a power estimate
P for a specific wave vector k (input to the matrices H and V)
and frequency ω (chosen when calculating M). To determine
a full power spectrum, a scan of four-dimensional parameter
space spanned by the three wave vector components and the
frequency is required. As mentioned before, the time reso-
lution is usually sufficiently high to provide spectral power
estimates in the frequency domain by making use of a tem-
poral Fourier transform.

Therefore, we focus on the limits for estimating the spatial
power spectrum, that is, estimating the spectral power P(k)
for a suitable range of wave vectors and at any given fre-
quency. Thus, we will only chose one frequency to be ana-
lyzed – the frequency yielding maximum power when calcu-
lating an average temporal power spectral density. All input
waves in the model cases will be at that specific frequency,
allowing us to focus on k space alone.

2.2 Definition of the spatial Nyquist limit for regular
sampling

For regularly (evenly) sampled discrete data, the sampling
theorem (e.g., Nyquist, 1928; Shannon, 1949) states that to
recover a signal of at maximum a frequency of f , a sam-
pling frequency of at least fs = 2f is needed. This results
in the Nyquist frequency fNy = 1/(21t) as an upper detec-
tion limit for waves or periodic structures, with 1t = 1/fs
being the sampling step. When transforming a time series to
the frequency domain, signals above the Nyquist frequency
show aliasing. One of the most common transforms is the
discrete Fourier transformation (DFT), which reads for a dis-
crete time series b(tj ) (Eriksson, 1998) as

B(fγ )=
1
M

M−1∑
j=0

b(tj ) · exp(2πi · fγ · tj ) (9)

with the corresponding inverse discrete Fourier transform
(IDFT) from frequency to time domain as

b(tj )=

M−1∑
γ=0

B(fγ ) · exp(−2πi · fγ · tj ), (10)

where fγ = γ /(M ·1t) is the discrete frequency with γ =
0,1, . . .,M − 1. In order to yield a spectrum, one normally
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estimates the power spectral density (PSD), which can be ac-
complished by a range of different methods. Nevertheless,
here we want to focus on Fourier transform as an illustra-
tive example with its two-sided PSD estimator (compare with
Eriksson, 1998)

PDFT =
M

fs
|B(fγ )|

2. (11)

Aliasing can be seen both in the time domain and the fre-
quency domain. When, for example, regularly sampling a
sinusoidal wave of frequency f0, any other sine with a fre-
quency of f0± gfs can also perfectly fit to the time series
(with g being an integer). The DFT spectrum PDFT will thus
show a periodicity with 2fNy. All frequencies from a range
((l−1)fNy, (l+1)fNy]will also show up in every other range
((q − 1)fNy, (q + 1)fNy] with l and q being even integers
(Bretthorst, 2001; Kirchner, 2005). Thus, the spectrum in the
frequency domain consists of a twofold spectrum: the origi-
nal (true) spectrum and an aliased spectrum that is added to it.
In the following, for simplicity, we will consider and imple-
ment in the simulations only frequencies (respectively wave
vectors; see the next paragraph) within the true spectrum.
This means, in approximation, that only the true spectrum
in the range from 0 to the Nyquist frequency will be repeat-
ing indefinitely, and in the frequency range−fNy ≤ f ≤ fNy
the resulting Fourier spectrum is aliasing free. Signal con-
tributions at frequencies above fNy (and below −fNy) show
aliasing. For more detailed information on the basics of alias-
ing, the reader is referred to Kirchner (2005) and VanderPlas
(2018).

The concept of aliasing and frequency domain periodicity
can be directly transferred from frequency space to k space
in general (Dunlop et al., 1988; Chanteur, 1998), in particu-
lar for the wave telescope (Neubauer and Glassmeier, 1990;
Pinçon and Motschmann, 1998; Glassmeier et al., 2001;
Narita and Glassmeier, 2009). This implies an analogue of
the Nyquist frequency in k space: the spatial Nyquist limit
kNy. However, there is a major difference when using the
wave telescope technique. For a real time series, the power
spectrum in the frequency domain is symmetric around 0
(Kirchner, 2005). The wave telescope, however, estimates
a spatial Fourier transform of the complex data set B(ω)
(Eq. 1). Thus, the spatial power spectrum obtained is not
symmetric around 0. The full range from the negative to the
positive spatial Nyquist limit needs to be considered.

In a first step to determine the spatial Nyquist limit, we
have to establish the periodic k cell within reciprocal space.
This periodic cell is spanned by a set of skewed linearly in-
dependent basis vectors ki . These vectors are determined by
the relationdT

1
...

dT
m

 · (k1 · · · km
)
= 2πIm (12)

with m ∈ {1,2,3} and Im being the identity matrix of size
m (derived from Shmueli, 2008, and Souvignier, 2016, and
references therein). We expect that the spacecraft span the
whole dimension space and thus exclude degenerate cases
where the basis vectors would not be linearly independent.
Here, the spacecraft translation vectors d i represent the dif-
ference between the position of an arbitrarily chosen refer-
ence spacecraft r1 and all other spacecraft with position vec-
tors r i (i.e., the set of basis vectors ki is not unique):

d i = r i+1− r1, (13)

with i = 1,2, . . .,n− 1 and n being the number of S/C. The
d i vectors represent column vectors of length m in posi-
tion space; ki represent column vectors of length m in re-
ciprocal space. Note that for the case of regular sampling
considered in this section n=m+ 1.

Solving Eq. (12) yields the expressions for the basis vec-
tors ki of the periodic cell in different dimensions m. For a
1D situation (the translation vectors become scalars di),

k1 =
2π
d1
, (14)

and in 2D (Achar, 1986)

kα = 2π
|dβ |

2dα − (dα · dβ)dβ

|dα|2|dβ |2− (dα · dβ)2
, (15)

with cyclic permutation of α,β = 1,2 leading to two vectors
that span a parallelogram. For a 3D situation, these vectors
read (e.g., Kittel, 1991) as

kµ = 2π
dν × dξ

dµ · (dν × dξ )
, (16)

using cyclic permutation for µ,ν,ξ = 1,2,3.
As mentioned above, the vectors ki define a confined

structure in k space, the periodic cell. For the wave telescope,
as abovementioned, one has to consider the spectrum from
negative to positive spatial Nyquist limit. Thus, we can de-
fine the spatial Nyquist limit as a set of m vectors (compare
with Glassmeier et al., 2001):

kNy,i = 0.5ki . (17)

As a first proxy, the range of the scanned k space should
be limited to the volume spanned by these vectors in both
positive and negative directions. However, as an important
remark, the so-constructed parallelepiped is actually not the
region within which no aliasing is guaranteed. This becomes
clear when considering the twofold definitions of unit cells
for lattices in crystallography (cf. Souvignier, 2016). One of
them is that very periodic cell (the parallelepiped) called the
primitive unit cell, that is spanned by the lattice basis vectors
(in our case the kNy,i in positive and negative directions). The
other is the Voronoï cell, also called Wigner–Seitz cell, which
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contains all points that are closer to the origin (k = 0) than to
any other lattice point (Souvignier, 2016). Thus, only the lat-
ter kind of unit cell – named first Brillouin zone (Brillouin,
1930) in solid-state physics – constitutes the volume within
which no aliasing is guaranteed. Despite special cases, these
two types of unit cells are not the same, contrary to the use
of the term “first Brillouin zone” in Narita and Glassmeier
(2009) and Narita et al. (2022). Particularly, the periodic cell
usually does not contain all points closest to k = 0 in contrast
to a statement in Neubauer and Glassmeier (1990). Thus, it
can only be used as a proxy to the actual aliasing limit, which
can be determined by computing the Wigner–Seitz cell using
ki .

Equation (17) allows for determination of the spatial
Nyquist limit for different spatial dimensions. However, if
the number of measurement points, (here the number of S/C)
exceeds m+ 1, Eq. (12) does not apply anymore. The equa-
tion system becomes overdetermined and does not lead to a
sensible solution, meaning a set of kNy,i . This case is equiv-
alent to dealing with an irregular spacing of sampling points
as will be shown in the following section.

3 The Nyquist limit for irregularly spaced sampling
points

3.1 The 1D case

Bretthorst (2001) was among the first to provide a detailed
discussion of the implications of irregularly spaced sampling
points on aliasing. Using discrete Fourier transformation of a
time series, he found that the periodicity in the frequency do-
main still exists but with the Nyquist limit being largely en-
hanced, based on the following explanatory considerations.

If the sampling points (t1, t2, . . ., tM) are irregularly
spaced, an effective sampling distance τeff and correspond-
ing Nyquist frequency fNeff = 1/(2 τeff) need to be found or
defined. Assuming that the sampling points are integer num-
bers, tj ∈ Z, one can transform this set of irregular sampling
points into a set with regular sampling by simply adding
points with zero values at the “missing” sampling points
(Bretthorst, 2001; VanderPlas, 2018). In principle, such zero
adding (not to be confused with zero padding, where zeros
are added to one end of the signal interval) could be done for
each integer number in the sampling range. This increases
the number of sampling points from M to Meff with the new
sampling time step τeff. If we apply this logic to the DFT
(Eq. 9), we yield the Fourier transform Beff of the new time
series beff(t):

Beff(fγ )=
1
Meff

Meff−1∑
j=0

beff(tj ) · exp(2πi · fγ · tj ), (18)

with the corresponding IDFT from frequency to time domain
as

beff(tj )=

Meff−1∑
γ=0

Beff(fγ ) · exp(−2πi · fγ · tj ). (19)

We want to remark that the transformation of the DFT to ir-
regularly spaced sampling points is actually more complex
than presented in Eqs. (18) and (19). Nevertheless, we show
this here as an illustrative example. For details, the reader
is referred to Bretthorst (2001). However, assuming the ex-
istence of a DFT (Eq. 9) for an originally irregular sampled
time series B(fγ ), it equals exactly the zero-added DFT in
Eq. (18), as the new sampling points do not contribute to the
spectral value:

Beff(fγ )= B(fγ ); (20)

the zero adding does not change the output of the discrete
Fourier transform. However, due to zero adding, the resulting
new Fourier spectrum is aliasing free in the frequency range
−fNeff ≤ f ≤ fNeff with fNeff = 1/(2 τeff).

An optimized zero adding – meaning the fewest zero-value
sampling points added to obtain regular sampling – results if
the new sampling times are defined by the greatest common
divisor (gcd) of the original sampling distances τj = tj − t1.
This becomes clear when considering a mathematical rep-
resentation of the effective sampling distance (cf. Eyer and
Bartholdi, 1999; Mignard, 2005):

tj = t1+ nj τeff (21)

with nj ∈ N. For regular sampling, τeff equals the sampling
time step, and nj increases by 1 for each next sampling point.
On the contrary, for irregular sampling, τeff has to be found
with nj being arbitrary. Zero adding will introduce sampling
points for every missing nj and thus transform the irregularly
sampled time series into a regular one.

Equation (21) may be rewritten using only the sampling
distances:

τj = nj τeff. (22)

Now, if we find the largest τeff possible fulfilling Eq. (22),
this would be the largest divisor of all sampling distances
τj . This represents the definition of the gcd (e.g., Bronshtein
et al., 2007), and we can express the effective sampling dis-
tance by (cf. Mignard, 2005)

τeff = gcd(τ1, . . ., τn). (23)

Usually, the times or positions of the sampling points are
not integer numbers but rational numbers: τj ∈Q. An easy
way to transform rational numbers into integer numbers is
by multiplication with factor q = 10 or q = 100, depending
on the accuracy of the values. A subsequent normalization is
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Figure 1. S/C configurations of both the two- and three-S/C test cases for the 1D analysis. The position of S/C 2 is shifted closer to S/C 1 for
each analysis, thereby stepwise reducing their distance.

Figure 2. Wave-telescope-based spectral energy for different two-S/C configurations in a 1D configuration and regular spacing. The synthetic
plane wave number used for modeling the artificial signal is k = 10−10 km−1. Each horizontal bar shows the 1D spectrum for the respective
spacecraft distance given at the vertical axis. The red broken lines display the calculated spatial Nyquist limits.

required, depending on the value of q. Thus, we may rewrite
Eq. (23) to yield a generalized way for the determination of
τeff:

τeff =
gcd(q · τ1, . . .,q · τn)

q
. (24)

with q ∈ Z such that for all τj the product q · τj is an inte-
ger. With that, the gcd can essentially be computed for ra-
tional numbers. Therefore, the calculation of a largest com-
mon time step τeff for rational, irregular sampling times is
straightforward. The determination of a Nyquist limit fNeff,
equivalent to the case of regular sampling, is possible.

The above approach can be adapted to other sampling
spaces such as position space with sampling time differences
τj becoming the aforementioned sampling position distances
di and the largest common time step τeff becoming the largest
common sampling position distance deff. We arrive at the 1D
spatial Nyquist limit

kNy =
π

deff
, (25)

concurring with Eq. (14), the regular sampling case (in com-
bination with Eq. 17). It is important to note that deff can be
significantly smaller than the smallest sampling distance (the
minimum of di); thus, kNy may become extraordinarily large.

Having defined both the spatial Nyquist limit for regularly
(Eq. 14) and irregularly (Eq. 25) spaced sampling points, we
use the wave telescope to visualize the differences of the spa-
tial Nyquist limit for these two different cases. In 1D, we use

two S/C (1 and 2; see Fig. 1) to show equally spaced sam-
pling points and three S/C for irregular sampling. For each
different model considered, the distance between S/C 1 and
2 is reduced from initially 50 km in steps of 5 km to a final
5 km. In the two-S/C case, this leads to an increasing spa-
tial Nyquist limit. However, for the three-S/C case, when re-
taining the position of the third S/C at 100 km, irregularly
spaced sampling points are created. The relation of the sam-
pling distance and its corresponding spatial Nyquist limit is
visualized in Figs. 2 and 3 for regular and irregular spacing,
respectively.

For both the regular and irregular sampling case, we use
the same synthetic plane wave with a wave number close to
0 km−1, precisely 10−10 km−1. This corresponds to a wave-
length exceeding spacecraft distances by far. However, the
wave telescope is still able to reproduce such a small wave
number. It is chosen here solely for reasons of visualiza-
tion as the results are symmetrically distributed around k =
0 km−1. This symmetry is displayed in more detail in Fig. 4a
for one three-S/C irregular sampling case. As pointed out in
Sect. 2.2, the wave telescope spectra are generally not sym-
metric around 0. Thus, a different, larger wave number re-
sults in a shift of the maxima in k space but does not change
the periodicity itself as is shown in Fig. 4b, where the wave
number was changed to k = 0.25 km−1. The absolute value
of k is of minor interest as we are mainly interested in the
numerical limitations of the method. In order to assure com-
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Figure 3. Spectral energy distribution of different three-S/C configurations in 1D and synthetic model wave number k = 10−10 km−1. Each
horizontal bar shows the 1D spectrum for the respective spacecraft distance given at the vertical axis. The red dotted lines show the calculated
spatial Nyquist limits without the third S/C (same as in Fig. 2), while the orange broken lines depict the spatial Nyquist limits calculated
using the gcd.

Figure 4. Spectral energy distribution of a three-S/C configuration with d1 of 15 km (compare with Fig. 3). The spatial Nyquist limit is
marked by the orange vertical lines, with the orange area in between marking the first Brillouin zone. In (a), an input wave vector of
k = 10−10 km−1 has been used while in (b) the input wave vector is set to k = 0.25 km−1. As a result, the spectrum shifts to the right and is
not symmetric around 0 anymore.

parability, random noise added to the magnetic field data is
only generated once and applied to each analysis.

The wave telescope energy spectra for all two-S/C con-
figurations are shown in Fig. 2. The modeled wave with
k ≈ 0 km−1 is clearly visible by its strong spectral peak at
zero wave number. Additionally, periodic peaks due to alias-
ing are visible. The spatial Nyquist limit is calculated us-
ing Eqs. (14) and (17) and marked by the red lines. The
agreement of this theoretically derived and calculated limit
with the synthetic model case results is readily discernible as
the repetition of maxima due to aliasing matches the spatial
Nyquist limit.

By adding a third S/C at 100 km (irregularly spaced S/C
case; see Fig. 3), the situation becomes more complex.
Again, the wave telescope is able to successfully detect the

original wave for all cases. In the case of regular spacing of
the S/C, the case with d1 = 50 km, we obtain the same result
as for the two-S/C situation (cf. Fig. 2). However, the spatial
Nyquist limit, now marked by the orange lines, depends on
the gcd of both the distances d1 and d2. As a result, for some
distances, the spatial Nyquist limit becomes much larger than
for the corresponding two-S/C configuration (marked by the
dotted red lines), while it is the same for others.

The periodicity for irregular sampling is more complex,
with side maxima of different amplitudes appearing with dif-
ferent repeating patterns. This has also been observed by
Bretthorst (2001) when using a discrete Fourier transform.
These side maxima do not represent a true signal detection
but are artifacts stemming from the different sampling dis-
tances. This makes the analysis of the spectrum difficult, as
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Figure 5. Spectral energy of the wave telescope analysis using
three-S/C data with regular sampling in two dimensions. The spa-
tial Nyquist limit periodic cell – calculated from the k vectors from
Eq. (15) – is marked by the orange parallelogram.

– without a priori knowledge of the input wave(s) – it is
hard to determine which peaks represent true signal detec-
tions and which are mentioned artifacts (side maxima). In
the following, we will refer to the true signal and its aliases
as “main maxima”. The detailed representation of the spec-
trum of irregular sampling cases in Fig. 4 reveals the differ-
ent amplitudes of the main and side maxima. Apart from the
larger amplitude of the main maxima, there exists no appar-
ent possibility to determine which peaks are true signal de-
tections. Thus, the determination of the amplitude with sat-
isfying accuracy is vital. Hence, a very large resolution is
required due to the narrow width of the peaks (all visual pre-
sentations given here show a logarithmic energy spectrum).
Especially for higher dimensions, high enough scan resolu-
tion of k space might become unachievable. In our analysis,
the periodicity of the main maxima clearly matches the cor-
responding calculated Nyquist limit, showing the agreement
of the theoretically calculated spatial Nyquist limit and the
numerical analysis for the irregular sampling case as well.
Therefore, the spatial Nyquist limit is a major aid in find-
ing the main maxima, as within its limits (the orange area in
Fig. 4) only one main maximum from every detected wave
will be present.

3.2 The 2D case

The considerations of the impact of irregular spacing on the
spatial Nyquist limit cannot simply be transferred from the
1D case to 2D and higher-dimensional situations. As orthog-
onality is not required for the reciprocal vectors, a separa-
tion of the two k vectors and projection onto one direction
of the Cartesian coordinates does not provide a useful ap-
proach. This causes difficulties transferring the gcd approach
from 1D to 2D situations.

In the 1D case, the spatial Nyquist limit can be determined
by identifying the periodicity using the main maxima, dis-
regarding lower-amplitude side maxima. Therefore, we also

Figure 6. Spectral energy of a wave telescope analysis of four S/C
in two dimensions. The spatial Nyquist limit periodic cells of sub-
groups of three S/C are marked by the dashed parallelograms in
different colors. The larger orange solid-line parallelogram is the
spatial Nyquist limit periodic cell derived by using the MLLL algo-
rithm and testing for the shortest basis using enumeration. The black
arrows indicate the basis vectors of the repetition of main maxima,
determined from the model cases. The picture of k space shown here
corresponds to the S/C locations in position space shown in Fig. 7.

use this approach in 2D to determine the connection of the
S/C configuration with the spatial Nyquist limit. In 2D, the
regular sampling point case can be demonstrated with any
configuration of spacecraft that lie on top of a 2D lattice.
This is always the case for three S/C that do not form a
line in space. More than three spacecraft form irregularly
spaced sampling points. In this sense, regular does not refer
to the configuration but rather the number of sampling points
(spacecraft). We demonstrate a regular sampling point case
with a configuration of three spacecraft forming an equilat-
eral triangle. The resulting wave telescope power spectrum
is shown in Fig. 5. Again a synthetic wave at the origin of
k space represents the input signal. The spatial Nyquist limit
periodic cell is now a parallelogram, spanned by the two
k vectors determined from Eq. (15) and centered around the
origin (cf. Narita et al., 2022). It clearly separates the true
signal from the repetition of the maxima in both dimensions.
Note that the logarithmic spectral energy is depicted to en-
sure the visibility of the maxima. In a linear presentation the
spectral peaks are extremely sharp and easily overlooked.

The situation changes drastically when using irregular
sampling for the same synthetic wave. The resulting spec-
trum for a 2D situation and four irregularly positioned S/C is
presented in Fig. 6. Numerous local maxima are discernible
with high-amplitude main maxima and lower-amplitude side
maxima, as seen in the 1D case (cf. Fig. 4), but scattered in
both dimensions. A 2D periodicity of the spectrum is visible.
The main maxima – representing the input signal detection
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and its aliases – can be determined by only considering local
maxima with an amplitude above a certain threshold value.
With that, an overlaying superlattice structure becomes obvi-
ous with the two lattice vectors depicted by black arrows.
These two vectors match the periodicity of the spectrum.
Considering the k cells of each subgroup of three S/C, shown
by the dashed line parallelograms, it is not obvious how the
superlattice can be derived.

Based on modeling different irregular S/C configurations
and determining their spectra, we can identify a suitable way
to derive the superlattice. We only have the three translation
vectors d i but are searching for a 2D basis of the superlat-
tice. By using every possible linear combination of the trans-
lation vectors in position space, a new (regular) lattice can be
generated. The shortest two linearly independent vectors of
that lattice are then used to calculate the reciprocal lattice via
Eq. (15). This reciprocal lattice matches the visible period-
icity in k space (respectively the two lattice vectors derived
from the repetition of the main maxima). Thus, this is the
superlattice we are looking for.

This new approach can be expressed mathematically by a
set S of vectors s formed by linear combination of the space-
craft translation vectors d i :

S = {s = a1d1+ a2d2+ a3d3 |ai ∈ Z}. (26)

For an irregular spacecraft configuration, the number of
translation vectors is always larger than the number of di-
mensions. From the set S, which fulfills S ⊆Q2, we seek a
basis s1, s2 ∈ S constituting our superlattice basis vectors in
position space. These have to be the shortest basis vectors,
i.e., they have to fulfill the condition s ∈ S\{0,s1,s2}:

0< |s1| ≤ |s2| ≤ |s|. (27)

Additionally, they have to be linearly independent:

s1 6= cs2 (28)

where c ∈ R\{0}.
The above-described approach of k-space superlattice de-

termination has one significant caveat. The number of pos-
sible lattice vectors created by linear combination is infinite.
Therefore, one may give an upper boundary of the largest
modulus of the linear combination multipliers |ai |, thus con-
fining scanning of the lattice vector space to a box. This box
has to be sufficiently large to ensure that the sought basis vec-
tors, s1 and s2, are among the determined lattice vectors. De-
pending on the decimal precision of the translation vectors,
the required level of the upper boundary of |ai | can become
prohibitively large and with it the box. Especially when ex-
panding this method to higher dimensions, this box-bounded
enumeration becomes computationally expensive inhibiting
determination at some point. Thus, a more efficient method
is needed.

The problem can be reformulated: in position space, we
want to find the shortest possible basis of the superlattice

formed by the vectors of the spacecraft distances (the trans-
lation vectors d i). This means that one of the basis vectors
found is the shortest possible lattice vector. Shortest refers to
the moduli of the considered vectors.

The shortest vector problem (SVP) is a known funda-
mental problem in number theory, which is proven to be
non-deterministic polynomial-time (NP) hard to solve (Aj-
tai, 1998). It can be approximated by finding a reduced basis
using algorithms. Such is the Lenstra–Lenstra–Lovàsz (LLL)
algorithm (Lenstra et al., 1982). This algorithm takes a ma-
trix as input, constituted by the set of initial column lat-
tice vectors (our translation vectors d i). Following Hoffstein
et al. (2008), the column vectors of the matrix are orthogo-
nalized (but not normalized) via the Gram–Schmidt process.
Afterwards, the length of the basis vectors is reduced by per-
forming a special linear combination of the vectors under
specific termination criteria. This iteration scheme finds a re-
duced basis, meaning that the shortest vector of the found
basis g1 is just

|g1| ≤ β
m−1

2 |l| (29)

longer than the shortest non-zero vector l of the set of all
lattice vectors. The parameter β can be chosen out of the in-
terval [0.25,1) in a trade-off of shortness of the reduced basis
and algorithm termination speed. The number of dimensions
m is equal to the length of the considered vectors (Bremner,
2011, p. 60). A detailed description of the LLL algorithm is
out of the scope of the present study. For further discussions,
the reader is referred to Hoffstein et al. (2008) and Bremner
(2011).

However, the LLL algorithm only works for linearly inde-
pendent lattice vectors. As our initial set of translation vec-
tors constituting the lattice is a linearly dependent set (see
Eq. 26), a modified version of LLL has to be used, namely,
MLLL (Pohst, 1987), which essentially applies LLL to an
expanded dimensional space. The LLL algorithm is known
to “usually” provide the shortest vector for low dimensions
(Odlyzko, 1989). However, for our purposes, we have to be
sure that the shortest possible basis is found and thus the
shortest vector is indeed part of the calculated basis. This
can only be assured by using basis enumeration algorithms,
which use the reduced basis of LLL (respectively MLLL) as
an input. These algorithms determine the shortest basis (here
consisting of the two shortest vectors) by scanning every pos-
sible vector within a confined vector space and thus finding
the set of vectors fulfilling the auxiliary conditions (27) and
(28). For the simple cases considered here, the abovemen-
tioned box-bounded enumeration is sufficient. Alternatively,
enumeration algorithms like the Fincke–Pohst (Fincke and
Pohst, 1985) algorithm may be used. It is much more effi-
cient than standard enumeration algorithms (Bremner, 2011,
pp. 155), among them the box method. For details about the
different algorithms, the reader is referred to the cited litera-
ture.
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Figure 7. S/C positions in position space (blue triangles) corre-
sponding to Fig. 6 along with the superlattice (the black dots) gen-
erated by linear combination of the S/C translation vectors. The
MLLL-determined shortest basis fitting to that superlattice is shown
by the orange arrows.

Here, we perform MLLL on an integer basis, using the
code (respectively the website) of Matthews (2011). The in-
teger basis is acquired by shifting the decimal point on the
translation vectors. Then, box-bounded enumeration is per-
formed to assure that the found basis is indeed the short-
est one. Additionally, checks using the Fincke–Pohst algo-
rithm were carried out. For all simulated S/C configurations
assessed in this work, both in 2D and 3D, MLLL already pro-
vided the shortest basis. The S/C configuration correspond-
ing to Fig. 6 with the position-space superlattice computed
from linear combination along with MLLL-determined lat-
tice vectors is presented in Fig. 7. Clearly, the lattice vectors
fit the superlattice and the S/C configuration.

To summarize, by calculating the shortest basis from the
original S/C positions and afterwards converting the acquired
basis vectors to reciprocal space, the spatial Nyquist limit
in 2D can be determined. The above-shown synthetic data
analysis has been carried out for different S/C configurations,
at all times confirming the observed behavior.

3.3 The 3D case and generalization

Before applying our findings in 2D to the 3D wave telescope,
we need to generalize the calculation of a position-space su-
perlattice to arbitrary dimensions. Firstly, it can be shown
that the application of the MLLL algorithm in 1D is equiv-
alent to the gcd formulation (Bremner, 2011, p. 107). Addi-
tionally, one may also show that linear combination in 1D is
synonymous to the gcd formulation. This shows that the 2D
approach works in 1D as well. Thus, heuristically, the com-
bination of MLLL and lattice enumeration algorithms in 2D,
substituting expensive linear combination, can be seen as the
extension of the gcd to higher dimensions. Hence, in math-
ematical terms, Eq. (26) may be generalized for an arbitrary
number of dimensions m (here, heuristically even m> 3 is
possible) and S/C n using n− 1 (column) translation vectors

d1, . . .,dn−1 by

DA= S (30)

with

D=
(
d1 · · · dn−1

)
=


d1,1 · · · dn−1,1

...
. . .

...

d1,m · · · dn−1,m

 , (31)

A=


a1,1 · · · am,1

...
. . .

...

a1,n−1 · · · am,n−1

 , (32)

S=
(
s1 · · · sm

)
=


s1,1 · · · sm,1

...
. . .

...

s1,m · · · sm,m

 , (33)

where D ∈Qm×(n−1), A ∈ Z(n−1)×m and S ∈Qm×m. In order
for the column vectors s1, . . .,sm to represent the shortest ba-
sis, the coefficients of the matrix A have to be chosen in such
a way that the basis vectors si are the shortest possiblem lin-
early independent vectors. Having two unknowns in Eq. (30),
one has to turn to a basis reduction algorithm combined with
an enumeration algorithm to determine the basis vectors si ,
as explained for the 2D case. Here, we use MLLL to calculate
a reduced basis and subsequent box-bounded enumeration to
ensure the MLLL basis is indeed the shortest basis. Having
the shortest possible basis in position space, using the known
formulae, this basis may be transferred to k space to find the
sought periodic cell (respectively the spatial Nyquist limit).

We shall test whether such a calculated basis in 3D fits the
synthetic data analysis of 3D wave telescope results. As for
the 2D case, this is tested with several different S/C config-
urations. Here, the irregular case is presented for five S/C or
more. Again, with an input wave close to 0 km−1, the energy
spectrum in k space is computed. A closer look into a 3D vi-
sualization shows that k space periodicity converges with the
MLLL-derived k vectors.

Slices from such a 3D picture along the planes spanned by
the three computed k vectors (orange arrows) are shown in
Fig. 8 for a case of five S/C with the positions

r =

0 50 75 −100 −125
0 10 60 40 40
0 35 175 0 35

km, (34)

where the column vectors are S/C position vectors. The
MLLL-reduced lattice (also being the shortest basis) then is

S=

 0 25 0
20 −10 10
0 0 −35

km, (35)

where the column vectors depict the three linearly indepen-
dent lattice base vectors.
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Figure 8. Slices of a wave telescope energy spectrum in 3D along the planes spanned by the MLLL-calculated k vectors (orange arrows). A
five-S/C configuration is used in this case. The 2D plots show the projection of the three slices onto two of the three Cartesian coordinates.

In such way we tested different S/C configurations with up
to 10 S/C. Within error of resolution, in all cases, the k vec-
tors determined from the MLLL-reduced superlattice concur
with the repetition of main maxima in k space. Already for
3D and S/C numbers as high as 10, computation time is a
constraint in the wave telescope calculations, and the limited
number of data points is a problem for visual analysis. In
conclusion, the analysis of the different model cases strongly
supports our heuristically based generalization to higher di-
mensions.

4 Application and data analysis

The above-presented mathematical formulae, heuristic
derivations and numerical analyses show how the S/C po-
sitions, acting as irregularly spaced spatial sampling points,
can be used to derive the spatial Nyquist limit without any
knowledge about the considered physical quantity, i.e., here
the magnetic field. However, regarding the synthetic data
model cases, only simple cases were analyzed due to com-
putational and thus resolution limits. In reality, position er-
rors of the S/C will enormously alter the calculated spatial
Nyquist limit because of its reciprocal nature. Very small er-
rors can lead to a near-infinite spatial Nyquist limit, which is
not resembling realistic capabilities of, for example, the wave
telescope analysis. Especially for the wave telescope, due to

time averaging of the position combined with the spacecraft’s
relative position variations due to orbital mechanics, it is vital
to incorporate the position errors into the lattice calculations.

In the following, a summarized approach to determine the
spatial Nyquist limit (for arbitrary m and n) is given. First,
to account for the aforementioned S/C position errors, the
accuracies in the S/C positions in the calculations should be
reduced to nearest larger orders of magnitude of the respec-
tive uncertainty. After that, a reduced linearly independent
basis in position space should be determined by using the
MLLL algorithm. To ensure this MLLL-reduced basis is the
shortest possible basis, one should employ a basis enumera-
tion algorithm on the reduced basis. The found shortest ba-
sis in position space can be used to determine the recipro-
cal vectors in k space by applying the appropriate formulae
(Eqs. 14, 15 and 16, depending on the number of dimensions
m). Then, the spatial Nyquist limit may be calculated with
Eq. (17), constituting the periodic cell both in positive and
negative directions. However, to determine the unit cell of
the superlattice in k space within which no aliasing will be
present, the Wigner–Seitz cell has to be constructed from the
double-length spatial Nyquist vectors. This unit cell repre-
sents the first Brillouin zone, and analysis of k space should
focus only on this region.

Additionally, in order to determine the actual wave vec-
tor(s) of the signal, either a very high scan resolution to
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Figure 9. Spectral energy of wave telescope analysis of subsets of
the four-S/C configuration from Fig. 7. The spatial Nyquist limit
periodic cell of each subset of three S/C is marked by the dashed
parallelograms in different colors.

ensure resolution of the highest maximum or a method to
dampen the side maxima is needed. The side maxima emerge
due to the spatial Nyquist limits of the regular-sampling-
point subsets of the original irregular sampling points. Sim-
ilar observations have been remarked by Bretthorst (2001).
We show this behavior here with the wave telescope in 2D for
the case shown in Figs. 6 and 7. The four irregularly spaced
S/C yield four regularly spaced subsets of three S/C each.
The wave telescope analysis of these four subsets is shown in
Fig. 9. As there is only regular spacing of the sampling points
(respectively S/C), only the known periodicity can be ob-
served – all discernible maxima are main maxima, meaning
the true maximum and its aliases. Due to different S/C used
in each of the subsets, the parallelepiped (marked in each
plot) is different each time. However, marked by the arrows,
the spatial Nyquist limit k vectors of the combined, irregular
four-S/C configuration converge with a common maximum
to all four subsets.

By combining spectra of the subsets, e.g., by element-
wise multiplication and appropriate normalization, a spec-
trum quite close to the actual four-S/C spectrum can be ob-
tained (see Fig. 10). Thus, the following rule of thumb can be
applied to identify the main maxima: determine the spectrum
for all regularly spaced subsets of sampling points and only
focus on the region around the maxima that is common to all
these subsets. All other maxima may be damped by appro-
priate filtering. A regular spaced subset of sampling points is
constituted by a subset ofm+1 sampling points that span the
m spatial dimensions.

Figure 10. Spectral energy of the combination (element-wise mul-
tiplication) of the subsets of the four-S/C configuration of Fig. 7 in
2D. The spatial Nyquist limit periodic cells of subgroups of three
S/C are marked by the dashed parallelograms in different colors.
The larger orange solid-line rectangle is the spatial Nyquist limit
periodic cell derived by using the MLLL algorithm and testing for
the shortest vector using enumeration. The black arrows indicate
the base vectors of the repetition of main maxima, determined from
the model cases. This spectrum is similar to the original four-S/C
spectrum shown in Fig. 6.

5 Summary and Conclusions

In this study, we have derived an analytical representation
of the spatial Nyquist limit, the aliasing limit in multi-
dimensional k space, for irregularly spaced sampling points.
This has been verified using the wave telescope technique
– generalized to arbitrary dimensions – applied to synthetic
plane wave data sampled at irregularly distributed S/C con-
figurations in different dimensions m, where the number of
S/C (the spatial sampling points) is larger than m+ 1. By
this modeling, first it has been shown that for non-uniform
sampling in 1D also the wave telescope technique shows the
same aliasing features as in time or frequency, e.g., the or-
dinary DFT (Bretthorst, 2001) and the Lomb–Scargle peri-
odogram (VanderPlas, 2018). We have extended this to 2D
and 3D with configurations of more than 4 and up to 10 S/C.
The computed wave telescope energy spectra show spectral
structures, like main and side maxima, that repeat themselves
in periodic cells in k space because of aliasing. Using the
periodicity of the main maxima – which resemble input sig-
nal detections and their aliases – the spatial Nyquist limit
has been determined. In all cases, within limits of the resolu-
tion, it was possible to concurrently derive the same overlay-
ing periodicity and thus spatial Nyquist limit from the deter-
mination of the shortest possible basis of the position-space
spacecraft translation vectors, using the MLLL lattice reduc-
tion algorithm verified by lattice enumeration. This allows
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for the analytical determination of the spatial Nyquist limit of
multi-spacecraft measurements for the wave telescope with-
out any need to look at spectra periodicity and more precisely
without any a priori knowledge of the measured data. Only
the positions of the S/C (respectively of the sampling points)
are required to determine the spatial Nyquist limit. Thus,
the above-presented algorithm serves as a key element for
planning the spatial distribution of future multi-point space-
craft missions. In summary, we give a model-based verifica-
tion of the heuristically derived generalization of the spatial
Nyquist limit for irregularly spaced sampling points (respec-
tively S/C) to arbitrary numbers of dimensions and sampling
points.

The aforementioned side maxima in the wave telescope
spectra are shown to be artifacts of regular subsets of sam-
pling points. Their damping – along with sensible treatment
of S/C position errors in the calculation of the spatial Nyquist
limit – can help one to yield wave telescope spectra with
reduced to vanished aliasing. Only by including these con-
siderations does the analysis of magnetic field data with the
wave telescope of multi-point multi-scale missions like He-
lioSwarm (nine S/C) become manageable from an aliasing
point of view. In combination with a statistical error quan-
tification of the wave telescope technique in Broeren and
Klein (2023), it is possible to precisely quantify the wave
telescope’s capabilities when using configurations of more
than four S/C.

As the wave telescope acts as a power spectrum estima-
tor substituting spatial Fourier transform PSD estimation in
multiple dimensions, the results from this study, precisely
the analytical representation of the spatial Nyquist limit, can
be directly transferred to different fields of research that are
using multi-dimensional Fourier analysis to estimate power
spectra or other spectrum estimators with irregular sampling
points. Such fields are mathematics, nuclear magnetic res-
onance (NMR) analysis or general signal processing. Also,
the generalized wave telescope is not only restricted to geo-
physics but also applicable to wave and spectrum determina-
tion in even-higher-dimensional data. For example, the wave
telescope can be applied to higher-dimensional phase space,
e.g., by combining magnetic field and density data to a four-
dimensional dataset. This allows for comprehensive and si-
multaneous data analysis without the need for later correla-
tion analysis of different physical quantities.
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