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Abstract. The magnetosheath is defined as the plasma re-
gion between the bow shock, where the super-magnetosonic
solar wind plasma is decelerated and heated, and the outer
boundary of the intrinsic planetary magnetic field, the so-
called magnetopause. Based on the Soucek–Escoubet mag-
netosheath flow model at the Earth, we present an analyti-
cal magnetosheath plasma flow model around Mercury. The
model can be used to estimate the plasma flow magnitude
and direction at any given point in the magnetosheath exclu-
sively on the basis of the plasma parameters of the upstream
solar wind. The model serves as a useful tool to trace the
magnetosheath plasma along the streamline both in a forward
sense (away from the shock) and a backward sense (toward
the shock), offering the opportunity of studying the growth
or damping rate of a particular wave mode or evolution of
turbulence energy spectra along the streamline in view of up-
coming arrival of BepiColombo at Mercury.

1 Introduction

The magnetosphere of a planet constitutes an obstacle to
the super-magnetosonic solar wind. Upstream of the planet
a bow shock emerges, because the interplanetary magnetic
field (IMF), embedded in the solar wind, cannot simply
penetrate the magnetosphere. At the bow shock the super-
magnetosonic solar wind plasma is decelerated and heated.
The region with the subsonic, heated plasma downstream of
the bow shock is called magnetosheath. The magnetosheath
plays an important role in the interaction between bow shock
and magnetosphere as it conveys energy between the solar
wind and the planetary magnetosphere.

One of the earliest magnetosheath plasma flow models
is the hydrodynamic model introduced by Spreiter et al.
(1966). Basically the model solves the gas-dynamic differen-

tial equations of an unmagnetized fluid around an obstacle,
represented by the magnetosphere. It has successfully been
tested against in situ spacecraft data (Song et al., 1999; Sta-
hara et al., 1993; Spreiter and Alksne, 1968) and applied to
model the magnetospheres of various planets in our solar sys-
tem (see Stahara, 2002, for a review). A decisive drawback
of this model, however, is the high complexity and computa-
tional demands to calculate numerically a set of differential
equations.

To reduce the computational complexity, several analyt-
ical plasma flow models have alternatively been proposed
(Russell et al., 1983; Kallio and Koskinen, 2000; Romashets
et al., 2008). An analytical magnetosheath flow model, which
has successfully been tested against spacecraft observations
at Earth, has been implemented by Soucek and Escoubet
(2012). This model is based on the magnetic field model
developed by Kobel and Flückiger (1994) and later modi-
fied and extended by Génot et al. (2011) to obtain a mag-
netosheath plasma flow model. The essential advantage of
this model is its compatibility with a wide range of bow
shock and magnetopause models while retaining the sim-
plicity and computational efficiency of the original magnetic
field model. Furthermore, the model allows us to calculate
the plasma flow velocity at any point in the magnetosheath
using only the spacecraft position and solar wind parameter
upstream of the bow shock.

In this work we follow the procedure proposed by Soucek
and Escoubet (2012) and rescale their terrestrial magne-
tosheath flow model to the space environment at Mercury.
First, we introduce the Hermean bow shock and magne-
topause model, used to obtain the magnetosheath plasma
flow model. Second, we revisit the magnetic field model
of Kobel and Flückiger (1994) which Soucek and Escoubet
(2012) used to determine the plasma velocity direction in the
magnetosheath. Third, we extend the model by the Rankine–
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Hugoniot relations in a similar way as Génot et al. (2011) to
determine the velocity magnitude downstream of the shock.

The aim of this paper is to provide a tool to estimate the
plasma flow at a given point of spacecraft observation inside
the Hermean magnetosheath on the basis of the solar wind
conditions.

2 Bow shock and magnetopause model at Mercury

In the following we use an aberrated Mercury Solar Mag-
netospheric (MSM) coordinate system. This coordinate sys-
tem is based on the Mercury Solar Orbital (MSO) coordi-
nate system, but its origin is shifted northward by 479km
from the MSO origin to account for Mercury’s dipole off-
set and rotated into the solar wind velocity direction. In the
MSO coordinate system the XMSO axis points sunward, the
YMSO axis points antiparallel to Mercury’s orbital velocity
and ZMSO =XMSO×YMSO completes the right-handed sys-
tem. To compensate for the aberration of the solar wind
direction due to the orbital motion of Mercury around the
sun, the XMSO axis is rotated antiparallel to the solar wind
flow velocity direction. In the MSM coordinate system the
bow shock and magnetopause models are considered to be
cylindrically symmetric around the XMSM axis, reducing the
three dimensions {XMSM,YMSM,ZMSM} to two dimensions

{XMSM,ρMSM} with ρ =
√
Y 2

MSM+Z
2
MSM.

Slavin et al. (2009) modeled the bow shock at Mercury by
a conic section of the form

ξ =

√
(xBS− x0)2+ ρ

2
BS =

pε

1+ ε cosφ
, (1)

with x0 being the distance of the focus of the conic sec-

tion from the dipole center along XMSM, ρBS =

√
y2

BS+ z
2
BS

being the distance from the XMSM axis, p being the focal
parameter and ε being the eccentricity. With the advent of
the MESSENGER (MErcury Surface, Space ENvironment,
GEophysics and Ranging; Solomon et al., 2007) spacecraft
in an orbit around Mercury, it was possible to characterize
the spatial location of the bow shock and magnetopause sta-
tistically. Winslow et al. (2013) determined that the best-fit
parameters to the bow shock are given by x0 = 0.5RM, p =
2.75RM and ε = 1.04. With these parameters the extrapo-
lated subsolar bow shock stand-off distance is RBS = 1.9RM
(Mercury radii, 1RM ∼ 2440km). For this work, it is advan-
tageous to transform Eq. (1) into the origin of the MSM co-
ordinate system with

rBS =

√
(ξ cosφ+ x0)2+ (ξ sinφ)2,

θ = arccos
(
ξ cosφ+ x0

rBS

)
, (2)

where rBS is the distance from the dipole center to the bow
shock, and θ is the angle between rBS and the XMSM axis.

Figure 1. Schematic representation of the parameters used in the
formulation of the bow shock and magnetopause in the MSM equa-
torial plane. The solid red line is the bow shock evaluated from
Eq. (2) (S09-BS; Slavin et al., 2009). The solid black line repre-
sents the magnetopause determined by Eq. (3) (K15-MP; Korth
et al., 2015). The dashed blue lines are the bow shock and magne-
topause determined by Eq. (4) from the KF94 model (Kobel and
Flückiger, 1994).

Figure 1 shows a schematic illustration of the parameters ξ ,
φ, rBS and θ , which are used in the formulation of the bow
shock.

Korth et al. (2015) used the magnetopause model proposed
from Shue et al. (1997) and found that the MESSENGER
observations of magnetopause crossing are best fit by

rMP =

√
x2

MP+ ρ
2
MP = RMP

(
2

1+ cosθ

)α
, (3)

with α = 0.5 being the best-fit flaring parameter, and RMP =

1.42RM being the subsolar stand-off magnetopause distance.
Figure 1 shows the Slavin et al. (2009) bow shock model

(S09-BS) and Korth et al. (2015) magnetopause model (K15-
MP) evaluated from Eqs. (2) and (3), respectively.

3 The KF94 magnetic field model

To obtain the magnetosheath plasma flow direction, we fol-
low the procedure proposed by Soucek and Escoubet (2012)
and use the magnetic field model developed by Kobel and
Flückiger (1994). In the following we denote this model
as KF94 model and mark all quantities pertaining to the
KF94 model by a tilde, e.g., r̃ . In the KF94 model the bow
shock (BS) and magnetopause (MP) at Mercury are modeled
by parabolic surfaces at a common focus with

r̃{BS,MP} =
−cosθ +

√
cos2θ + 4R{BS,MP}b{BS,MP}sin2θ

2b{BS,MP}sin2θ
, (4)
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with bBS = 1/(4RBS− 2RMP) and bMP = 1/(2RMP) defined
by the stand-off distances R{BS,MP}.

Under the assumption that the IMF is parallel to the solar
wind, the magnetic field lines of the KF94 model represent
the flow lines of the solar wind and magnetosheath plasma.
Using the magnetic field vector direction in the KF94 model,
Soucek and Escoubet (2012) determined the flow velocity
vector at a given position r = (x,ρ) by

ṽx = vm (C/2d −C/RMP),

ṽρ = vm (Cρ/[2d(d + x−RMP/2)]), (5)

where vm corresponds to the flow velocity magnitude, d =
|r − r0| is the difference between the given position in
the magnetosheath and the parabolic surface focus r0 =

(RMP/2,0) and C = RMP(2RBS−RMP)/(2RBS−2RMP) is a
constant defined by the bow shock and magnetopause stand-
off distances.

4 The magnetosheath plasma flow model around
Mercury

To obtain the magnetosheath plasma flow at a specific point
(r = (x,ρ)) in the magnetosheath at Mercury, we evaluate
the plasma flow direction first and then determine the magni-
tude of the velocity vector from the Rankine–Hugoniot rela-
tion across the bow shock.

A magnetic field model is used to describe the plasma flow
here. The reason for this is explained as follows. Assump-
tions are made such that there are no proton sinks or sources
in the magnetosheath. Strictly speaking, this assumption is
only weakly justified because of the neutral particles such as
the hydrogen corona and the sodium exosphere around Mer-
cury. A stationary case is taken in the fluid picture. The con-
tinuity equation reads then as

∇ · (nU)= 0, (6)

where n and U are the density and velocity of protons, re-
spectively. Now we make an analogy such that

(nU)−→ B, (7)

holds, and Eq. (6) is equivalent to the divergence-free condi-
tion of magnetic field:

∇ ·B = 0. (8)

For a more detailed discussion, see e.g., Génot et al. (2011).

4.1 Plasma flow direction

Following the procedure proposed by Soucek and Escou-
bet (2012), we rescale the plasma flow direction from the
KF94 model to Mercury’s space environment as follows:

1. As a first step, we calculate the angle θ =

arccos(x/
√
x2+ ρ2) between r and the XMSM axis.

2. Then we estimate the fractional distance, F , of r be-
tween the bow shock and magnetopause from Eqs. (2)
and (3) with

F =
r(θ)− rBS(θ)

rBS(θ)− rMP(θ)
. (9)

3. Now we change into the KF94 model and calculate
r̃BS(θ) and r̃MP(θ) from Eq. (4) with the angle θ . Note
that the stand-off distances (RBS and RMP) and the fo-
cus (r0 = (RMP/2,0)) in Eq. (4) are the best-fit values
from Eqs. (2) and (3).

4. In a next step we determine the fractional position
within the magnetosheath in the KF94 model with

r̃(θ)= F[r̃BS(θ)− r̃MP(θ)] + r̃BS(θ), (10)

according to Eq. (9).

5. Using Eq. (5) we evaluate the KF94 flow velocity vec-
tor, ṽ for ṽ = (ṽx, ṽρ) at the position r̃(θ). Note that the
velocity magnitude vm is determined in a later step.

6. With the obtained flow velocity vector, v, we are able to
estimate the new position of an adjacent point along the
same flow line r̃ ′ = r̃ + ṽ1t , by choosing an infinitesi-
mally small time increment 1t .

7. Next we determine the angle between the new position
and theXMSM axis, θ ′, and the fractional distance inside
the KF94 magnetosheath, F ′, using Eq. (9).

8. Finally we transform the new position r̃ ′(θ ′) back from
the KF94 model to the original MSM reference frame
where the magnetosheath is confined by Eqs. (2) and
(3). The new position, r ′, inside this magnetosheath is
then given by

r ′ = F ′[rBS(θ
′)− rMP(θ

′)] + rBS(θ
′), (11)

and thus the plasma flow direction can be determined by
v = (r ′− r)/1t .

Applying recursively this procedure (steps 1–8) yields the
plasma flow line within Mercury’s magnetosheath. In Fig. 2
five examples of flow lines are shown.

4.2 Plasma flow magnitude

To evaluate the magnetosheath plasma velocity magnitude,
vm, we apply the Rankine–Hugoniot (RH) equations, which
relate the upstream (u) with the downstream (d) plasma con-
ditions. The downstream plasma flow velocity directly be-
hind the bow shock, vd, is derived by the following proce-
dure:
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Figure 2. Schematic representation of the flow lines (red) in the
MSM equatorial plane. The solid black lines are the bow shock and
magnetopause evaluated from Eqs. (2) and (3), respectively.

1. From the given spacecraft position in the magne-
tosheath, r = (x,ρ), we trace the flow line back to the
bow shock. Thereto we iteratively apply steps (1)–(8)
from above, with reversed increments r̃ ′ = r̃ − ṽ1t in
step (6), until the bow shock is reached (F ′ = 0). Then
we calculate the angle θBS between the XMSM axis and
the bow shock intersection at (xBS,ρBS) with θBS =

arccos(xBS/

√
x2

BS+ ρ
2
BS).

2. In a next step we determine the bow shock tangent t̂ and
normal n̂ unit vectors where the back-traced flow line
intersects the bow shock. For any point along the bow
shock, the normal, n, and tangent, t , vector can easily
be computed by

t =

[
drBS

dθ
cosθ − rBS sinθ

]
êx +

[
drBS

dθ
sinθ + rBS cosθ

]
êρ ,

n=

[
drBS

dθ
sinθ + rBS cosθ

]
êx −

[
drBS

dθ
cosθ + rBS sinθ

]
êρ , (12)

where drBS
dθ is numerically calculated from two consec-

utive points along the bow shock given by Eq. (2). The
shock frame of reference is then defined by the normal-
ized normal and tangent vector at θBS.

3. In the shock reference frame the RH equations can be
combined to determine the downstream velocity vector
component parallel vd

n and perpendicular vd
t to the shock

normal (see e.g., Génot, 2008):

vd
n = vu

n
1
R
,

vd
t = vu

n

tanθVn+
1− 1/R[

Mu
A

2/(Rcos2θBn)
]
− 1

tanθBn

 , (13)

where vu
n is the upstream velocity vector component

parallel to the shock normal, R= ρd/ρu is the compres-

sion ratio between the upstream and downstream mass
density, θVn = arctan(vu

t /v
u
n) is the angle between the

upstream velocity vector and the shock normal, θBn =

arctan(Bu
t /B

u
n ) is the angle between upstream magnetic

field vector and shock normal, and Mu
A = v

u
n

√
µ0ρu

Bu
n

is
the upstream Alfvén Mach number.

4. In Eq. (13) all parameters pertain to the upstream side,
except the compression ratio R. However, R can also
be expressed by exclusively upstream parameters with
(see e.g., Anderson, 1963)

(Mu
A

2
−R)2(γ βuR+Mu

A
2cos2θBn[(γ − 1)

R− (γ + 1)])+RMu
A

2sin2θBn([γ + (2− γ )R]

Mu
A

2
+R[(γ − 1)R− (γ + 1)])= 0 (14)

where βu
= (2µ0p

u)/Bu2 is the ratio of the upstream
thermal to magnetic pressures, and γ is the polytropic
index which is typically assumed to be γ = 5/3. Equa-
tion (14) is equivalent to Eq. (2.43) in Anderson (1963)
with different notations. The solution is given in the
form of compression ratio as a function of the shock
angle θBn. Solutions exist for a compression ratio in the
range 1≤R≤ 4 when using Eq. (14). Another class of
solutions also exists for the expansion (R< 1) with a
decrease of entropy from the upstream onto the down-
stream side. The latter case is not physically relevant
and is not considered here. The upper limit of com-
pression ratio (R= 4) corresponds to the limit of high
Alfvén Mach number (MA→∞) under a polytropic in-
dex of γ = 5/3.

5. By solving Eq. (14) for R the downstream velocity

magnitude vd =

√
vd

n
2
+ vd

t
2 is therefore entirely deter-

mined by only the upstream plasma parameters.

Since the detailed density profile along the flow line is
unknown, we assume in a first approximation a constant
plasma density and thus a constant velocity magnitude along
the flow line. Therefore, the velocity magnitude at a given
point r directly corresponds to the velocity magnitude down-
stream of the shock, and vm = vd. Although this assumption
has the tendency to underestimate the velocity close to the
magnetopause, it yields satisfactory results in a first approach
(Génot et al., 2011).

The entire procedure from above is implemented in an
IDL computer program which can be retrieved from OSF
(Schmid, 2020). The program is designed to evaluate the
plasma flow velocity vector at a given observation point of
a spacecraft inside the Hermean magnetosheath exclusively
on the basis of the upstream solar wind conditions. As the so-
lar wind input parameters, we use the solar wind propagation
model of Tao et al. (2005), which is modified by the orbital
motion of Mercury. The model is a one-dimensional magne-
tohydrodynamic model and takes the OMNI dataset as input
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to compute propagation at all solar system bodies including
Mercury. The correction for the orbital motion is achieved
by adding the solar wind velocity vector, V SW, (which is
radially away from the Sun) and the orbital motion veloc-
ity vector of Mercury, V mercury, with V = V SW+V mercury.
To obtain V mercury, we use the dataset provided from the
Navigation and Ancillary Information Facility (NAIF; Ac-
ton, 1996), which provide the distance between Mercury and
Sun,D, and absolute velocity of Mercury, Vmercury. To deter-
mine aberration velocity vector, we first calculate the aberra-
tion angle φ on the basis of Mercury’s elliptical orbit with

φ = arctan
(
b/
√
a2− b2 sin

[
arccos((1−p/D)/e)

])
, (15)

where a is the semimajor axis, b the semiminor axis,
p the semi-latus rectum and e the eccentricity of the
ellipse. With the aberration angle φ and the consid-
eration whether Mercury moves towards or away from
the sun, we subsequently obtain the aberration veloc-
ity vector V mercury,x =±Vmercury sin(φ) and V mercury,y =

±Vmercury cos(φ). The transformation due to this abberation
effect is made by applying a two-dimensional rotation matrix
to the spatial coordinates (spanning the x and ρ coordinates):(
x′

y′

)
=

(
cosθa −sinθa
sinθa cosθa

)(
x

ρ

)
, (16)

where the aberration angle θa is given by the radial solar wind
velocity, V SW, and the apparent solar wind velocity, V with
θa = arccos(V SW ·V ). In Fig. 3 the results of the model are
shown for the average solar wind plasma parameters during
the entire MESSENGER operation service between 2011 and
2015. After modifying the solar wind velocity vector of the
Tao et al. (2005) model by the orbital motion of Mercury
(Acton, 1996), the average input solar wind plasma param-
eters for our model are density of nu

≈ 40cm−3, tempera-
ture of T ≈ 18eV, flow speed of |V u

| ≈ −400km/s, mag-
netic field magnitude of |Bu

| ≈ 20nT with the radial com-
ponent Br ≈ 18nT (ignoring the sign) and the tangential
component Bt ≈ 16 nT (ignoring the sign). The mean val-
ues of density, temperature, flow speed and magnetic field
are valid for nearly 1500 d of observations of MESSEN-
GER (confirmed by one of the reviewers). It is worthwhile
to note that one finds an angle of 23◦ from the Tao dataset,
which is consistent to the spiral angle at Mercury at an av-
erage position of 0.4 astronomical units (AU) from the Sun
for a solar wind speed of 400km/s. The Bx component is
computed from the By component using the Parker spiral
field in the Tao model. The Alfvén Mach number in the up-
stream region is MA = v

u/VA ≈ 5.8 (with an Alfvén speed
of VA ≈ 69km/s), and the plasma parameter beta (upstream)
is β = 2µ0nkBT/B

2
≈ 0.72 (where µ0 is the permeability

of free space, and kB is the Boltzmann constant) in our
setup. Color coded is the obtained velocity magnitude vm.
Additionally, the back-traced flow line from a virtual space-
craft located at xMSM =−3RM and ρMSM = 3RM is plot-
ted (green line). At the bow shock intersection the calculated

Figure 3. Color-coded flow speed calculated from Eq. (13) with the
averaged upstream parameters from the Tao et al. (2005) solar wind
propagation model at Mercury between 2011 and 2015. Also plotted
is a schematic representation of back-traced flow line (green) from
a virtual spacecraft (S/C) to the bow shock (BS) with the respective
shock normal n̂ and tangent t̂ obtained from Eq. (12). The thick
black line downstream of the BS is the downstream velocity vector
direction determined by Eq. (13). Alfvén Mach number is 5.8, and
plasma beta is 0.79.

shock normal n̂ and tangent t̂ are illustrated in thin black
lines. The thick black line downstream of the bow shock
shows the velocity vector direction evaluated from the RH
relations, which is in good agreement with the streamline di-
rection determined by the KF94 model.

At the virtual spacecraft position the model predicts a
magnetosheath plasma flow velocity of vx ≈−200km/s and
vρ ≈ 17km/s.

A naive picture of the compression by a factor of 4 (in
the limit of high Mach number) is not realistic, because
the interplanetary magnetic field around Mercury reaches a
magnitude of 20 to 50nT, and the Alfvén Mach number is
correspondingly smaller than that around the Earth by 20
to 50, respectively. A picture of the constant density and a
reduced flow speed to 1/4 of the solar wind speed at the
magnetopause (along the streamline tangential to the mag-
netopause) is not valid, either, since the adiabatic expansion
breaks down, and the model is not applicable to the flow in
the subsolar region and at the magnetopause.

5 Discussion and conclusions

Here we present the first analytical magnetosheath plasma
flow model for the space environment around Mercury. The
model is based on the magnetosheath model by Soucek and
Escoubet (2012), which has successfully been tested against
spacecraft observations at Earth. The proposed model is rel-
atively simple to implement and provides the possibility to
trace the flow lines inside the Hermean magnetosheath.

The model presented in this paper is generally robust and
easy to implement for its analytic expression using upstream

https://doi.org/10.5194/angeo-39-563-2021 Ann. Geophys., 39, 563–570, 2021
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parameters. It can help to determine the local plasma con-
ditions of a spacecraft in the magnetosheath exclusively on
the basis of the upstream solar wind parameters. Two appli-
cations are in mind in view of the BepiColombo mission,
where the Mercury Magnetospheric Orbiter (MMO also re-
ferred to as Mio) will probe Mercury’s magnetosheath and
solar wind with unprecedented fast measurements of the par-
ticle distribution functions: (1) the Tátrallyay method to ob-
servationally determine the growth rate or damping rate of
specific mode such as the mirror mode along the stream-
line (Tátrallyay and Erdös, 2002; Tátrallyay et al., 2008) and
(2) the Guicking method to observationally track the spec-
tral evolution of turbulent fluctuations along the streamline
(Guicking et al., 2010, 2012).

At the moment a comparison with plasma data is techni-
cally not feasible for our model. Due to the limited particle
measurements on board MESSENGER, it is not possible to
obtain the plasma parameters properly in the solar wind and
magnetosheath, that is, by covering the full velocity distribu-
tions and to compare with the model velocities. Above all,
the plasma instrument is located behind the heat shield and
has just a limited field of view. Due to this fact, the major-
ity (thermal core part) of solar wind particles cannot be de-
tected. Comparison with the numerical simulations would be
another possibility to test for the model, but a quantitative
comparison remains a challenge for the reason that there are
large discrepancies in the density and flow velocity among
various simulation models on the dayside from the subsolar
point to the northern terminator (Aizawa et al., 2021).

An approximation that the magnetic field is more aligned
with the solar wind flow direction is more justified at Mer-
cury than at the Earth because of the Parker spiral nature.
One of the possible consequences of our assumption is that
the magnetic field magnitude would change or evolve in the
same sense as that of the plasma (or particle number flux)
in the magnetosheath. The correlation between the magnetic
field and that of the particle flux in the magnetosheath would
ideally be tested against the plasma and magnetic field data
on the arrival of BepiColombo at Mercury. The change in the
number density can be interpreted as the change in the cross-
sectional area of a flux tube across which the plasma streams.
The change in the flow velocity can then be compared with
that from the adiabatic expansion and that from the measure-
ment.

The following remarks are drawn as scientific message.
First, Fig. 1 visually demonstrates that different models pre-
dict different shapes of the tail and magnetosheath, which is
an overlooked issue in the Mercury magnetosphere commu-
nity. Second, Fig. 2 shows that the flow lines near the sub-
solar region (Sun-to-planet line if neglecting the planetary
orbital motion) expand abruptly so that the adiabatic expan-
sion may break down. In particular, the adiabatic expansion
plays an important role in predicting the flow in the mag-
netosheath. Logical continuation of our model construction
would be to evaluate also the density and velocity profile

along the flow line and to test under which conditions the
adiabatic expansion breaks down.

Although the proposed model has a good performance
overall for a wide range of upstream conditions, the accu-
racy strongly depends on the used bow shock and magne-
topause model. Here we utilize the bow shock and magne-
topause model from Slavin et al. (2009) and Korth et al.
(2015), which were adopted from MESSENGER boundary
crossing observations.

The presented model is cylindrically symmetric around the
XMSM axis. In reality, however, non-radial IMF conditions
will lead to a spatially asymmetric magnetosheath (Nishino
et al., 2008; Dimmock and Nykyri, 2013; Dimmock et al.,
2016). On the quasi-perpendicular side, where the shock-
normal angles θBn are greater than 45◦, the magnetosheath is
known to be thicker with larger plasma flow velocities than
on the quasi-parallel side, where θBn < 45◦. Such asymme-
tries cannot be reproduced by the simple model presented
here but should be addressed in future work.

Furthermore, the method used to determine the flow veloc-
ity magnitude can possibly be improved. Here we assumed
a constant plasma density and velocity along the flow line
which has the tendency to underestimate the plasma veloc-
ity in regions with lower densities, e.g., close to the magne-
topause. Génot et al. (2011) proposed a simple ad hoc model
of a plasma density profile which has been implemented
by Soucek and Escoubet (2012). While this ad hoc den-
sity model showed good correspondence with in situ space-
craft plasma observation at Earth, the solar wind and mag-
netospheric conditions at other planets can be very differ-
ent (like at Mercury) and thus might give a worse prediction
(Soucek and Escoubet, 2012). Our model inherits the proper-
ties from the Soucek–Escoubet model by scaling the Kobel–
Flückinger model of the near-Earth environment: (1) time
stationary flow and (2) axially symmetric around the axis of
(apparent) solar wind penetrating the planet. Assumption of
time stationary flow may break down when the change in
the solar wind state is not negligible. Assumption of the ax-
isymmetric magnetosheath may also break down when the
magnetopause location is not symmetric between the north-
ern and the southern hemisphere (in particular, in the tail re-
gion).

At this stage we decided not to include an ad hoc den-
sity profile, also because it can hardly be tested due to the
limited plasma observations around Mercury. The assump-
tion of constant density implies a constant velocity along a
given flow line. The velocity profile may vary considerably
from that estimated in the earlier models such as the Spre-
iter model (Spreiter et al., 1966), the Genot model (Génot
et al., 2011), and the Soucek–Escoubet model (Soucek and
Escoubet, 2012). As mentioned above, the constant density
will likely underestimate the propagation timing in the mag-
netosheath. In future work such a density profile should be
evaluated and included.
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Code availability. An IDL program to evaluate plasma flow
velocity vector in Mercury’s magnetosheath from solar
wind parameters of the Tao solar wind propagation model
can be retrieved from OSF: https://osf.io/9jgqn/?view_only=
2624aca3774c4ba8885dcb21a13e1b08 (last access: 25 May 2021)
(Schmid, 2020).

Data availability. The plasma data of the heliospheric Tao model
are open-access data and can be retrieved on the AMDA web-
site (http://amda.cdpp.eu/ (last access: 25 November 2020), Cen-
tre de Données de la Physique des Plasmas (CDPP), 2018) via
the WorkSpace Explorer: DataBase/Solar Wind Propagation Mod-
els/Tao Model/SW Input OMNI (Tao et al., 2005). The orbital mo-
tion data of Mercury are provided by the Navigation and Ancil-
lary Information Facility (NAIF) and can be retrieved on the NAIF
website under https://wgc.jpl.nasa.gov:8443/webgeocalc (last ac-
cess: 6 May 2020) (Acton, 1996).

Author contributions. DS initiated this study, collected the data and
implemented the method. FP, YN, MV and WB helped with evalu-
ating the article.

Competing interests. The authors declare that they have no conflict
of interest.

Financial support. This research has been supported by the Öster-
reichische Forschungsförderungsgesellschaft (grant no. 865967).

Review statement. This paper was edited by Anna Milillo and re-
viewed by two anonymous referees.

References

Acton, C. H.: Ancillary data services of NASA’s Navigation and
Ancillary Information Facility, Planet. Space Sci., 44, 65–70,
https://doi.org/10.1016/0032-0633(95)00107-7, 1996.

Anderson, J. E.: Magnetohydrodynamic shock waves, Cambridge:
MIT Press, 1963.

Aizawa, S., Griton, L. S., Fatemi, S., Exner, W., Deca, J., Pantellini,
F., Yagi, M., Heyner, D., Génot, V., André, N., Amaya, J., Mu-
rakami, G., Beigbeder, L., Gangloff, M., Bouchemit, M., Budnik,
E., and Usui, H.: Cross-comparison of global simulation models
applied to Mercury’s dayside magnetosphere, Planet. Space Sci.,
198, 105176, https://doi.org/10.1016/j.pss.2021.105176, 2021.

Dimmock, A. P. and Nykyri,K.: The Statistical Mapping of
Magnetosheath Plasma Properties Based on THEMIS Mea-
surements in the Magnetosheath Interplanetary Medium Ref-
erence Frame, J. Geophys. Res.-Space, 118, 4963–4976,
https://doi.org/10.1002/jgra.50465, 2013.

Dimmock, A. P., Nykyri, K., Osmane, A., and Pulkkinen,
T. I.: Statistical mapping of ULF Pc3 velocity fluctua-
tions in the Earth’s dayside magnetosheath as a function

of solar wind conditions, Adv. Spac. Res., 58, 196–207,
https://doi.org/10.1016/j.asr.2015.09.039, 2016.

Génot, V.: Mirror and Firehose Instabilities in the Heliosheath, As-
trophys. J., 687, 119–122, https://doi.org/10.1086/593325, 2008.

Génot, V., Broussillou, L., Budnik, E., Hellinger, P., Trávníček, P.
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