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Abstract. The properties of the auroral electrojets are exam-
ined on the basis of a trained machine-learning model. The
relationships between solar-wind parameters and the AU and
AL indices are modeled with an echo state network (ESN),
a kind of recurrent neural network. We can consider this
trained ESN model to represent nonlinear effects of the solar-
wind inputs on the auroral electrojets. To identify the prop-
erties of auroral electrojets, we obtain various synthetic AU
and AL data by using various artificial inputs with the trained
ESN. The analyses of various synthetic data show that the
AU and AL indices are mainly controlled by the solar-wind
speed in addition to Bz of the interplanetary magnetic field
(IMF) as suggested by the literature. The results also indi-
cate that the solar-wind density effect is emphasized when
solar-wind speed is high and when IMF Bz is near zero. This
suggests some nonlinear effects of the solar-wind density.

1 Introduction

Auroral electrojets are azimuthal electric currents localized
in the auroral region. A westward auroral electrojet is mostly
observed in pre-midnight to early morning local time, and
an eastward electrojet is mostly observed in evening time
(Allen and Kroehl, 1975). The AU and AL indices (Davis
and Sugiura, 1966; World Data Center for Geomagnetism,
Kyoto et al., 2015) represent the strengths of eastward and
westward electrojets, respectively, and are widely used for
monitoring geomagnetic activity in the auroral region. It is

widely accepted that the behavior of the auroral electrojet is
mainly controlled by the solar-wind input into the magneto-
sphere. In particular, many studies suggest that the southward
component of the interplanetary magnetic field (IMF) and the
solar-wind speed have essential effects on auroral activity as
measured by AU and AL indices (e.g., Akasofu, 1981; Mu-
rayama, 1982). The solar-wind density is also likely to con-
tribute to the auroral electrojet intensity (e.g., Newell et al.,
2007; Ebihara et al., 2019). However, multiple physical pro-
cesses can contribute to the development of the auroral in-
dices, and some of the processes are nonlinear to the solar-
wind input (e.g., Clauer and Kamide, 1985; Kamide and
Kokubun, 1996). Hence, it is not a simple task to model the
temporal evolution of the AU and AL indices.

To describe the complicated processes of the indices, Luo
et al. (2013) constructed a parametric model with many
parameters. Machine-learning approaches are also used in
many studies to describe the nonlinear evolution of the au-
roral electrojets. For example, Chen and Sharma (2006) em-
ployed the weighted nearest-neighbor method for predict-
ing the AL index during storm times. In particular, artificial
neural networks are frequently used for modeling the AU,
AL, and AE indices. It has been demonstrated that the AU,
AL, and AE indices can be predicted well with feed-forward
neural networks using time histories of solar-wind parame-
ters as inputs (e.g., Gleisner and Lundstedy, 1997; Takalo
and Timonen, 1997; Pallocchia et al., 2008; Bala and Reiff,
2012). Recurrent types of neural networks are also useful
for representing dynamical behaviors of the magnetosphere
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(Gleisner and Lundstedy, 2001). Amariutei and Ganushkina
(2012) predicted the AL index using a model which com-
bines the autoregressive moving average with the exogenous
input (ARMAX) model and a neural network.

While machine-learning techniques tend to be used for
predictions with high accuracy, the learned relationships be-
tween solar-wind inputs and auroral electrojets are of in-
terest from the scientific perspective as well. Since most
machine-learning models such as neural networks are non-
linear model, trained machine-learning models can describe
the nonlinear behaviors of the magnetospheric system. It is
thus meaningful to analyze the input–output relationships of
the trained machine-learning models. Recently, Blunier et al.
(2021) have identified solar-wind parameters which affect
the value of geomagnetic indices by putting perturbed inputs
into a trained neural network. This study takes a somewhat
similar approach. We employ an echo state network (ESN)
model (Lukoševičius and Jaeger, 2009; Jaeger and Haas,
2004) to describe the relationship between various solar-
wind parameters and the auroral electrojet indices AU and
AL. The ESN is a kind of recurrent neural network, which
can be used for describing nonlinear systems (e.g., Chat-
topadhyay et al., 2020). We then examine the responses of
the AU and AL indices to solar-wind inputs by putting vari-
ous artificial inputs into the trained ESN model and identify
the properties of the auroral electrojets.

2 Echo state network

We model the temporal evolution of AU and AL with the
ESN model because it can be easily implemented to attain a
satisfactory performance. The ESN is a recurrent neural net-
work with fixed random connections and weights between
hidden state variables. Only the weights for the output layer
are trained so that the target temporal pattern is well repro-
duced. We combine the state variables at the time tk into a
vector xk , where the ith element of xk is denoted as xk,i .
The number of state variables m is set at 1200 in this study.
At the time step k, we update xk,i as follows:

xk,i = (1− ξ)xk−1,i + ξ tanh
(
wTi xk−1+u

T
i zk + ηi

)
, (1)

where zk is a vector consisting of the input variables. The
parameter ξ is the leaking rate (Jaeger et al., 2007; Lukoše-
vičius, 2012) and its value is fixed at 0.5 in this paper. The
weights wi and ui determine the connection with the other
state variables and input variables. The weights wi and the
parameter ηi are given in advance and are fixed.

It is desirable that the weights are given so as to attain
the so-called “echo state property”. The echo state property
guarantees that the ESN forgets distant past inputs. Defining
the weight matrix W as

W= (w1 w2 · · ·wm) , (2)

a sufficient condition for the echo state property is that the
maximum singular value of W is less than 1. If a certain ma-
trix W′ is given and its maximum singular value λ′ is com-
puted, we can obtain the weight matrix W which satisfies this
sufficient condition as follows:

W=
α

λ′
W′. (3)

We thus first determine W′ randomly and obtain the weight
W according to Eq. (3) with the parameter α set to 0.99. In
this study, we set 90 % of the elements of W′ to be zero. Each
of the remaining nonzero elements comprising 10 % of W′ is
obtained randomly from a Laplace distribution for which the
probability density function p(x) is written as

p(x)=
1
2

exp(−|x|) . (4)

Similarly to W′, 90 % of the elements of ui are set to be
zero, and the other nonzero elements are given by the same
Laplace distribution. The parameter ηi in Eq. (1) is obtained
randomly from a normal distribution with mean 0 and stan-
dard deviation 0.3.

The output for the time tk , yk , is obtained from xk as fol-
lows:

yk = β
T xk. (5)

The weight β in Eq. (5) is determined so that the objective
function

J =

K∑
k=1

∥∥dk − yk∥∥2 (6)

is minimized, where dk is an observation vector consisting
of the observed data. The present study aims to model the
temporal pattern of the AU and AL indices. Accordingly, the
output vector yk consists of two elements as follows:

yk =

(
yAU,k
yAL,k

)
, (7)

where yAU,k and yAL,k are the predicted AU and AL values
at tk , respectively. In this study, 5 min values (averages for
5 min) of AU and AL are used. We give the input vector zk
as follows:

zk =



Bx,k/SBx
By,k/SBy
Bz,k/SBz

(Vsw,k − bV )/SV
(Nsw,k − bN )/SN
(Tsw,k − bT )/ST
cos(2πHk/24)
sin(2πHk/24)

cos(2πDk/364.24)
sin(2πDk/364.24)
yAU,k−1/SAU
yAL,k−1/SAL



, (8)
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where Bx,k , Bz,k and By,k denote the x, y, and z compo-
nent of the interplanetary magnetic field in geocentric so-
lar magnetic (GSM) coordinates at time tk , Vsw,k is the −x
component of the solar-wind velocity in GSM coordinates,
Nsw,k is the solar-wind density, Tsw,k is the solar-wind tem-
perature, Hk is universal time (UT) in hours, and Dk is
the day from the end of 2000 (Dk = 1 on 1 January 2001).
SBx , SBy , SBz , SV , SN , ST , SAU, and SAL are rescaling fac-
tors to adjust the value of each element of zk to a simi-
lar range, and bV , bN , and bT are also for adjusting the
range of each element of zk . We set SBx = SBy = SBz =
10 (nT), SV = 500 (kms−1), SN = 20 (/cc), ST = 106 (K),
SAU = SAL = 1000 (nT), bV = 400 (kms−1), bN = 1 (/cc),
and bT = 2×105 (K). The variables Hk andDk are included
for considering UT dependence and seasonal dependence
(e.g., Cliver et al., 2000). The feedback of the predicted AU
and AL indices, which can be obtained using Eq. (5), is
also included in the input vector zk . The solar-wind variables
Bx,k , By,k , Bz,k , Vsw,k , Nsw,k , and Tsw,k are taken from the
OMNI 5 min data.

If zk does not contain the feedback of yAU,k−1 and
yAL,k−1, the weight β can be determined through simple lin-
ear regression because xk at each time step would not depend
on β in Eq. (5). However, since the feedback of yAU,k−1 and
yAL,k−1 are contained, the optimal β cannot be obtained by
linear regression. We thus obtained β using the ensemble-
based optimization method (Nakano, 2021).

3 Performance of ESN

We trained the ESN using data obtained over a period of
10 years from 2005 to 2014. We used 5 min values of the
OMNI solar-wind data and the AU and AL indices provided
by Kyoto University. Since each of the state variables of the
ESN is obtained by a nonlinear conversion of the previous
state variables according to Eq. (1), the ESN memorizes the
history of the input data. When predicting the AU and AL in-
dices, the ESN requires the solar-wind data for the preceding
several time steps. Hence, we start the comparison after spin-
up of the ESN for 72 steps, which corresponds to 6 h for the
5 min values, from the initial time of the analysis. It should
also be noted that solar-wind data are sometimes incomplete.
If more than half of the data were missing for 1 h, we stopped
the prediction and spun up the ESN again for the subsequent
72 steps.

We then reproduced the AU and AL indices for the pe-
riod from 1998 to 2004 and compared the outputs with the
observed values. In Fig. 1, the top panel shows the AU and
AL reproduced by our ESN model in October 1999 with red
lines and the observed AU and AL indices with gray lines for
the same period. The second panel shows the three compo-
nents of the IMF. The green, blue, and red lines indicate the
x, y, and z components in (GSM) coordinates, respectively.
The third panel shows the solar-wind speed, and the fourth

Table 1. The root mean square errors of the ESN prediction (in nT)
and the Pearson correlation coefficients between the ESN prediction
and the observation for the AL and AU indices.

Year RMSE Corr. coef. RMSE Corr. coef.
(AL) (AL) (AU) (AU)

1998 91.21 0.85 44.67 0.84
1999 88.00 0.84 47.06 0.82
2000 99.10 0.82 58.20 0.82
2001 96.75 0.81 53.36 0.81
2002 89.90 0.83 50.52 0.82
2003 118.62 0.82 63.50 0.77
2004 99.84 0.84 47.72 0.78

panel shows the solar-wind density. The bottom panel shows
the SYM-H index (Iyemori, 1990; Iyemori and Rao, 1996)
for the corresponding time period. High auroral activity was
maintained for the period from 10 October to 17 October
when high speed solar-wind streams coincided with a contin-
ual southward IMF, as suggested by the literature (e.g., Tsu-
rutani et al., 1990, 1995). The auroral activity was also en-
hanced during a magnetic storm from 21 October. The model
outputs mostly reproduced the observed AU and AL values
well for these events.

Table 1 shows the root mean square errors (RMSEs) of
the ESN prediction for each year of the period from 1998 to
2004. The Pearson correlation coefficients between the ESN
prediction and the observation are also indicated in this ta-
ble. The RMSEs were less than 100 nT for the AL index
and about 50 nT for the AU index except for 2003. The RM-
SEs of AU and AL were larger in 2003 than in other years,
likely because of high auroral activity during that year. Fig-
ure 2 shows the mean |AU| and |AL| values for each month
from 1998 to 2004. The mean |AL| exceeded 200 nT in most
of the months in 2003, which indicates high activity of the
westward auroral electrojet. The mean |AU| also tended to be
larger in 2003 than in the other years. The correlation coeffi-
cients were around 0.8 for both AU and AL over the period
shown in this table. In the model of Luo et al. (2013), which
predicted the 10 min values of the AE indices from solar-
wind parameters, the RMSEs were 83.8, 125.5, and 102.0 nT
in 2002, 2003, and 2004, respectively, for the AL index and
44.5, 58.7, and 47.7 nT in 2002, 2003, and 2004 for the AU
index. Our ESN model thus achieves an accuracy compara-
ble to the model of Luo et al. (2013). While Luo et al. (2013)
used 10 min values, this study uses 5 min values in the pre-
diction. Considering that data with a higher time resolution
tend to contain larger noise, we believe that the ESN achieves
satisfactory accuracy in comparison with other existing mod-
els.
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Figure 1. Panel (a) shows the AU and AL values for October 1999 reproduced with the ESN model (red) and the observed AU and AL
indices (gray). Panel (b) shows the IMF Bx (green), By (blue), and Bz (red) in GSM coordinates. Panel (c) shows the solar-wind speed,
panel (d) shows the solar-wind density, and panel (e) shows the SYM-H index.

Figure 2. The mean |AU| and |AL| for each month from 1998 to
2004.

4 Responses to synthetic solar wind

Machine-learning models including the ESN model can be
regarded as nonlinear regression models for summarizing the
relationship between an input and an output. As the ESN
model is a “black-box” model, we cannot directly extract
the input–output relationships in a functional form. However,
we can experimentally examine the responses of the AU and
AL indices to various solar-wind inputs by using the trained
ESN model. If we put artificial inputs into the trained ESN
model, we obtain synthetic AU and AL indices as outputs of
the model under the given inputs. We can then identify prop-
erties of the auroral electrojets by analyzing the synthetic in-
dices obtained from various artificial inputs.

We obtained synthetic AU and AL indices by the ESN with
an artificial input with the value of one of the solar-wind pa-
rameters fixed. For example, we turned off the variation of
IMF Bx by fixing it at a constant 0 nT and derived synthetic
AU and AL indices with the Bx effect excluded. We then
compared the synthetic indices with the observed indices for
each year to evaluate the impact of IMF Bx . Similarly, we
obtained synthetic indices which exclude each of the effects
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of IMF By , solar-wind speed, solar-wind density, and solar-
wind temperature, and evaluated the impact of each param-
eter for each year. The fixed values of IMF By , solar-wind
speed, solar-wind density, and solar-wind temperature were
0nT, 400kms−1, 1/cc, and 2× 105 K, respectively. We did
not consider the case in which the IMF Bz effect was turned
off because the RMSE becomes very large without an accu-
rate IMF Bz input, as obviously expected from the results of
many previous studies (e.g., Arnoldy, 1971; Akasofu, 1981;
Murayama, 1982; Newell et al., 2007).

Figures 3 and 4 show the RMSE and mean deviation val-
ues in each year for the various synthetic AL indices with
the effect of one of the solar-wind parameters excluded. In
each figure, the red lines show the RMSEs for the output of
ESN using all the solar-wind parameters described in Eq. (8).
The green and blue lines show the RMSEs when the ef-
fects of IMF Bx and By were excluded, respectively. The
orange, light blue, and gray lines show the respective RM-
SEs when the effects of solar-wind speed, density, and tem-
perature were excluded. To evaluate the uncertainty, we pre-
pared 10 data sets, each of which was obtained by leaving
out the data for one of the 10 years from 2005 to 2014 and
calculated the weights β in Eq. (5) using each of the 10 data
sets. We then obtained the synthetic AU and AL indices us-
ing the ESN with each of these different 10 weight values.
The solid lines in Figs. 3 and 4 show the mean values for the
10 synthetic AL indices. The dashed lines indicate the max-
ima and minima among the 10 outputs. Among the six solar-
wind parameters, the effect of solar-wind speed is prominent,
especially in 2003 when some severe magnetic storms were
observed, presumably because it contributes to the efficiency
of the coupling between the solar wind and the Earth’s mag-
netosphere (e.g., Akasofu, 1981; Murayama, 1982; Newell
et al., 2007). The mean deviation shown in Fig. 4 indicates
the bias of the ESN output, and the positive bias means that
the ESN output tends to be larger than the observed AL value,
which corresponds to an underestimation of |AL|. The large
positive bias for the case without solar-wind speed variation
in Fig. 4 thus suggests that a low solar-wind speed results in
a small |AL|. Conversely, a high solar-wind speed activates
variations of AL. We can also observe a relatively small ef-
fect of IMF By , which would also contribute to the coupling
between the solar wind and the magnetosphere. In addition,
the effect of the solar-wind density can be seen for all of
the years from 1998 to 2004. Figure 5 extracts the RMSEs
for the case without the IMF By effect and the case with-
out the solar-wind density effect from Fig. 3 and compares
them with the case with all the solar-wind parameters in an
expanded scale. This demonstrates that the effects of IMF By
and the solar-wind density on the RMSEs are mostly larger
than the scale of the uncertainty. The large mean deviation
suggests that the solar-wind density enhancement intensifies
the westward electrojet as implied by some earlier studies
(Newell et al., 2008; McPherron et al., 2015).

Figure 3. RMSE in each year for the various synthetic AL indices
with the effect of one of the solar-wind parameters excluded.

Figure 4. Mean deviation in each year for the various synthetic AL
indices with the effect of one of the solar-wind parameters excluded.

Figures 6 and 7 show the RMSE and the mean deviation
values for the various synthetic AU indices. Each color in-
dicates the result with the same input as the corresponding
color in Fig. 3. The solar-wind speed effect is again promi-
nent. The large negative bias for the case without solar-wind
speed variation in Fig. 7 suggests that a low solar-wind speed
underestimates the AU value. In contrast with AL, AU is
likely to be strongly controlled by IMFBy and the solar-wind
density. In particular, the mean deviation is largely negative
for the case without density variation, which suggests an im-
portant effect of solar-wind density on the AU index, as dis-
cussed by Blunier et al. (2021).

The top panel in Fig. 8 shows some of the synthetic AU
and AL indices from 21 October to 25 October 1999. The
red lines indicate the output with all of the parameters in
Eq. (8) used. The green and blue lines indicate the synthetic
values with solar-wind speed and density turned off, respec-
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Figure 5. RMSE in each year for the various synthetic AL indices
with the effect of one of the solar-wind parameters excluded.

Figure 6. RMSE in each year for the various synthetic AU indices
with the effect of one of the solar-wind parameters excluded.

tively. The gray lines show the observed actual AU and AL
indices for reference. The other panels in this figure are the
same as those in Fig. 1. Although the ESN output is much
smoother than the observation, especially in some impulsive
events which would be related to substorms, the red line re-
produces the observed AU and AL indices well. In contrast,
when the solar-wind speed was set to be low at 400 kms−1,
the ESN model clearly underpredicted the strength of AL.
This suggests that a high-speed solar wind makes an impor-
tant contribution to enhancing the westward electrojet. When
the density effect was turned off, the ESN tended to slightly
underpredict |AL|, although the density effect was likely to
be minor in this event.

Figure 9 shows the result for another event from 26 July
to 30 July 2000. In this event, since the solar-wind speed was
maintained at around 400kms−1, which we set as the base

Figure 7. Mean deviation in each year for the various synthetic AU
indices with the effect of one of the solar-wind parameters excluded.

level of the solar-wind speed, the green line is similar to the
red line. On the other hand, the solar-wind density effect is
visible. If the density is fixed at 1/cc, the ESN tended to un-
derpredict |AU| and |AL|. However, the relationships with
the solar-wind density learned by the ESN seemed to not be
linear. For example, the difference between the red and blue
lines tended to be larger on 29 July than on 28 July, while the
solar-wind density was more enhanced on 28 July than on
29 July. This might suggest some compound effects of the
solar-wind density and other parameters.

We closely examined the density effects learned by the
ESN by computing other synthetic indices AU(N = 20) and
AL(N = 20), obtained by fixing the solar-wind density input
of the ESN at 20/cc. We then obtained the differences

1AUNeff = AU(N = 20)−AU(N = 1),
1ALNeff = AL(N = 20)−AL(N = 1),

where AU(N = 1) and AL(N = 1) are the synthetic AU and
AL indices obtained by fixing the solar-wind density at 1/cc.
We then used1AUNeff and1ALNeff as proxies for the solar-
wind density effect as a function of time. Figure 10 is a two-
dimensional histogram to compare 1AUNeff and 1ALNeff
with the solar-wind speed. As the solar-wind speed increases,
1AUNeff increases and 1ALNeff decreases. This suggests
that the solar-wind density effect on the auroral electrojets
is not independent of the solar-wind speed effect but that the
solar-wind density contributes to the auroral electrojet inten-
sity more effectively under high solar-wind speed conditions.
The solar-wind density effect is likely to be small when the
solar-wind speed is low. Figure 11 is a two-dimensional his-
togram to compare1AUNeff and1ALNeff with IMF Bz. The
solar-wind density effect gets large when IMF Bz is near
zero. The density effect is small on average when |Bz| is
large. The ESN model therefore suggests that the solar-wind
density effect is most important when IMF Bz is small.

Ann. Geophys., 40, 11–22, 2022 https://doi.org/10.5194/angeo-40-11-2022
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Figure 8. Comparison of some ESN outputs during the period from 21 October to 25 October 1999. Panel (a) shows the ESN output with all
the parameters (red), the synthetic indices with the solar-wind speed effect turned off (green), those with the solar-wind density effect turned
off (blue), and the observed AU and AL indices (gray). Panel (b) shows the IMF Bx (green), By (blue), and Bz (red) in GSM coordinates.
Panel (c) shows the solar-wind speed, the fourth panel shows the solar-wind density, and panel (d) shows the SYM-H index.

We also conducted an experiment in which the solar-wind
parameters are fixed at constant values except that one of the
parameters is given by rectangular waves with various pe-
riods. Figure 12 shows the result of this experiment. IMF
Bx and By were set at 0 and the temperature was fixed at
5×105 K through this experiment. In the first 6 d, IMFBz was
perturbed with a rectangular wave with a period of 20 min for
the first 2 d, 2 h for the second 2 d, and 6 h for the third 2 d,
while the solar-wind speed was fixed at 400kms−1 and the
density was fixed at 2/cc. In the next 6 d, IMF Bz was per-
turbed with the same pattern but the solar-wind speed was
changed at 800km s−1. After that, IMFBz was fixed at−5nT
and the solar-wind speed was perturbed with a similar rectan-
gular pattern for 6 d. The solar-wind speed was then fixed at
800kms−1, and the solar-wind density was perturbed with
a similar rectangular pattern under the fixed IMF Bz at 1
and −5nT. The ESN output shown in the upper panel ex-
hibits daily variations, which are due to the UT dependence
considered in Eq. (8). Although the ESN output tends to be
smoother than the observed variation as shown in Figs. 8 and
9, the effects of the perturbations with a period of at least

2 h are observed in the temporal patterns of the auroral elec-
trojets. The response to the solar-wind density variations is
clearer when IMF Bz is 1nT than when it is 5nT, which is
consistent with the result shown in Fig. 11.

5 Discussion

It is widely accepted that auroral electrojets are mainly con-
trolled by IMF and the solar-wind speed (e.g., Akasofu,
1981; Murayama, 1982; Newell et al., 2007). In particular,
IMF Bz has an essential effect on auroral activity. When IMF
is directed southward, DP2-type electrojets (e.g., Kamide
and Kokubun, 1996) are enhanced and contribute to both AU
and AL. The substorm current wedge, which contains a west-
ward electrojet contributing to the AL index, would also be
controlled by IMF (e.g., Kepko et al., 2015). As illustrated in
Fig. 1, the solar-wind speed also has an important effect.

Although the solar-wind density effect is sometimes ig-
nored when modeling the AU and AL indices, Gleisner and
Lundstedy (1997) reported that the performance of a neural

https://doi.org/10.5194/angeo-40-11-2022 Ann. Geophys., 40, 11–22, 2022
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Figure 9. Comparison of ESN outputs during the period from 26 July to 30 July 2000 in the same format as Fig. 8.

network for modeling the AE index is improved by consid-
ering the solar-wind density effect. McPherron et al. (2015)
also suggested a contribution from the solar-wind density to
the AL index. Blunier et al. (2021) deduced the solar-wind
parameters contributing to changes in the geomagnetic in-
dices by using neural networks and suggested that the solar-
wind density has a more visible effect on AU than on AL.
The stronger effect on AU suggested by Blunier et al. (2021)
agrees with our result shown in Fig. 6. Ebihara et al. (2019)
conducted simulation experiments to examine the impact of
various solar-wind parameters on the SML index (Newell
and Gjerloev, 2011), which is an extension of the AL in-
dex calculated with data from a larger number of observa-
tories. According to their result, the SML index depends on
the solar-wind density when IMF Bz is weak, while it is not
clearly affected by the solar-wind density when IMF Bz is
directed strongly southward. This simulation result is consis-
tent with our result in Fig. 11. Figure 11 may thus be regarded
as statistical evidence of the compound effect between IMF
Bz and the solar-wind density.

Figure 10 shows the compound effect between the solar-
wind density and velocity. One plausible explanation is the
effect of the solar-wind dynamic pressure, which is pro-

portional to NswV
2
sw. As some studies have suggested that

field-aligned currents around the auroral latitudes are in-
fluenced by the solar-wind dynamic pressure (Iijima and
Potemra, 1982; Wang et al., 2006; Nakano et al., 2009; Ko-
rth et al., 2010), it is possible that the enhancement of the
field-aligned currents increases the auroral electrojets. Some
studies suggested that the solar-wind dynamic pressure in-
duces temporal effects on the ionospheric convection (Ober
et al., 2007; Boudouridis et al., 2008). The convection en-
hancement could cause the increases in both AU and AL.
In particular, since the eastward electrojet represented by
AU is basically controlled by the ionospheric convection,
the compound effect on AU may be interpreted as the dy-
namic pressure effect. In Fig. 10, however, the density effect
on AL disappears when the solar-wind velocity is around
300kms−1, while that on AU is visible even under low
solar-wind speed conditions. This cannot necessarily be ex-
plained by the solar-wind dynamic pressure effect. This prob-
lem might be solved by considering the contribution of the
plasma sheet condition. Sergeev et al. (2014, 2015) suggests
that the plasma sheet temperature and density may affect the
ionospheric conductivity in the region of the westward elec-
trojet, which the AL index represents. It has been suggested
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Figure 10. Two-dimensional histogram indicating the dependence
of the solar-wind density effect on the solar-wind speed.

that the plasma sheet temperature and density depend on the
solar-wind velocity and density, respectively (Terasawa et al.,
1997; Nagata et al., 2007). The plasma sheet effect can thus
partially contribute to the relationship between AL and the
solar-wind density.

6 Summary

This study modeled the temporal pattern of the AU and AL
indices using ESN. Although the ESN model is relatively
simple, it mostly accurately reproduces the variations of the
AU and AL indices. We analyze the properties of the magne-
tospheric system by putting artificial inputs into the trained

Figure 11. Two-dimensional histogram indicating the dependence
of the solar-wind density effect on IMF Bz.

ESN model. Our results show a strong impact of the solar-
wind speed, which was previously observed in the literature.
It is also suggested that IMF By and the solar-wind density
have significant effects, especially on the AU index. These
results are consistent with other studies. In addition, an anal-
ysis of the synthetic AU and AL indices obtained from the
artificial inputs suggests that the solar-wind density does not
have a simple linear effect on AU and AL, but rather that
some compound processes exist. According to the results, the
solar-wind density contributes to the auroral electrojet inten-
sity more effectively under high solar-wind speed conditions,
and the solar-wind density effect becomes small under low
solar-wind speed conditions. The solar-wind density effect
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Figure 12. Result of an experiment in which the solar-wind parameters are fixed at constant values except that one of the parameters is given
by rectangular waves with various periods.

tends to be important when IMF Bz is near zero. The density
effect is small on average when |Bz| is large.

Data availability. The AU, AL, and SYM-H indices are available
from the website of the WDC for Geomagnetism, Kyoto (http://
wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html; World Data Center for Ge-
omagnetism, Kyoto, 2000). The OMNI solar-wind data are avail-
able from the OMNIWeb of NASA/GSFC (https://omniweb.gsfc.
nasa.gov/ow_min.html; King and Papitashvili, 2022).
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