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Abstract. The need for accurate assessment of the geomag-
netic hazard to power systems is driving a requirement to
model geomagnetically induced currents (GIC) in multiple
voltage levels of a power network. The Lehtinen–Pirjola
method for modelling GIC is widely used but was developed
when the main aim was to model GIC in only the highest
voltage level of a power network. Here we present a modifi-
cation to the Lehtinen–Pirjola (LP) method designed to pro-
vide an efficient method for modelling GIC in multiple volt-
age levels. The LP method calculates the GIC flow to ground
from each node. However, with a network involving multiple
voltage levels, many of the nodes are ungrounded, i.e. have
infinite resistance to ground, which is numerically inconve-
nient. The new modified Lehtinen–Pirjola (LPm) method re-
places the earthing impedance matrix [Ze] with the corre-
sponding earthing admittance matrix [Ye] in which the un-
grounded nodes have zero admittance to ground. This is com-
bined with the network admittance matrix [Yn] to give a
combined matrix ([Yn]+ [Ye]), which is a sparse symmetric
positive definite matrix allowing efficient techniques, such
as Cholesky decomposition, to be used to provide the nodal
voltages. The nodal voltages are then used to calculate the
GIC in the transformer windings and the transmission lines
of the power network. The LPm method with Cholesky de-
composition also provides an efficient method for calculating
GIC at multiple time steps. Finally, the paper shows how soft-
ware for the LP method can be easily converted to the LPm
method and provides examples of calculations using the LPm
method.

Copyright statement. © Her Majesty the Queen in Right of Canada,
as represented by the Minister of Natural Resources, 2022.

1 Introduction

Geomagnetic disturbances produce geoelectric fields that
drive geomagnetically induced currents (GIC) in power net-
works. These GIC flow along transmission lines and through
transformer windings, where they can cause half-cycle satu-
ration leading to harmonic generation, increased consump-
tion of reactive power and transformer heating. These, in
turn, can cause misoperation of protective relays and volt-
age sag and, in extreme cases, damage to transformers and
system collapse (Kappenman and Albertson, 1990; Bolduc,
2002; Molinski, 2002; Kappenman, 2012; Guillon et al.,
2016). A key requirement for understanding the impact of
geomagnetic disturbances on power networks is the ability to
model the GIC produced in a network by specified geoelec-
tric fields. In 1985, Lehtinen and Pirjola published a land-
mark paper that provides the first description of a stand-alone
method for modelling GIC. The Lehtinen–Pirjola (1985)
method (hereafter referred to as the “LP method”) has been
widely used in the geophysics and space weather community
and provided the basis for GIC studies in many countries
(e.g. Pirjola and Lehtinen, 1985; Mäkinen, 1993; Mäkinen
et al., 1993; Thomson et al., 2005; Wik et al., 2008; Viljanen
et al., 2012; Torta et al., 2014; 2017; Divett et al., 2018).

The LP method was designed at a time when mostly only
the highest voltage levels of a power network were consid-
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ered in GIC calculations. This was because the transmission
lines at the lower voltage levels have higher resistance and so
will experience smaller GIC values. However, in a desire to
provide more comprehensive modelling of GIC in a power
network, many modern studies are now looking to model
GIC in multiple voltage levels in a power network. The LP
method has been effectively used for such studies (e.g. Mäki-
nen, 1993; Mäkinen et al., 1993; Viljanen et al., 2012; Di-
vett et al., 2018); however, using the LP method for multiple
voltage levels involves many ungrounded nodes, thus having
infinite resistance to ground, which is numerically inconve-
nient. Also, the main focus of the LP method was the GIC
flow to ground through the transformer primary windings,
which was the desired output when modelling a single volt-
age level of a power network. However, models for multiple
voltage levels require calculation of the nodal voltages which
are then used to calculate the GIC in the transformer wind-
ings (Boteler and Pirjola, 2014, 2017).

In this paper we show how the LP method can easily be
modified to efficiently model GIC in multiple voltage levels
of a power network by converting the LP method to calcu-
late the nodal voltages directly. First we summarize the steps
in the LP method and then show how these can be modified
to give the modified Lehtinen–Pirjola method (hereafter re-
ferred to as the “LPm method”). We also show that the LPm
method involves inversion of a matrix that is symmetric pos-
itive definite, allowing the use of efficient methods includ-
ing sparse matrix techniques. Then we show how software
for GIC calculations using the LP method can easily be con-
verted to the LPm method and provide example calculations
for the benchmark model introduced by Horton et al. (2012),
including tables of values at intermediate steps, to help peo-
ple transitioning their modelling from the LP method to the
LPm method.

2 Lehtinen–Pirjola method

The GIC modelling method derived by Lehtinen and Pirjola
(1985), the “LP” method, is produced by starting with Kirch-
hoff’s current law that the net current flowing into a node, k,
on branches from other nodes, n, is equal to the current flow-
ing to ground from node k (LP Eq. 8),

ik =

N∑
n=1

ink = −

N∑
n=1

ikn, (1)

and relates the current in a branch ikn to the driving electro-
motive force (emf) ekn (if there is one), the voltage difference
between the nodes at the ends of the line vk and vn, and the
admittance of the branch (LP Eq. 7) ykn:

ikn = ykn[ekn+ (vk − vn)]. (2)

Substituting Eq. (2) into Eq. (1) gives (LP Eq. 9)

ik =−

N∑
n=1

ykn[ekn+ (vk − vn)]. (3)

Note that, when considering multiple voltage levels,
branches in the network consist of not just transmission lines,
but also transformer windings. The transmission lines expe-
rience the driving emf produced by the magnetic field varia-
tions, whereas the transformer windings do not.

The driving emf in each transmission line is represented
by an equivalent current source:

jkn = eknykn. (4)

The equivalent current sources are then summed to give
the current source directed into each node (LP Eq. 13).

J e
k = −

N∑
n= 1
n 6= k

jkn (5)

Making this substitution in Eq. (3) gives

ik = J
e
k −

N∑
n= 1
n 6= k

(vk − vn)ykn. (6)

Thus,

ik = J
e
k − vk

N∑
n= 1
n 6= k

ykn+

N∑
n= 1
n 6= k

vnykn. (7)

The first summation represents the dependence of current
ik on voltage vk and so gives diagonal elements of a network
admittance matrix

Y n
kk =

N∑
n= 1
n 6= k

ynk. (8)

The second summation represents the dependence of cur-
rent ik on all the other nodal voltages vn and so gives the off-
diagonal elements of the (symmetric) network admittance
matrix

Y n
kn = −ykn, n 6= k (9)

(note that the superscript n on the left-hand side is not an
index). Combining the above equations gives (LP Eq. 11)

ik = J
e
k −

N∑
n=1

vnY
n
kn. (10)
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This can be written in matrix form:

[Ie
] = [Je

] − [Yn
][Vn
], (11)

where the elements of column matrix [Ie] are the currents in,
and the elements of column matrix [Vn] are the voltages vn.

LP makes the substitution

[Vn
] = [Ze

][Ie
], (12)

where [Ze] is the earthing impedance matrix. Thus,

vk =

N∑
n=1

Ze
knin. (13)

Substituting Eq. (12) into Eq. (11) gives a matrix equa-
tion involving only the node to ground currents [Ie] as the
unknowns:

[Ie
] = [Je

] − [Yn
][Ze
][Ie
]. (14)

Gathering terms in [Ie] gives

([1] + [Yn
][Ze
])[Ie
] = [Je

], (15)

where [1] is the unit matrix with size equal to the number of
nodes in the model network. Equation (15) can be solved by
matrix inversion to give the currents flowing to ground (LP
Eq. 12):

[Ie
] = ([1] + [Yn

][Ze
])−1
[Je
]. (16)

The values of [Ie] were the desired output when modelling
a single voltage level of a power network. However, if there
was more than one transformer at a substation (as usually
occurs), it was necessary to split the current in proportion
to the admittances of the transformer windings to determine
the fraction of the current that flowed in each transformer
winding.

Now, when modelling the GIC in multiple voltage levels of
a power network, many of the nodes are ungrounded. How-
ever, the LP method needs to specify an earthing impedance
for each node. This is done by adding “virtual” connections
to ground from each ungrounded node (Mäkinen, 1993; Pir-
jola, 2005). These virtual earthing connections have infi-
nite resistance, but this cannot be represented in the earth-
ing impedance matrix [Ze], so a high value is used instead.
The LP method then gives the current flow to ground from
each node, including small current values through the virtual
earthing connections. It is necessary to use the [Ie] values
and the earthing impedance [Ze] in Eq. (12) to calculate the
nodal voltages [Vn]. The nodal voltages are then used to cal-
culate the GIC flow in the branches using Eq. (2). This is
the equation to use for the GIC in the transmission lines. For
branches of the network that are transformer windings, there
is no driving emf, so Eq. (2) reduces,

ikn = ykn(vk − vn), (17)

to give the GIC flow in the transformer windings.

3 Lehtinen–Pirjola modified method

When modelling GIC in multiple voltage levels of a power
network, it is necessary to calculate the nodal voltages before
calculating the GIC in the transmission lines and transformer
windings. In the LPm method the matrix equations are modi-
fied to provide a solution in terms of the nodal voltages. This
also has the advantage that there is no need to add virtual
earthing connections to ground from the ungrounded nodes.

To convert the currents flowing to ground [Ie] provided by
the LP method to nodal voltages [Vn], start with Eq. (15) and
make the substitution from Eq. (12) (Pirjola, 2007),

[Ie
] = [Ze

]
−1
[Vn
], (18)

which gives

[Je
] = ([Ze

]
−1
+ [Yn

])[Vn
]. (19)

The LP method allows for the [Ze] matrix to have off-
diagonal elements representing the voltage produced at
node i by currents flowing to ground from other nodes (Pir-
jola, 2008). However, if the circuit is set up with a node at
the neutral point of each substation, this does not happen (see
Boteler and Pirjola, 2014). In this case, [Ze] becomes diago-
nal with elements equal to the earthing resistances ri of the
nodes, and the inverse of [Ze] is simply the earthing admit-
tance matrix [Ye] given by

Y e
ij =

{
yi =

1
ri
, i = j,

0, i 6= j.
(20)

Then Eq. (19) can be rewritten as

[Je
] = ([Ye

] + [Yn
])[Vn
]. (21)

The voltages of the nodes are then found by taking the in-
verse of the sum of the admittance matrices and multiplying
by the nodal current sources:

[Vn
] = ([Ye

] + [Yn
])−1
[Je
]. (22)

These node voltages can then be substituted into Eqs. (2)
and (17) to give the GIC in the transmission lines and the
transformer windings. The GIC flow to ground is simply
given from Ohm’s law using the neutral point node voltage
and the admittance to ground (Eq. 18 with [Ze]−1

= [Ye
]).

The LPm method involves inversion of a matrix
([Ye]+ [Yn]) which is symmetric and positive definite and
can thus be solved using a particularly efficient case of
lower–upper (LU) decomposition, the Cholesky decomposi-
tion (Press et al., 2007). Note that most of the nodes within
the network are unconnected, meaning that [Yn] has many
zeros. This is also the case with [Ye], so the Cholesky de-
composition enables the use of sparse matrix methods (Stott
and Alsaç, 1987; Press et al., 2007), thus providing an effi-
cient way to model GIC in multiple voltage levels of a power
network.
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4 Calculation of GIC time series

GIC modelling is now being used, not just to assess the GIC
for specified electric field values, but also to determine the
variation of GIC throughout a geomagnetic disturbance. If
the network configuration does not change during that time
(not always the case), then the matrix inversion does not need
to be recalculated at every time step.

If the electric field is assumed to be uniform across the
network, then linear superposition can be used to calculate
the GIC (Boteler, 2013). (A uniform electric field would be
produced, e.g. if calculations are made using data from a sin-
gle magnetic observatory and a one-dimensional (1-D) earth
conductivity model.) The GIC modelling can be made for
two cases: (i) a northward electric field of 1 Vkm−1 and
(ii) an eastward electric field of 1 Vkm−1. For each location k
in the network, this modelling gives reference GIC values αk
and βk for the northward and eastward electric fields that can
be scaled by the actual electric field values at each time step
and then combined to give the time series of GIC values at
that location.

ik(t)= αkEN (t)+βkEE(t) (23)

This concept can be extended for using two magnetic ob-
servatories (Boteler et al., 2014), but this still requires use of
a single 1-D earth conductivity model for the whole network.

In practice there is considerable variability in the earth
conductivity structure across a power network. There are
many modelling techniques for calculating the electric fields
in such cases, ranging from use of multiple 1-D earth models
(Marti et al., 2014) to use of magnetotelluric transfer func-
tions and 3-D earth conductivity models (Weigel, 2017). In
these cases, the electric fields across the network can change
from place to place and from one time step to the next. This
will result in a different set of nodal current sources [Je] for
each time step. However, for much of the time the network
configuration may be unchanged; thus, once the inverted ma-
trix ([Yn]+ [Ye])−1 has been calculated, it does not need to
be recalculated at each time step and can be used with the
nodal current source [Je] for each time step to calculate the
nodal voltages [Vn] and hence the time series of GIC values.

However, for GIC calculations using the LPm method,
even more efficient time series calculations are possible. The
solution of a matrix equation such as Eq. (21) can be accom-
plished using LU decomposition, as explained in Press et al.
(2007). This involves writing the matrix ([Yn]+ [Ye]) as a
product of two matrices:

[L][U] = ([Yn
] + [Ye

]), (24)

where [L] is a lower triangular matrix and [U] is an upper
triangular matrix.

For a positive-definite symmetric matrix, as is obtained
with the LPm method, the [L] matrix can be chosen such
that the [U] matrix is the transpose of [L]. In this case we

Figure 1. Substation with a two-winding transformer and three
autotransformers and the equivalent circuits for the LP and LPm
methods.

can write (Eq. 24) using the Cholesky decomposition

[L][LT
] = ([Yn

] + [Ye
]). (25)

This Cholesky decomposition to solve the linear set is

([Yn
] + [Ye

])[Vn
] = ([L][LT

])[Vn
]

= [L]([LT
][Vn
])= [Je

], (26)

by first solving for the column matrix [P] such that

[L][P] = [Je
] (27)

and then solving

[LT
][Vn
] = [P]. (28)

The advantage is that the solution of a triangular set of
equations is quite trivial, as Eq. (27) can be solved by forward
substitution and Eq. (28) can be solved by back substitution.
Also, once the Cholesky decomposition has been done, it is
possible to solve with as many right-hand sides as required,
one at a time. Thus the LPm method provides a much faster
and versatile way of calculating a time series of GIC values.

5 Comparison between the LP and LPm methods

To illustrate the differences between the LP method and the
LPm method, consider the circuit for a substation with a two-
winding transformer and three autotransformers as shown in
Fig. 1. The LP method requires the addition of virtual con-
nections to ground from nodes 1 and 2, as explained above.
However, in the LPm method the connection to ground is ex-
pressed as an admittance value. For the ungrounded nodes
the admittance to ground is zero, which can easily be in-
cluded in the earthing admittance matrix without having to
add virtual connections to the circuit.

The steps involved in calculating GIC in multiple voltage
levels of a power network using the LP method and the LPm
method are summarized in Fig. 2. In the LPm method, be-
cause it involves only admittances and calculates the nodal
voltages directly, there is no need to add virtual connections

Ann. Geophys., 40, 205–215, 2022 https://doi.org/10.5194/angeo-40-205-2022
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Figure 2. Comparison of the steps involved in the LP and LPm
methods.

to ungrounded nodes, and then there is no need to convert the
currents through the virtual connections to nodal voltages.

Figure 2 also shows how easy it is to convert from the
LP method to the LPm method. Many steps in the process
are the same. The only changes are to set up the earthing
admittance matrix [Ye] instead of the earthing impedance
matrix [Ze]. This removes the need to add virtual con-
nections to ungrounded nodes. Then the combined admit-
tance matrix ([Yn]+ [Ye]) is formed instead of the matrix
([1]+ [Yn][Ze]). After that, the matrix inversion is done and
multiplied by the current source vector [Je], the same as in
the LP method (but note the comments about faster inver-
sion methods in the previous section). An advantage of the
LPm method is that the matrix calculation yields the nodal
voltages directly without the need to obtain them from the
earthing currents as required in the LP method. Finally, the
same step is performed in the LP and LPm methods to use
the nodal voltages to calculate the GIC in the transmission
lines and transformer windings.

Table 1. Assignment of node numbers.

Substation Location Comment Node

1 Bus 1 Delta connection –
1 Bus 2 1
2 Bus 17 2
2 Bus 18 Delta connection –
2 Bus 19 Delta connection –
3 Bus 15 3
3 Bus 16 4
4 Bus 3 5
4 Bus 4 6
5 Bus 5 7
5 Bus 20 8
6 Bus 6 9
6 Bus 7 Delta connection –
6 Bus 8 Delta connection –
7 Bus 11 No transformers 10
8 Bus 12 11
8 Bus 13 Delta connection –
8 Bus 14 Delta connection –
1 Neutral Blocking device 12
2 Neutral 13
3 Neutral 14
4 Neutral 15
5 Neutral 16
6 Neutral 17
8 Neutral 18

6 Example calculation using the LPm method

To illustrate the use of the LPm technique, we present the
calculation of GIC in the benchmark model of Horton et al.
(2012) shown in Fig. 3. The following tables will also pro-
vide values for testing when converting software from the LP
method to the LPm method.

To construct the network admittance matrix [Yn] and the
earthing admittance matrix [Ye], it is first necessary to assign
node numbers to the buses and neutral points at each substa-
tion. The modelling does not depend on any particular choice
of node numbers. Here we use the node number assignment
shown in Table 1. Note that some buses are not included in
the model for calculating the GIC because they are connected
to transformer windings in a delta configuration so there is no
path for the GIC to flow. Also, there is no neutral point node
at substation 7 because there are no transformers at this site
as it is just a switching station connecting transmission lines.

The network admittance matrix [Yn] is constructed using
the transmission line information and transformer informa-
tion presented in Tables II and III of Horton et al. (2012).
In the network admittance matrix [Yn] the values are given
by Eqs. (8) (for the diagonal elements) and (9) (for the off-
diagonal elements). Note that the values are presented for a
single phase of the power network, and it is assumed that

https://doi.org/10.5194/angeo-40-205-2022 Ann. Geophys., 40, 205–215, 2022
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Figure 3. Single-line diagram of the benchmark test case of Horton et al. (2012).

Table 2. Network admittance matrix [Yn] values in Siemens for the benchmark model shown in Fig. 3.

the other two phases are identical. The network admittance
matrix values for the benchmark model are given in Table 2.

The earthing admittance matrix [Ye] is constructed using
the substation grounding resistance, rg, presented in Table I
of Horton et al. (2012). Note that the GIC from all three
phases flow through the substation grounding resistance, so

the voltage drop here is 3 times that produced by a current
from a single phase. To account for this in a single-phase
model, the earthing admittance is given by

ye
=

1
3rg

. (29)
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In the earthing admittance matrix, most nodes are not con-
nected to ground, so their earthing admittance values are
zero, and there are only non-zero admittance values for the
six neutral point nodes. Earthing admittance matrix values
for the benchmark model are shown in Table 3.

Note that the general theory is expressed in terms of
impedance and admittance, which can have reactive compo-
nents, but, in practice, at the frequencies applicable to GIC
the reactive components are negligible, and the network char-
acteristics can be described as purely resistive or conductive.

The resulting inversion of the matrix gives ([Yn]+ [Ye])−1

shown in Table 4.
Horton et al. (2012) consider two cases: a northward

electric field of 1 V km−1 and an eastward electric field of
1 Vkm−1. They give values for the input induced emf in each
line and show the calculated output values in terms of both
the nodal (bus) voltages and the GIC (A/phase) in the trans-
mission lines and transformer windings.

The voltage source in each transmission line and the equiv-
alent current source, calculated from Eq. (4), are shown in
Table 5. These current sources are then summed (Eq. 5) to
give the nodal current sources [Je] shown in Table 6.

The nodal current sources are then combined with the in-
verted matrix (Eq. 22) to give the nodal voltages shown in
Table 7. For nodes 1–11 these give the bus voltages shown in
Table V of Horton et al. (2012). For nodes 12–18, combin-
ing the nodal voltage and the substation grounding resistance
gives the GIC flow to ground for each substation shown in
Table VII of Horton et al. (2012).

The nodal voltages substituted into Eqs. (2) and (17)
give the GIC values for the transmission lines and trans-
former windings shown in Tables VI and VIII of Hor-
ton et al. (2012).

7 Discussion

The above example calculation shows that the LPm method
provides GIC values that exactly match those for the bench-
mark model provided by Horton et al. (2012). The values in
Tables 2 to 7 can also be used to check intermediate steps in
the software used for the LPm calculations.

Any software developed to model GIC should be able to
exactly match the values provided by the Horton et al. (2012)
paper. The results presented in that paper are not an average
of modelling results nor an approximation to the correct val-
ues but are the identical values obtained using four differ-
ent software implementations. However, initial calculations
involving the four different software implementations pro-
vided similar but slightly different results. Further investiga-
tion showed that the origin of the differences was in the way
that distances between substations were being calculated in
the different implementations. Some versions used formulas
based on a spherical earth and some used formulas taking

account of its non-spherical shape. It was then decided to
standardize on substation latitudes and longitudes based on
the WGS84 ellipsoid model of the Earth which is used by
the global navigation satellite system (GNSS) for geoloca-
tion. After this, all the calculations gave exactly the same
results. To get the source voltage values presented in Table 5
(and hence match the GIC results for the benchmark model)
thus requires using the formulas presented in the Appendix
of Horton et al. (2012) for calculating distances between sub-
stations.

Many people have used the LP method for calculating GIC
in the highest voltage level of their power networks. With
the increasing requirement to calculate GIC in multiple volt-
age levels of a power network, it is hoped that the new LPm
method described above will provide an easy way to con-
vert existing LP software. The conversion is a simple pro-
cess. Just replace the earthing impedance matrix [Ze] with
the corresponding earthing admittance matrix [Ye], form the
new matrix ([Ye]+ [Yn]) and do the matrix inversion. This
directly gives the nodal voltages which are required to calcu-
late the GIC in the transmission lines and transformer wind-
ings. There is no need for any “virtual” nodes or connections.
Also, it is more efficient as ([Ye]+ [Yn]) is symmetric posi-
tive definite and so can be solved using Cholesky decompo-
sition, which is a special case of LU decomposition (Press
et al., 2007) with U=LT (i.e. the upper triangular factor is
the transpose of the lower triangular factor).

Power networks, on average, have three transmission lines
and one or two transformer windings connected to a bus, so
a typical row in the admittance matrix has only five or six
non-zero elements, independent of the overall network size.
Thus, for larger networks, where node numbers can be in the
thousands, the admittance matrix will have over 99 % of its
values equal to zero. Cholesky factorization takes advantage
of this fact by making use of sparse matrix methods (Stott
and Alsaç, 1987; Press et al., 2007), thus additionally reduc-
ing memory usage and computation time. To examine how
this affects the GIC modelling, we performed calculations for
two networks using both the LP and LPm methods. The net-
works modelled were (1) the benchmark network of Horton
et al. (2012), which has 18 nodes, and (2) the nation-wide
Spanish Power Grid operated by Red Eléctrica de España
(REE), which has 1388 nodes. GIC in the 400 kV part of the
REE system were considered by Torta et al. (2014); for this
study we include both the 400 and 220 kV levels of the REE
network (see Torta et al., 2021, for reference).

Tests we did showed that the LP and LPm methods both
produce matrices that are sparse, so there is potential for
sparse matrix techniques to be applicable. Table 8 shows the
calculation times and memory usage for GIC calculations us-
ing the LP and LPm methods. These show that memory usage
was drastically reduced when using sparse matrix techniques,
with the reduction being more significant with the larger REE
network. The time for the matrix inversion is significantly af-
fected, as expected, by the size of the matrix involved. For the
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Table 3. Earthing admittance matrix [Ye] values in Siemens for the benchmark model shown in Fig. 3.

Table 4. Inverted matrix ([Yn]+ [Ye])−1 values in Ohms for the benchmark model shown in Fig. 3.

Horton network (18× 18 matrix) the change to sparse tech-
niques actually increased the inversion time. However, the
sparse techniques applied to the REE network (1388× 1388
matrix) produced an approximately order of magnitude re-
duction in inversion time. This reduction in inversion time
was greatest for the LPm method, which was nearly an order
of magnitude faster than the LP method.

The “Inversion time” column in Table 8 reflects the time
required to compute [Vn

] from Eqs. (25), (27) and (28), thus
including the Cholesky decomposition and the forward and
back substitutions in the LPm method; note, in consequence,
that it is not strictly an inversion, though we will refer to it
as such. Also note that, when referring to LP, this column
reflects the time to compute [Ie

], including the decomposi-
tion of M= [1] + [Yn

][Ze
]. However, M is not even sym-
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Table 5. Voltages in the transmission lines and equivalent current sources for northward and eastward electric fields of 1 Vkm−1.

Line From To 1 Vkm−1 northward 1 Vkm−1 eastward
bus bus electric field electric field

Vsource (V) Jsource (A) Vsource (V) Jsource (A)

1 2 3 −7.28 −2.07 120.60 34.34
2 2 17 77.31 21.93 93.16 26.43
3 15 4 −45.16 −22.74 −129.27 −65.09
4 17 16 −39.42 −8.45 155.56 33.35
5 4 5 −93.47 −39.86 131.69 56.16
6 4 5 −93.47 −39.86 131.69 56.16
7 5 6 74.56 25.06 190.99 64.20
8 5 11 171.60 48.90 169.82 48.40
9 6 11 97.05 67.21 −20.14 −13.95
10 4 6 −18.92 4.05 321.26 68.85
11 15 6 −64.08 −21.92 191.11 65.36
12 15 6 −64.08 −21.92 191.11 65.36
13 11 12 −6.29 −2.71 160.17 68.92
14 16 20 −138.64 −34.24 1.49 0.37
15 17 20 −178.06 −25.66 158.17 22.79

Table 6. Nodal current sources for northward and eastward electric
fields of 1 Vkm−1.

Node Substation Location Nodal current sources J (A)

For ENorth For EEast

1 1 Bus 2 −19.86 −60.77
2 2 Bus 17 56.04 −29.71
3 3 Bus 15 66.57 −65.62
4 3 Bus 16 25.79 32.98
5 4 Bus 3 −2.07 34.34
6 4 Bus 4 61.03 −246.26
7 5 Bus 5 −104.78 48.12
8 5 Bus 20 −59.90 23.16
9 6 Bus 6 −90.03 277.71
10 7 Bus 11 69.91 −82.87
11 8 Bus 12 −2.71 68.92
12 1 Neutral 0.00 0.00
13 2 Neutral 0.00 0.00
14 3 Neutral 0.00 0.00
15 4 Neutral 0.00 0.00
16 5 Neutral 0.00 0.00
17 6 Neutral 0.00 0.00
18 8 Neutral 0.00 0.00

metric in the LP method, so the decomposition of M is in-
deed an upper–lower (UL) factorization. The difference in
speed of the inversion between the LP and LPm methods is
that LPm involves inversion of a symmetric positive-definite
matrix which allows the use of the technique of Cholesky de-
composition, that significantly reduces the time of the inver-
sion process (note that LU requires the determination of more
unknowns). The parameters of the calculations presented in

Table 7. Nodal voltages produced by northward and eastward elec-
tric fields of 1 Vkm−1.

Node Substation Location Node voltages V (V)

For ENorth For EEast

1 1 Bus 2 −12.39 −190.04
2 2 Bus 17 25.05 −41.01
3 3 Bus 15 30.09 −24.39
4 3 Bus 16 29.37 −22.99
5 4 Bus 3 20.04 −125.10
6 4 Bus 4 20.33 −125.97
7 5 Bus 5 −29.01 −7.26
8 5 Bus 20 −29.04 −6.13
9 6 Bus 6 −7.16 44.32
10 7 Bus 11 60.57 −40.47
11 8 Bus 12 7.11 15.67
12 1 Neutral −12.39 −190.04
13 2 Neutral 23.13 −37.86
14 3 Neutral 27.97 −21.90
15 4 Neutral 19.98 −124.58
16 5 Neutral −27.91 −6.55
17 6 Neutral −5.73 35.45
18 8 Neutral 6.09 13.43

Table 8 are obtained from GIC modelling using programs in
MATLAB. Specific inversion times and memory usage will
vary with the programming language used, but it is expected
that the general results presented here will apply regardless
of the programming language used.
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Table 8. Properties of the matrices to be inverted using the LP and LPm methods for different power networks, namely the Horton et al.
(2012) benchmark and REE.

Model Method Matrix size Inversion process Storage (kB) Inversion time (µs)

Horton LP 18× 18 Regular 2.6 12
LPm 18× 18 Regular 2.6 10

REE LP 1388× 1388 Regular 15.4× 103 6× 104

LPm 1388× 1388 Regular 15.4× 103 4× 104

Horton LP 18× 18 Sparse 1.3 320
LPm 18× 18 Sparse 1.2 170

REE LP 1388× 1388 Sparse 110 7× 103

LPm 1388× 1388 Sparse 90 9× 102

8 Conclusions

We have presented a new version of the LP method, modified
for efficient modelling of GIC in multiple voltage levels of a
power system. In the LPm method the earthing impedance
matrix, [Ze], is replaced with an earthing admittance matrix
[Ye] that is added to the LP network admittance matrix [Yn]
to give a new combined matrix ([Yn]+ [Ye]) to be inverted.

Multiplication of the inverted matrix ([Yn]+ [Ye])−1 (or
equivalently recycling its Cholesky decomposition) by the
nodal current sources [Je] provides a direct calculation of
the nodal voltages [Vn]. These nodal voltages are then used
to calculate the GIC in transmission lines and transformer
windings.

Guidance is provided for converting software from the LP
method to the LPm method and an example calculation using
the benchmark model of Horton et al. (2012) is presented to
provide a set of values for testing GIC calculation software.

Calculations of GIC using the LPm method involve a ma-
trix that is symmetric positive definite. This enables a solu-
tion to be obtained by Cholesky decomposition, (a specific
case of LU decomposition), which is numerically more accu-
rate than computing the matrix inversion itself. The factoriza-
tion of Cholesky decomposition can always be implemented
using sparse matrix techniques, speeding up the calculations
for large networks.

Thus the LPm method provides an efficient method for cal-
culating GIC in multiple voltage levels in a power network
that provides a valuable tool for assessing the geomagnetic
hazard to power systems.

Data availability. No datasets were used in this research.

Author contributions. RJP and DHB planned the work and devel-
oped the theory. LT developed the modelling code and generated
the example results. SM performed the tests of matrix inversion.
RJP and DHB wrote the manuscript draft. LT and SM reviewed and
edited the manuscript.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This work was performed as part of the Pub-
lic Safety Geoscience program and Canadian Hazards Information
Service of Natural Resources Canada. Santiago Marsal would like
to thank Red Eléctrica de Españ~a (REE) for supporting this study.
Natural Resources Canada contribution number 20210276.

Financial support. This work was supported by Natural Resources
Canada. Santiago Marsal was supported by the projects (grant
no. CGL2017-82169-C2-1-R) and (grant no. PID2020-113135RB-
C32) both funded by FEDER/Ministerio de Ciencia, Innovación y
Universidades – Agencia Estatal de Investigación. His research that
led to these results was also carried out partly with funds from “La
Caixa” foundation.

Review statement. This paper was edited by Georgios Balasis and
reviewed by Ciaran Beggan and one anonymous referee.

Ann. Geophys., 40, 205–215, 2022 https://doi.org/10.5194/angeo-40-205-2022



R. J. Pirjola et al.: The Lehtinen–Pirjola modified method 215

References

Bolduc, L.: GIC observations and studies in the Hydro-Québec
Power System, J. Atmos. Sol.-Terr. Phy., 64, 1793–1802, 2002.

Boteler, D. H.: The Use of Linear Superposition in Modelling Ge-
omagnetically Induced Currents, Paper 001545, in: Proceedings
IEEE PES General Meeting, Vancouver, 21–15 July 2013, 2530–
2534, 2013.

Boteler, D. H. and Pirjola, R. J.: Comparison of methods for mod-
elling geomagnetically induced currents, Ann. Geophys., 32,
1177–1187, https://doi.org/10.5194/angeo-32-1177-2014, 2014.

Boteler, D. H. and Pirjola, R. J.: Modeling geomagnet-
ically induced currents, Space Weather, 15, 258–276,
https://doi.org/10.1002/2016SW001499, 2017.

Boteler, D. H., Pirjola, R., Blais, C., and Foss, A.: Development
of a GIC Simulator, Paper 14PESGM1889, in: Proceedings
of IEEE PES General Meeting, Washington, DC, July 2014,
https://doi.org/10.1109/pesgm.2014.6939778, 2014.

Divett, T., Richardson, G. S., Beggan, C. D., Rodger, C. J., Boteler,
D. H., Ingham, M., Mac Manus, D. H., Thomson, A. W. P., and
Dalzell, M.: Transformer-level modeling of geomagnetically in-
duced currents in New Zealand’s South Island, Space Weather,
16, 718–735, https://doi.org/10.1029/2018SW001814, 2018.

Guillon, S., Toner, P., Gibson, L., and Boteler, D.: A Colorful Black-
out, IEEE Power Energy M., 14, 59–71, 2016.

Horton, R., Boteler, D. H., Overbye, T. J., Pirjola, R. J., and Dugan,
R.: A test case for the calculation of geomagnetically induced
currents, IEEE T. Power Deliv., 27, 2368–2373, 2012.

Kappenman, J. G.: Geomagnetic Disturbances and Impacts
upon Power System Operation, chap. 17 in: The Elec-
tric Power Engineering Handbook, 3nd Edn., edited
by: Grigsby, L. L., CRC Press/IEEE Press, 789 p.,
https://doi.org/10.1201/9781315222424, 2012.

Kappenman, J. G. and Albertson, V. D.: Bracing for the geomag-
netic storms, IEEE Spectrum, 27, 27–33, 1990.

Lehtinen, M. and Pirjola, R.: Currents produced in earthed conduc-
tor networks by geomagnetically-induced electric fields, Ann.
Geophys., 3, 479–484, 1985.

Mäkinen, T.: Geomagnetically induced currents in the Finnish
power transmission system, Geophysical Publications, No. 32,
Finnish Meteorological Institute, Helsinki, Finland, 101 pp.,
1993.

Mäkinen, T., Viljanen, A., and Pirjola, R.: Results obtained in the
Finnish GIC project, Solar-Terrestrial Predictions – IV, in: Pro-
ceedings of a Workshop, Ottawa, Canada, May 18–22, 1992,
edited by: Hruska, J., Shea, M. A., Smart and, D. F., and Heck-
man, G., Vol. 1, Department of Commerce, USA, 238–242,
http://www.worldcat.org/oclc/31447759 (last access: 15 Febru-
ary 2022), 1993.

Marti, L., Yiu, C., Rezaei-Zare, A., and Boteler, D.: Simulation
of Geomagnetically Induced Currents with Piecewise Layered-
Earth Models, IEEE T. Power Deliv., 29, 1886–1893, 2014.

Molinski, T. S.: Why utilities respect geomagnetically induced cur-
rents, J. Atmos. Sol.-Terr. Phy., 64, 1765–1778, 2002.

Pirjola, R.: Effects of space weather on high-latitude
ground systems, Adv. Space Res., 36, 2231–2240,
https://doi.org/10.1016/j.asr.2003.04.074, 2005.

Pirjola, R.: Calculation of geomagnetically induced currents (GIC)
in a high-voltage electric power transmission system and esti-
mation of effects of overhead shield wires on GIC modelling, J.
Atmos. Sol.-Terr. Phy., 69, 1305–1311, 2007.

Pirjola, R.: Effects of interactions between stations on the calcu-
lation of geomagnetically induced currents in an electric power
transmission system, Earth Planets Space, 60, 743–751, 2008.

Pirjola, R. and Lehtinen, M.: Currents produced in the Finnish
400 kV power transmission grid and in the Finnish natural gas
pipeline by geomagnetically-induced electric fields, Ann. Geo-
phys., 3, 485–492, 1985.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes: The Art of Scientific Computing, 3rd Edn.,
Cambridge University Press, New York, 2007.

Stott, B. and Alsaç, O.: An overview of sparse matrix tech-
niques for on-line network applications, IFAC Proceedings Vol-
umes, 20, 19–25, https://www.sciencedirect.com/science/article/
pii/S1474667017591971 (last access: 15 February 2022), 1987.

Thomson, A. W. P., McKay, A. J., Clarke, E., and Reay,
S. J.: Surface electric fields and geomagnetically induced
currents in the Scottish Power grid during the 30 Octo-
ber 2003 geomagnetic storm, Space Weather, 3, S11002,
https://doi.org/10.1029/2005SW000156, 2005.

Torta, J. M., Marsal, S., and Quintana, M.: Assessing the haz-
ard from geomagnetically induced currents to the entire high-
voltage power network in Spain, Earth, Planets Space, 66, 1–17,
https://doi.org/10.1186/1880-5981-66-87, 2014.

Torta, J. M., Marcuello, A., Campanyà, J., Marsal, S., Quer-
alt, P., and Ledo, J.: Improving the modeling of geomagneti-
cally induced currents in Spain, Space Weather, 15, 691–703,
https://doi.org/10.1002/2017SW001628, 2017.

Torta, J. M., Marsal, S., Ledo, J., Queralt, P., Canillas-
Pérez, V., Pi na-Varas, P., Curto, J. J., Marcuello, A., and
Martí, A.: New detailed modeling of GIC in the Spanish
power transmission grid, Space Weather, 19, e2021SW002805,
https://doi.org/10.1029/2021SW002805, 2021.

Viljanen, A., Pirjola, R., Wik, M., Ádám, A., Prácser, E., Sakharov,
Y., and Katkalov, J.: Continental scale modelling of geomag-
netically induced currents, J. Space Weather Spac., 2, A17,
https://doi.org/10.1051/swsc/2012017, 2012.

Weigel, R. S.: A comparison of methods for estimat-
ing the geoelectric field, Space Weather, 15, 430–440,
https://doi.org/10.1002/2016SW001504, 2017.

Wik, M., Viljanen, A., Pirjola, R., Pulkkinen, A., Wintoft, P., and
Lundstedt, H.: Calculation of geomagnetically induced currents
in the 400 kV power grid in southern Sweden, Space Weather, 6,
S07005, https://doi.org/10.1029/2007SW000343, 2008.

https://doi.org/10.5194/angeo-40-205-2022 Ann. Geophys., 40, 205–215, 2022

https://doi.org/10.5194/angeo-32-1177-2014
https://doi.org/10.1002/2016SW001499
https://doi.org/10.1109/pesgm.2014.6939778
https://doi.org/10.1029/2018SW001814
https://doi.org/10.1201/9781315222424
http://www.worldcat.org/oclc/31447759
https://doi.org/10.1016/j.asr.2003.04.074
https://www.sciencedirect.com/science/article/pii/S1474667017591971
https://www.sciencedirect.com/science/article/pii/S1474667017591971
https://doi.org/10.1029/2005SW000156
https://doi.org/10.1186/1880-5981-66-87
https://doi.org/10.1002/2017SW001628
https://doi.org/10.1029/2021SW002805
https://doi.org/10.1051/swsc/2012017
https://doi.org/10.1002/2016SW001504
https://doi.org/10.1029/2007SW000343

	Abstract
	Copyright statement
	Introduction
	Lehtinen–Pirjola method
	Lehtinen–Pirjola modified method
	Calculation of GIC time series
	Comparison between the LP and LPm methods
	Example calculation using the LPm method
	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

