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Abstract. A new incoherent scatter radar called EISCAT 3D
is being constructed in northern Scandinavia. It will have
the capability to produce volumetric images of ionospheric
plasma parameters using aperture synthesis radar imaging.
This study uses the current design of EISCAT 3D to ex-
plore the theoretical radar imaging performance when imag-
ing electron density in the E region and compares numeri-
cal techniques that could be used in practice. Of all imaging
algorithms surveyed, the singular value decomposition with
regularization gave the best results and was also found to be
the most computationally efficient. The estimated imaging
performance indicates that the radar will be capable of de-
tecting features down to approximately 90 x 90 m at a height
of 100km, which corresponds to a & 0.05° angular reso-
lution. The temporal resolution is dependent on the signal-
to-noise ratio and range resolution. The signal-to-noise ratio
calculations indicate that high-resolution imaging of auroral
precipitation is feasible. For example, with a range resolution
of 1500 m, a time resolution of 10s, and an electron density
of 2 x 101 m~3, the correlation function estimates for radar
scatter from the E region can be measured with an uncer-
tainty of 5 %. At a time resolution of 10s and an image reso-
lution of 90 x 90 m, the relative estimation error standard de-
viation of the image intensity is 10 %. Dividing the transmit-
ting array into multiple independent transmitters to obtain a
multiple-input—multiple-output (MIMO) interferometer sys-
tem is also studied, and this technique is found to increase
imaging performance through improved visibility coverage.
Although this reduces the signal-to-noise ratio, MIMO has
successfully been applied to image strong radar echoes as
meteors and polar mesospheric summer echoes. Use of the
MIMO technique for incoherent scatter radars (ISRs) should
be investigated further.

1 Introduction

One of the measurement challenges in the study of the
Earth’s ionized upper atmosphere when using incoherent
scatter radars (ISRs) is that the measurements often do not
match the intrinsic horizontal resolution of the physical phe-
nomena that are being studied. Conventional ISR measure-
ments are ultimately limited in the transverse beam axis di-
rection by the beam width of the radar antenna, which is de-
termined by the diffraction pattern of the antenna. Even for
large antennas, the beam width is typically around 1°. The
mismatch between geophysical feature scales and horizontal
resolution obtained by a typical ISR antenna is demonstrated
in Fig. 1, which shows an image of auroral airglow taken in
the magnetic-field-aligned direction. Overlain on the image
are the antenna beam diameters of three incoherent scatter
radar antennas, namely EISCAT ultra-high frequency (UHF),
EISCAT 3D, and Arecibo. It is clear that the auroral precipi-
tation has an appreciable structure on scales smaller than the
beam size. A conventional ISR measurement in this case will
provide plasma parameters that are averaged over the area of
the radar beam, preventing the observation of a small, sub-
beam-width-scale structure. Only a radar with an antenna the
size of the Arecibo Observatory dish (305 m) would provide
an antenna beam width that approaches the scale size of au-
roral precipitation.

Another measurement challenge for ISRs is temporal sam-
pling of the spatial region of interest. Single-dish radar sys-
tems can only measure in one direction at any given time,
and the ability to move the beam into another direction de-
pends on the speed at which the antenna can be steered. In
addition, there is the minimum integration time required to
measure one position. It takes a long time to sample a large
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Figure 1. An image of auroral optical emission in the magnetic-
field-aligned direction, showing the horizontal distribution of the
auroral precipitating electron flux. Overlain on the image are the
beam widths of the EISCAT UHE, Arecibo, and EISCAT 3D radars,
with approximately 0.5°, 0.16°, and 1.0° beam widths. The image is
from the Auroral Structure and Kinetics (ASK) instrument (Ashrafi,
2007), courtesy of Daniel K. Whiter.

horizontal region, and even then, the measurements of differ-
ent horizontal positions are obtained at different times.

In order to increase the spatial resolution of radio mea-
surements without resorting to constructing an extremely
large continuous antenna structure, a technique called aper-
ture synthesis imaging can be used (e.g. Junklewitz et al.,
2016). It relies on a sparse array of antennas to estimate a
radio image with a horizontal resolution equivalent to that of
a large antenna. The correlation between the received signals
can be used to produce an image of the brightness distribu-
tion of the radio source. This technique is widely used in
radio astronomy to image the intensity of radio waves origi-
nating from different sky positions.

The application of aperture synthesis imaging for radar,
i.e. ASRI, has been used in space physics to observe high
signal-to-noise ratio targets (Hysell et al., 2009; Chau et al.,
2019). There is a good amount of literature on ASRI tech-
niques in two dimensions (range and one transverse beam
axis direction) for imaging field-aligned irregularities (e.g.
Hysell and Chau, 2012, and references therein). There has
also been much research on the imaging of atmospheric
and ionospheric features in three dimensions; for example,
Urco et al. (2019), who applied it to observations of polar
mesospheric summer echoes (PMSE) with the Middle At-
mosphere Alomar Radar System (MAARSY); Palmer et al.
(1998), who applied it on the middle and upper atmosphere
radar in Japan; Yu et al. (2000), who applied it in a simulation
study; and Chau and Woodman (2001), who applied it to ob-
servations of the atmosphere over Jicamarca. The currently
available horizontal resolution of ASRI is around 0.5° with
Jicamarca, but down to 0.1° for strong backscatter (Hysell
and Chau, 2012) in the case of field-aligned ionospheric ir-
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regularities, and 0.6° with MAARSY for PMSE (Urco et al.,
2019).

However, there is little literature directly on the incoherent
scatter in three dimensions, but some approaches have been
made, like Schlatter et al. (2015), who used the EISCAT aper-
ture synthesis imaging array and the EISCAT Svalbard radar
to image the horizontal structure of naturally enhanced ion
acoustic lines (NEIALs) and Semeter et al. (2009), who in-
terpolated sparse independent Poker Flat Incoherent Scatter
Radar (PFISR) measurements to estimate the electron den-
sity variation over a 65 x 60 km area during an auroral event.

In radar imaging, the measurements are in the so-called
visibility domain. Ensemble averages of the cross-correlation
of complex voltages between two antennas represent a single
sample of the visibility (Woodman, 1997; Urco et al., 2018).
Throughout this article we will use the term “far field” for
the region further away than the Fraunhofer limit of the radar.
The region closer than the Fraunhofer limit we will call the
“near field”. If the radar target is in the far field of the radar,
the visibility domain is related via a Fourier transform to the
horizontal brightness distribution or the radio image. Then,
the measurements are samples of the Fourier transform of the
spatial variation of backscatter strength, or brightness distri-
bution, of the target (Woodman, 1997). The measurements
are used to calculate the brightness distribution, or image, of
the target.

So far, most of the incoherent scatter radar imaging has
been done with a single transmitter and multiple receivers,
thereby using a single-input-multiple-output (SIMO) sys-
tem. The number of measurements and degrees of freedom
is here determined by the number of receivers and their rel-
ative locations. Instead of using only one transmitter, mul-
tiple transmitters can be used when performing radar imag-
ing. This allows one to increase the number of visibilities
that can be measured, which can result in improved imag-
ing performance — as long as the signal-to-noise ratio is
sufficiently high. This technique is called multiple-input—
multiple-output (MIMO) radar (Fishler et al., 2006). The
MIMO technique for increasing spatial resolution has re-
cently been demonstrated with the Jicamarca radar, when
imaging equatorial electrojet echoes (Urco et al., 2018), and
also with the MAARSY radar for imaging PMSE (Urco et al.,
2019). The primary technical challenge with MIMO radar is
separating the scattering of the signals corresponding to mul-
tiple transmitters once they have been received.

EISCAT 3D, from here on referred to as E3D, is a new
multi-static incoherent scatter radar that is being built in Nor-
way, Sweden, and Finland (McCrea et al., 2015; Kero et al.,
2019). The core transmitting and receiving antenna array will
be located in Skibotn, Norway (69.340° N, 20.313° E). There
will be additional bi-static receiver antenna sites in Kaise-
niemi, Sweden (68.267° N, 19.448°E), and Karesuvanto,
Finland (68.463° N, 22.458° E). The core array of E3D will
consist of 109 sub-arrays, each containing 91 antennas. The
one-way half power full beamwidth (HPBW) or illuminated
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angle of the core array will be 1°. On transmission, the array
is capable of transmitting up to S MW of peak power at a fre-
quency of 233 MHz. Additionally, there are 10 receive-only
outrigger antennas around the core array, providing longer
antenna spacings that can be used for high-resolution ASRI.
Imaging will already be necessary to maintain the perpendic-
ular resolution constant in the transition from EISCAT very
high frequency (VHF) and UHF to E3D. It is possible that
the EISCAT 3D radar can also be configured as a MIMO
system, where the core array is separated into smaller sub-
arrays which act as independent transmitters at slightly dif-
ferent locations. During the design phase, Lehtinen (2014)
investigated the imaging performance of possible layouts of
E3D in the far field. The study, however, does not include the
current layout that is being built.

EISCAT 3D will not be able to measure radar echoes from
magnetic-field-aligned irregularities, so it will not be possi-
ble to assume that the scattering originates from a 2D plane
where the radar-scattering wave vector is perpendicular to
the magnetic field. All radar imaging will need to be done
in 3D and mostly for incoherent scatter. This poses the fol-
lowing two main challenges: 1) the signal-to-noise ratio will,
in typical cases, be determined by incoherent scatter, which
is much smaller than that used conventionally for ASRI; and
2) there are more unknowns that need to be estimated as, at
each range, there is a 2D image instead of a 1D image that
needs to be estimated.

For E3D, the Fraunhofer limit is at 2D? /A~ 2000 km,
where D ~ 1.2km is the longest baseline and A = 1.3 m is
the wavelength of the radar. Measurements of the ionosphere
are therefore taken in the near field of the radar. Woodman
(1997) describes a technique to correct for the curvature in
the backscattered field with an analogy of lens focusing. In
this study, a different approach has been taken, where the
near-field geometry is directly included in the forward model
of the linear inverse problem formalism. In this case, it is
not possible to resort to frequency domain methods to di-
agonalize the forward model. This comes at an increase in
computational complexity, but this is not prohibitive in terms
of computational cost with modern computers.

In this study, we will simulate the radar imaging measure-
ment capabilities of the upcoming EISCAT 3D radar. The
study is divided into the following sections. In Sect. 2, we
investigate the achievable time and range resolution of E3D,
and how they are connected. An expression for the cross-
correlations between the received signals, taking into account
the near-field geometry, is derived in Sect. 3. Section 4 de-
scribes the near-field forward model for radar imaging and
describes several numerical techniques for solving the linear
inverse problem. This section also includes a study of imag-
ing resolution based on simulated imaging measurements.
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2 Time resolution

In this section, we will calculate the required integration time
for a certain range resolution with E3D. The elementary radar
imaging measurement is an estimate of the cross-correlation
of the scattered complex voltage measured by two antenna
modules. The integration time in this case is the minimum
amount of time that is needed to obtain a measurement er-
ror standard deviation (SD) for the cross-correlation estimate
that is equal to a predefined limit. The estimation error of
the cross-correlation determines the measurement error for
the imaging inverse problem. By investigating the variance
of the cross-correlation estimate, using statistical properties
of the incoherent scatter signal, we can decouple the problem
of the time and range resolution from imaging resolution, al-
lowing us to study the performance of the imaging algorithm
with a certain measurement error SD.

Our signal-to-noise calculations will be based on an obser-
vation of incoherent scatter from ionospheric plasma, which
is the case with the smallest expected signal-to-noise ratio.
We have ignored self-clutter, as the combination of the E3D
core transmitter illuminating the target and a single receiv-
ing sub-array receiver module will inevitably be within a
low signal-to-noise ratio regime that is dominated by receiver
noise.

We will first deduce an expression for the measurement
rate, that is, how many measurements are taken per second.
There are the following two factors that determine the maxi-
mum rate at which independent observations of the scattering
from the ionosphere can be made: (1) the minimum inter-
pulse period length, which we set to d/zp, with d as the duty
cycle and T, as the pulse length; and (2) the incoherent scat-
ter decorrelation time, which is inversely proportional to the
bandwidth of the incoherent scatter radar spectrum B. The
maximum of these two timescales determines the frequency
of the independent measurements that can be made as fol-
lows:

szmin(drp_l,B). (D

If a transmitted long pulse is divided into Np bits, the
number of measurements per long pulse can be multiplied
by Np. In the E region, we can assume that the autocorre-
lation function is constant for the purpose of estimating the
variance. Then, the number of lagged product measurements
per transmit pulse is Np(Np — 1)/2 because we also can use
measurements with different time lags. For the sake of sim-
plicity, we assume that all lags within a radar transmit pulse
are equally informative. This is approximately the case for
E-region plasma measured using E3D. The number of mea-
surements per second is then as follows:

FcszNP(NP_l)/Z' (2

Next, we will estimate the number of measurements
needed to reduce the measurement error of an average cross-
correlation measurement to a certain level. We consider a
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measurement model in which a measurement m is described
by a linear combination of the parameter we want to estimate,
m = x + &, where x and & are considered as proper complex
Gaussian random variables with zero mean and variance of,
respectively, Ps and Pn. The noise power estimate Py is as-
sumed to have no error. We estimate the signal power with
the following:

A m;m;
P=;ﬁg—&, 3)
1=

where the bar denotes complex conjugation. It can then be
shown that, in the following:

(Ps + Pn)?

Var(P) = (¢ Ps)? = T

“
where ¢ is the relative SD and K is the number of measure-
ments (Farley, 1969). If we require the correlation function
to have a relative uncertainty under a certain level €, e.g.
€ =0.05 = 5%, the equation can be solved for K in order
to obtain the number of needed samples as follows:

2 2
_ (Ps+Py) :<SNR+1> ’ )

K=
(e Pg)? ¢-SNR

where SNR is the signal-to-noise ratio. The integration time
required to obtain a measurement with a certain level of un-
certainty is now the following:

_K _ (st A)’ 2 ©
Fe (€Ps)> FmNp(Np—1)’
or is written as a function of SNR, as follows:
SNR + 12 2
T— + . ©)
&-SNR / FuNp(Np—1)

The received signal power Ps can be found by the radar equa-
tion as follows:

i Pththrx)\26
" (47)3RAR2

txXhrx

; ®

Ps

where Py is the transmitted power, G is the transmit and
G« the receive gain, A is the radar wavelength, o is the scat-
tering cross section, and Rix and R are the distance from the
scattering volume to the transmitter and receiver (e.g. Sato,
1989). Assuming that the Debye length is much smaller than
the radar wavelength, the effective scattering cross section
for a single electron in plasma (Beynon and Williams, 1978)
is the following:

op=0e(1+T./T)"". ©)

Here, o, is the Thomson scattering cross section o, = 4nr§,
T; is the ion, and T¢ is the electron temperature.
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The total scattering cross section can be found by adding
up the cross sections of all electrons in the illuminated vol-
ume N,V as follows:

0 = V Nop. (10)

The scattering volume can be approximated using a spherical

cone as follows:

Ve 2w Ar (1 —cos(6/2))
B 3

Gr2 +3rAr + Ar?). a1

Here, Ar =ct,/2 is the range resolution of the measure-
ment, where 1, = 7p/Np is the baud length, r is the range
of the volume, and 6 is the HPBW angle of the radar. By
range, we mean the range from the centre of the core array in
Skibotn to the target.

We assume that the noise is constant through the ion line
spectrum. The noise power is then given by the following:

Py = kpTyysB, (12)

where Ty is the system noise temperature, B is the band-
width of the incoming ion line, and kg is the Boltzmann con-
stant. The bandwidth we assume to be equal to 2 times the
ion thermal velocity times wave number (2vphk) or the in-
verse of the pulse length 7~ n depending on which one is the
largest. The ion thermal velocity is given by the following:

kg T;
v = | ——, (13)

mj

where mj is the ion mass, which we set equal to 31 u, cor-
responding to a mixture of O;‘ and NO™. These are the two
most dominant ion species in the E region (Brekke, 2013).
The system noise temperature we set to 100 K. For all bit
lengths investigated here, 7.~ ! exceeds 2vmk by at least 1 or-
der of magnitude. The bandwidth is therefore independent
of the ion composition as long as the measurements are re-
stricted to the E region.

We can now use this to calculate the integration time of
the electron density measurements in the E layer at 150 km
for different range resolutions. The SD requirement is set at
5 %. The electron and ion temperatures we set to 400 and
300 K, respectively. We assume a monostatic radar with fre-
quency f =230MHz, HPBW of 6 = 1°, and a transmitter
with power of 5MW. The transmitter gain for the core ar-
ray we set to 43dB and the receiver gain to 22 dB for one
sub-array of the imaging array. The inter-pulse period tipp
is 2ms, and the long pulse length is 0.5 ms. The results are
shown in Fig. 2.

The figure shows that the integration time decreases with
increasing electron density and decreasing range resolution.
This confirms the expected trade-off between range and time
resolution. If the electron density is not too low, a time res-
olution of a few seconds is possible. This, however, assumes
a relatively low range resolution of 1000-2000 m, which still
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10° 4 B
—— Range resolution: 100 m
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Figure 2. Integration time of targets in the E region observed us-
ing the E3D core for transmitting and a single 91 antenna element
module for receiving.

provides some useful information about the E-region plasma.
When keeping a constant SD, an enhanced electron density
can be used to improve either the time or range resolution.

When using MIMO imaging, the core array is divided into
multiple independent groups when transmitting. This pro-
vides more baselines and increases the maximum antenna
separation. In this case, the imaging resolution will be im-
proved by having a larger aperture. One of the challenges in
this case will be to separate the signals from different trans-
mitters in the case of overspread radar targets. We assume
that separate transmitters operate at the same frequency, and
that the transmitted signals are distinguished using radar-
transmit coding. This can be achieved in practice by using
a different pseudorandom transmit code on each transmit
group (Sulzer, 1986, Vierinen et al.; in preparation). Then,
the transmit power is spread over the transmitters. How-
ever, since the scattering volume increases and then includes
more scatterers, the power adds up again. Because of the
smaller antenna area, the transmit gain must be divided by the
number of transmitters. Additionally, there could be cross-
coupling between antennas, which might cause buffer zones
between transmitters. Then, the antenna area and gain de-
crease furthermore. In conclusion, the integration time for
MIMO will at least be the number of transmitters times the
integration time for SIMO.

The calculations do not include echoes other than those
from incoherent scatter or enhancements other than electron
density. In the case of PMSE (e.g. Urco et al., 2019) and
NEIALs (e.g. Grydeland et al., 2004; Schlatter et al., 2015),
the echo is significantly stronger than for incoherent scatter.
These enhancements will also make shorter integration times
available and will be more promising candidates for the use
of MIMO imaging.
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Figure 3. Set-up for calculating the cross-correlation function. The
box represents an ionospheric feature with size L. The figure is
based on the assumptions at the end of Sect. 2 but is not to scale.

3 Baseline cross-correlation

In this section, we calculate the correlation between sig-
nals from two different baselines that are transmitter—receiver
pairs. The aim is to determine which baselines provide infor-
mation about the ionospheric features of a certain scale size
and to determine how the near-field geometry affects this cor-
relation.

We consider a case with one transmitter and two receivers
placed equidistant from the transmitter in every direction.
This configuration is shown in Fig. 3.

Let the transmitter be placed in the origin and the receivers
at | P1) and | P»). Let the transmitter transmit a signal of the
form Vo = Ke'®, where K is a time-independent constant,
w is the transmit frequency, and ¢ is time. The electrical po-
tential induced to the receiver antenna r then becomes the
following:

N
VI‘ — KZGefiw(Tin‘i’Tsrn)’ (14)

n=1

where T, = ||R;+r,)]|/c is the time delay from the transmit-
ter to scatterer n and Ty, = ||Rs — ry)|/c is the time delay
from scatterer n to receiver r. Here, | R;) is the vector from the
transmitter to the centre of the illuminated plasma volume,
|Rg) is the vector from the centre of the plasma volume to
receiver 1, and |r,) is the vector from the centre of the plasma
volume to scatterer n, like in Fig. 3. N is the number of scat-
terers in the scattering volume, and G € )i is the scattering
gain, which includes the free-space path loss. The gain may
be dependent on the position of the scatterer, the scatterer
itself, and on time, but we neglect these dependencies. We
also neglect that the distance to the scatterer varies between
the transmitter—receiver baselines. This has an order of mag-
nitude of &~ 10 m, which is lower than the best available range
resolution.
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The cross-correlation function for time lag T = 0 can then
be written as follows:

Ryv, (1,1 +0) = E[Vi V] (15)

o

—lw(Tm"rTsm) (16)

m)(T W o JS) i|

By taking the first-order Taylor approximation of the
= |0), we find that T, ~ Rit(Rilra)

time delays around |r,) c
and Ty, ~ w, where the hat denotes a unit vec-
tor. Carrying out this approximation is essentially the same
as assuming plane waves. When also keeping the second-
order terms, the near-field correction described by Wood-
man (1997) can be deduced. We note that —%(i{i — Rsl| =
—(ki| + (ks1| = (k1|, which is the Bragg scattering vector.
Equation 16 can then be written as follows:

N N
KRG (st a

n=1n'=1

E [eukl |rn>—i<kz\rn/>] )

We assume that the scatterer positions are independent, iden-
tical, and normally distributed with a mean |g) and covari-
ance L that is like a Gaussian blob, as follows:

Ry, v,(0) =

—(rn=plL = rn—p)
2

frm(ra)) = (18)
(27)3 |det(L))|

We use the definition of expectation and then solve the in-
tegral. Since the positions of the scatterers are assumed to
be independent, the expectation becomes zero when n # n’'.
In addition, in a first-order approximation, Ry — Ry =~ 0 be-
cause D < h. The result then becomes the following:

ki —ko|Llk{—kj)

. (
Ry,v,(0) = |[K|?G2Ne! ki—kalk) o= =—57—= (19)

The normalized cross-correlation function, in the following:

P12 = _ Rwve
vV RV] Vi RV2V2 ,
becomes the following:

(k1 —ky|L|ky—kp)

p12(0) = ¢! 17l =T (20)

We note that if the transmitter(s) and all receivers lie in a hor-
izontal plane, then the vertical components of the Bragg scat-
tering vectors are exactly equal and make the vertical compo-
nents of |p) and L, namely ., Ly;, Ly,, and L, arbitrary.
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This means that the horizontal resolution is independent of
the vertical resolution.

Equation 20 for (u|=1[0,0,0] and L = (L/2)’I is plot-
ted in Fig. 4, where L is the extent of the ionospheric fea-
ture in all dimensions, and I is the identity matrix. Figure 4
also shows the numerically simulated normalized correlation
based on a direct simulation of Eq. (16), which does not
significantly differ from the analytical expression. The plot
shows that, for a height of 10° m (100km) and a baseline
of 211 m, the correlation crosses 0.95 at a blob size of 70 m
and 0.5 at a blob size of 250 m. At 100 km height, the radar
beam of E3D is about 1800 m wide. This means that, when
considering a maximum baseline of 200 m and a ionospheric
feature that is larger than 250 x 250 m, the addition of longer
baselines contributes less in terms of recovering the image.
The E3D core has a maximum baseline of 75 m. We can sim-
plify these calculations by setting the magnitude of the de-
sired least cross-correlation to R, as follows:

R =p12l. 21

We assume that the scatterers have equal variance in the x
and y direction (Lyx =Ly, = (L /2)2) and that all directions
are uncorrelated (Lyy = Ly; = Ly; = 0). By using the geom-
etry as in Fig. 3, we obtain the following:

_4n?p? <L>2 )
,\Z(h2+%2) 2

By combining Egs. 20, 21, and 22, we obtain the follow-
ing:

R <L>2 472 D?
n = —\| = _—
2 Az(h2+—D2>

7

which can be rewritten to an expression for the feature size
L as follows:

L » D +hr% )1 ! (23)
= - — n —
D 4 R2

(ko —k1|L|ky — k1)

For short baselines or long distances D<h/5, the expression
can be simplified. Thus, we solve for the baseline D and ob-
tain the following:

Ah 1
D= 1 In vk (24)
The resulting expression shows how long the baseline can be
to still make a contribution to recovering the feature. Equa-
tion 24 is plotted in Fig. 5.

A longer baseline can contribute to recover smaller fea-
tures, but the improvement will decrease the longer the base-
line is. For example, if we want to resolve a feature with a
size of 100 m, baselines up to 200 m have large contribu-
tions to the imaging. Adding longer baselines will improve
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Cross-correlation between baselines. (Range 100 km)
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Figure 4. Cross-correlation between the signals in EISCAT 3D re-
ceivers displaced by distance d. The solid lines show the magni-
tude of the normalized cross-correlation function; see Eq. (20) with
L=(L/ 2)21. The dots show the numerical estimations of the cross-
correlation; see Eq. 16.

the resolving less and stop slightly above 1 km. This means
that the improvement of the imaging quality by including the
E3D outriggers will be large for the closest outriggers. The
signal received by furthest ones will correlate little with the
signal received by the core. From Fig. 5, we see that the cor-
relation in the longest E3D baseline of 1.2km is about 5 %.
This means that if one wants to use E3D to invest in iono-
spheric features with an extent of around 100 m at 100 km
range, there is no need to add longer baselines because the
furthest outriggers are far enough. Also, it could be possi-
ble to improve the imaging quality in this example by having
more baselines with lengths of around 100 m. This is one rea-
son to use the E3D core as multiple transmitters to add new
baselines.

When inserting R = 0.01, Eq. (24) shows that the diffrac-
tion limit is the same as for planar scatter under the assump-
tions mentioned in the deduction.

Baselines between the receiver sites in Skibotn, Karesu-
vanto, and Kaiseniemi are so long that they cannot be used
for imaging, as signals will not be correlated anymore. The
baseline cross-correlation calculations also do not claim that
the image is well recovered if the largest baseline is included.
This is more dependent on which baselines are used, how
they are distributed, and how the image is recovered.

4 Radar imaging model

We consider a radar that may have single or multiple in-
puts (transmitters), and multiple outputs (receivers; SIMO or
MIMO). The radar illuminates a plasma volume at range R
with thickness dr and inside of the one-way HPBW 6. We
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Figure 5. Largest baseline for recovering ionospheric features of a
certain size. Measurements in the area under the blue line have high
(> 95 %) correlation, while over the orange line the correlation is
lower than 5 %. Longer baselines cannot be used to resolve features
of this size.
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Figure 6. Example of multiple-input-multiple-output (MIMO)
radar and plasma volume in its line of sight.

imagine that the volume is divided into M parts or pixels
(see Fig. 6).

The signal transmitted from transmitter A and spread
by plasma element/pixel ¢ causes a voltage fluctuation in
the receivers. The voltage fluctuation of receiver D, due
to transmitter A and plasma pixel g, is denoted as VZD =
F VAeZ” if TZD, where Vj is the amplitude of the signal sent
by transmitter A, F is a function of the received signal am-
plitude, f is the radar-transmitting frequency, and TKD is the
time delay of the signal due to travelling from transmitter
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A, via pixel g, to receiver D (see Fig. 6). The correlation
between the signals from two different baselines, AD and
HB, due to an infinitesimal scattering volume dV, can be de-
scribed as follows:

_ PGUr)Gr)22opne(in) omis (1)

—T"’)
s ) gy, 25
@) R2(Ir)R2(r)) ()

dpaDHB

where Py is transmit power, G is transmit gain, G is receiver
gain, X is the radar wavelength, oy, is the scattering cross sec-
tion for a single electron given by Eq. (9), n. is the electron
density, R; is the distance from transmitter to the scattering
volume, R; is the distance from the scattering volume to the
receiver, and |r) is the position of the scattering volume. We
integrate over the whole scattering volume to determine the
whole measurement. At a certain time lag, we obtain the cor-
relation for the range of interest. We assume that the gains
are constant inside of the radar beam and zero otherwise and
neglect the dependency of R; and R, on the exact position of
the scattering volume. The correlation can then be written as
follows:

P.GG Ao, 2mif (TV0 -1
PADHB = m/"eﬂr»@ ( >dV- (26)
Vv

We assume that the electron density (or brightness) distribu-
tion can be written as a sum of its discretized parts with con-
stant electron density. We neglect variations in the phase shift
inside of one part. The integral can then be replaced with a
sum as follows:

P.GGA 20, (2R n? 2 o
= r an —
PADHB (4n)3Rt2Rr2 3

XQ: ne_[q]gsz(TZD_TgB)_
g=1 0

The first factor here is constant and can be normalized
away. The number of discretizations Q is still needed in the
simulations if the original image has a resolution other than
the reconstructions. The series of measurements can be writ-
ten on a matrix form, as follows:

m) = A|x) + |&). (28)

Here, |x) = [ne[l],ne[Z],...,ne[Q]]T becomes the follow-
ing:

: Q Q )
e2mf(TAA—TAA) esz<TAA TxA

A= : - : ,
. ir(7Q _ 10
esz(TxéK*TKlK) ezﬂl-f (TKK TKK)
and is the theory matrix, and le) =
[EAAAA. EAAAB. ---» €Kkkk]? is the complex normally

distributed noise vector.
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Sometimes it is more convenient to have the cross-
correlations in a matrix form. The measurements can be
transferred from the one form to the other simply through
reshaping the vector |m) to a matrix M, or the opposite, as
follows:

PAAAA PAAAB PAAKK
PABAA PABAB °° PABKK

M= ) ) ) ) . (29)
PKKAA PKKAB PKKKK

To obtain an estimate of the intensities of the plasma in the
image, Eq. (28) has to be inverted so that, in the following:

|X) = Blm), (30)

where B is a matrix that reconstructs the image |x) from the
measurements |m). When inserting Eq. (28) into Eq. (30) and
neglecting noise, we obtain |X) = B A |x). We would like the
reconstructed image to be as close to reality as possible, and
so, taking B = A~! would give a perfect solution. However,
since we have an underdetermined problem, A cannot be di-
rectly invertible. Other attempts are therefore needed.

4.1 Matched filter

When the scatterers are behind the Fraunhofer limit in the
far field, Eq. (28) represents a Fourier transform. One ap-
proach to reinstating the original image would be the inverse
Fourier transform, which can be represented as the Hermitian
conjugate of the theory matrix, B = A like a matched filter
(MF). Unfortunately, the samples of the Fourier-transformed
image that are the visibilities are sparsely and incomplete
scattered, and the problem becomes underdetermined (Hysell
and Chau, 2012; Harding and Milla, 2013). The approach can
be interpreted as steering the beam after the statistical aver-
aging and is therefore also called beam forming.

4.2 Capon method

Another approach is the Capon method (Palmer et al., 1998).
The purpose of this method is to minimize the intensities in
all directions other than the direction of interest, i.e. to min-
imize the side lobes of the antenna array in directions with
interfering sources. The result is to invert the matrix of cor-
relation measurements M (Palmer et al., 1998). In order to
continue using the notation in this article, M-1lis reshaped
back to a vector |m~!). The estimated intensities from the
Capon method can then be written as follows:

1

|-£capon> = m, 3D

where the fraction denotes element-wise division.
4.3 Singular value decomposition

The problem in Eq. (28) is overdetermined if the number of
unknowns, i.e. the number of discretizations, is less than the
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number of measurements. This can be the case if we solve for
an imaging resolution that is low enough. We can then use the
method of least squares to solve it, obtaining the following:

IfLs) = (AH A)_IAH|m).

One can also use the singular value decomposition (SVD) on
the theory matrix, A = USVH, where S is a diagonal ma-
trix containing the singular values that are square roots of the
eigenvalues of A” A, V contains the normalized eigenvec-
tors of Af A, and U contains the normalized eigenvectors of
A AM  The inversion matrix B can then be written as follows:

B=VS'U”, (32)

which, as can be shown, still gives the same solution as or-
dinary least squares but with increased numerical accuracy
(Aster et al., 2013). Because of the inversion of the singular
values, the eigenvectors corresponding to the smallest values
contribute the most to the variance of the solution and make
the solution sensitive to noise. Also, the problem can be rank
deficient, i.e. that several columns in the theory matrix are
nearly linear dependent on each other. The problem is then
said to be ill-conditioned or multicollinear.

In such cases, some singular values will be practically
zero, and the solution may be hidden in the noise. To prevent
the noise sensitivity, the solutions can be regularized. This
makes the reconstruction biased towards smoothness and
zero but less noisy (Aster et al., 2013). We here consider two
regularization techniques, namely truncated SVD (TSVD)
and Tikhonov regularization. In TSVD, the inverse of the sin-
gular values below some limit is set to zero. The eigenvec-
tors corresponding to the smallest singular values will then
not contribute to the result. These eigenvectors often contain
high-frequency components. Ignoring them makes the solu-
tion smoother. Tikhonov regularization or ridge regression
can be done in several ways. In this article, we use zeroth-
order Tikhonov regularization, where the singular values s;
are inverted with the following:

i

—_— 33
pep (33)

where « is a regularization parameter. By using SVD, we
also can obtain the variance |X;) of the estimates. For pure

least squares, it is diag <(AH A) ! ) , and for regularized least
squares it is as follows:

|2;) = diag(BBH). (34)
44 CLEAN

The CLEAN algorithm is another attempt at reducing side
lobes. It is based on the matched-filter approach but itera-
tively finds the real structure in the field of view (Hogbom,
1974). It supposes a source where the image reconstructed
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by the matched filter is brightest. The source is added to an
image that only contains the suspected sources, which will
be the reconstructed image. Then, the measurements that the
radar would have measured if the reconstructed image were
the true image are subtracted from the real measurements,
and the next suspected source is found. This procedure is
repeated until there are no clear sources left in the measure-
ments (Hogbom, 1974). The method is a special case of com-
pressed sensing and requires an assumption on how the mea-
sured sources appear (Harding and Milla, 2013). For sparse
sources, a Dirac delta function could be appropriate but may
lead to sparse solutions.

4.5 Performance of the radar layouts

We considered different radar layouts. The layouts, together
with plots of the visibilities and the point spread function, are
shown in Fig. 7.

When considering a layout with multiple transmitters and
multiple receivers (MIMO), it is assumed that the signals
from different transmitters can be distinguished. This in-
creases the number of virtual receivers and thereby the vis-
ibilities become more widespread and denser (see Fig. 7).
However, using multiple transmitters increases the integra-
tion time, as described in Sect. 2. We note that when receiv-
ing with the outriggers, the main beam becomes narrower.
Also, there are gaps in the visibilities. This is due to the
sparse locations of the outriggers and makes the point spread
function look more irregular (cf. Fig. 7c and f). With multi-
ple transmitters, the main beam becomes even narrower (cf.
Fig. 7c and 1). When both using multiple transmitters and
receiving outriggers, the gaps in the visibility domain are
partially filled, and the side lobes are clearly reduced. The
MIMO layout used here could possibly be improved by us-
ing positions of the transmitters so that gaps in the visibility
are filled more.

4.6 Performance of the imaging techniques

We simulate E3D measurements using Eq. (28) with the pre-
sented antenna configurations. For the original image, we use
part of Fig. 1. A section of 97 x 97 pixels was cut out of the
figure, and the greyscale values were scaled to the range be-
tween 0 and 1. From the measurements, we reconstructed the
images with the matched filter (MF), Capon, truncated sin-
gular value decomposition (TSVD) and CLEAN techniques.
For TSVD, the singular values below 0.02 of the maximum
singular value were truncated. This value gives a good com-
promise of the resolution and low noise level (regulariza-
tion). For CLEAN, we used a gain of 1 and a threshold of
1.36 times the average value. We tried both Dirac delta and
Gaussian functions in the CLEAN kernel. In Capon filter-
ing, it so happens that the correlation measurement matrix
M is singular. In such cases, TSVD is used to invert the ma-
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Figure 7. E3D transmitter—receiver layouts considered. Panels (a), (d), (g), and (j) show the layouts, panels (b), (e), (h), and (k) show the
visibilities, and panels (c¢), (f), (i), and (1) show the point spread function in the near field at 100 km range. The point spread function was
calculated by reconstructing a 1 x 1 one-valued central pixel in a 129 x 129 zero-valued pixel image with a matched filter. Panel (a—c) uses
the whole core array as a single transmitter and receives with each of the 109 antenna groups in the core array. Panel (d-f) also includes
the interferometric outriggers. In panel (g—i) only the core is used, but it is divided into three transmitters. Finally, panel (j-1) uses both the
outriggers and multiple transmitters.

trix. This truncation ignores singular values that are less than tion of a single resolution but varies between reconstruction

0.03 % of the largest singular value. in different resolutions. The results for the SIMO layout is
Noise is added to all cross-correlations, which corresponds shown in Fig. 8.

to white complex Gaussian noise with a zero mean and 5 % Of the reconstruction techniques, TSVD clearly gives the

SD in each receiver. The noise is equal for every reconstruc- best results. It is also the only method that fairly reproduces

Ann. Geophys., 39, 119-134, 2021 https://doi.org/10.5194/angeo-39-119-2021



J. Stamm et al.: Radar imaging with EISCAT 3D

(@) Original image (b}
0.99 099
04 0.88 0.4 1 0.88
077 077
02 0.2 4
0.66 066
& S
= 055 g 5 055 o
= 00 S3 oof 2
g 044> g D44 =
02 0.33 02 033
0.22 022
04 011 04 011
0.00 ‘ T T T T 0.00
-04  -02 00 -04  -02 0o 02 04
E/W Angle [ ] E/W Angle[©]
(c) TSVD Capon
0.99 099
04 0.88 0.88
077 077
02
0.66 066
I I
T o0 cr.ssE 7 cr.ssE
o - = m
Z 044* Z 044 =
2 0.33 2 033
-02
0.22 022
04 0.11 011
0.00 T T T T T 0.00
-04  -02 00 -04  -02 0o 02 04
EfW Angle [ °] E/W Angle[ ]

129

Figure 8. Comparison of reconstructions. All antennas are transmitting together, like one transmitter, but receiving separately. The intensities
are normalized to be between 0 and 1. Panel (a) shows the true image. The others show the reconstructed image, namely the matched filter

(b), TSVD (c), and Capon (d). For TSVD, the singular values below 0.02 of the maximum singular value were ignored.
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Figure 9. Comparison of reconstructions, using SVD for the SIMO case only, using the core antennas. Panel (a) shows the true image. Panel
(f) shows the inverse of the singular values of the theory matrix. The other figures show reconstructions with different weightings of the
singular values. Panel (b) has no weighting and corresponds to the ordinary least squares method. In panel (c), the singular values below
2 % of the largest singular value are ignored/truncated away. In panels (d) and (e), the inverse of the low singular values are damped, like in
Eq. (33), with regularizing parameters « of 10 and 100, respectively. The reconstructions consider an image resolution of 20 x 20 pixels, at
100 km altitude, where one pixel corresponds to 100 x 100 m. White spaces in the colour plots correspond to negative values.
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the shape of the true image. Capon also partly reproduces the
shape but far worse than TSVD. The matched filter appar-
ently only reproduces something similar to the point spread
function. The performance of CLEAN (not shown here) is
accordingly poor. In terms of calculation time, CLEAN is
the slowest algorithm followed by TSVD. MF and Capon
are relatively fast. These differences become stronger when
also considering MIMO. Most of the computation time of
TSVD is used to invert the theory matrix. Since the theory
matrix only varies from experiment to experiment, it must
only be inverted once and can be saved afterwards. The com-
putation time, therefore, is reduced to a simple matrix mul-
tiplication, and it is not considered as a problem for the real
radar. We therefore concentrate on images reconstructed with
techniques using SVD. Here, we compared ordinary least
squares, TSVD with truncating singular values under 2 %,
like before, and Tikhonov regularization with the regulariz-
ing parameter « = 10 and 100. These results are shown in
Figs. 9 to 12 for the four layouts, shown in Fig. 7a, d, g and j,
which are SIMO without and with outriggers and one MIMO
case without and with outriggers, respectively.

For all layouts, at a considered resolution of 20 x 20 pix-
els in the radar main beam (here, 1 pixel ~ 100 x 100 m),
the image reconstruction with the method of least squares is
very noisy. The singular values of A vary over several orders
of magnitude, which is a sign that columns in A are linearly
dependent on each other. The regularized solutions look con-
siderably better, with a regularization parameter of 10, and
the recovered images are still a bit noisy but with stronger
regularization as the images become smoother and closer to
the original.

When comparing the strongly regularized images (panels
c and e in Figs. 9-12), we see that, when including the out-
riggers, the images contain stripes. This is probably because
the visibility in some regions has gaps (see Fig. 7). When
only considering the core array, there are no gaps other than
the spacing between antennas. The recovered images without
the outriggers look smoother than those including the outrig-
gers, but when including the outriggers, more details of the
original image can be seen. Also, in the MIMO case with
outriggers, the feature in the southeast can be seen in the re-
construction. For the other layouts, it is less visible and not
clearly distinguishable from the main feature in the north.

The uncertainty of the reconstruction itself is given by
the variance of the recovered image; see Eq (34). The mean
SD for the different layouts and reconstruction techniques
is shown in Fig. 13. The plots of the least square variance
are comparable to the variance plots in Lehtinen (2014). We
note that, while Lehtinen (2014) investigates far-field imag-
ing, Fig. 13 shows near-field imaging.

By using the SD, we neglect errors introduced by the dis-
cretization because they are not included in the variance.
This assumption is true if the true image has the same res-
olution as the reconstruction, but that is only for the case of
what Kaipio and Somersalo (2010) call an “inverse crime”.
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In reality, the target of E3D, the electron fluctuations in the
ionosphere, is not discrete with steps of several metres. Also,
by regularization, bias is introduced to the solution, which
the variance does not take into account. Therefore, we also
used the similarity with the true image for uncertainty esti-
mation. As a measure, we used the mean square deviation,

~ 2
s = ZlN: 1 w, so that a low value of s means great sim-
ilarity. Because the original image and the reconstruction
have different resolutions, the smallest is scaled up. The scal-
ing was done by Lanczos resampling with a cos” kernel. A
drawback with the mean square error (MSE) is that it could
be influenced by the target, while the variance is not. The
mean SD and the similarity to the original image are shown
in Fig. 13 for all layouts considered here and reconstruction
resolutions up to 100 x 100 pixels.

The variance of the recovered image is strongly increasing
with the resolution we assume/would want the radar target
to have. Image recovering with LS gives the highest variance
for all layouts. The reason is the multicollinearity in the the-
ory matrix, which amplifies the noise in the recovered image.
At small resolutions, the variances are equal for the different
reconstruction techniques but diverge when the regulariza-
tion starts to influence the results. This divergence happens
later, when including the outrigger antennas, and later still,
when using MIMO rather than SIMO. For high resolutions,
the variance of the TSVD solution is the lowest. However,
since bias is introduced by regularizing the solution, this does
not necessarily mean that the TSVD solution is the best.

The mean square error (MSE) of the recovered images is,
in general, higher than their mean variance. For small resolu-
tions, it decreases with increasing resolution until it reaches
a bottom point. The error then increases again. For LS and
Tikhonov with o = 10, the minimum is at 10-20 pixels per
direction. When including the outriggers, the minimum is at
a later stage. Also, the error is lower. We also note the dip
of the error at 97 x 97 pixels. This is exactly where the res-
olution of the recovered image matches the resolution of the
original image, so these dips are the effect of inverse crimes
and, therefore, not transferable to the real radar. For high res-
olutions, the MSE is higher for MIMO than for SIMO when
using Tikhonov. This could indicate that, for MIMO, more
regularization is required.

The original image contains values between 0 and 1 m~3,
with a mean of about 0.5 m~3. In reality, the values will be far
higher, and the uncertainty will increase accordingly. There-
fore, the SD and the MSE are plotted relative to the mean
value of the original image. In order to have a good recovery,
the relative mean error should be below 1 and, if possible,
far below that. All regularized solutions would fulfil this cri-
terion, but the two strongest regularizations clearly have the
lowest MSE. The minimum of MSE seems to be somewhere
between 60 x 60 pixels for MIMO and 90 x 90 pixels for
SIMO. In practice, the image reconstructions for higher reso-
lutions look very similar to low resolution (20 x 20), without
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Figure 11. Comparison of reconstructions, using SVD for the MIMO case only, using the core antennas. The plots correspond to Fig. 9.

adding more details but with a better quality reconstructed
image.

In the MSE plots, the curves flatten out to a minimum rel-
ative MSE at about 10 %. At 100km range, 20 x 20 pixels
correspond to a resolution of around 90 x 90 m. The TSVD
indicates that the recovered image with MIMO could be im-
proved with stronger Tikhonov regularization, but this has
not been investigated.

The MSE of TSVD does not decrease significantly from
SIMO to MIMO. Therefore, it seems that there is little gain
in using the MIMO layouts considered here, as compared to

https://doi.org/10.5194/angeo-39-119-2021

SIMO. However, the feature in the southeastern part of the
image in Figs. 10 and 12 becomes clearer with MIMO. For
other targets, these results may look different. When com-
paring the point spread functions in Fig. 7, it could be that
the MIMO configuration is better for point-like targets, like
space debris or meteors, but this is beyond the scope of this
article.

In this article, the MIMO approach to ISR and E3D has
only been treated superficially. There are still some questions
that must be answered. To distinguish between the transmit-
ters, we assumed code diversity. However, there is a need to

Ann. Geophys., 39, 119-134, 2021
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Figure 12. Comparison of reconstructions, using SVD for the MIMO case, including the outriggers. The plots correspond to Fig. 9.

study how well the signals can be distinguished. This can
influence the possible number of transmitters. The placing
of the transmitters was not investigated here; the example in
this article is a simple proposal. At the same time, the trans-
mitter locations can have a great influence on the visibility
coverage. Also, the SNR and integration time calculations
for MIMO would need to be investigated more thoroughly.

5 Conclusions

In this article, we have studied the temporal and spatial res-
olution of the upcoming E3D radar in the case of aperture
synthesis radar imaging, primarily focusing on the feasibility
of imaging the incoherent scatter radar return from the E re-
gion. The most up-to-date radar design specifications at the
time of writing this article was used as a basis of this study.

We find that the range and time resolutions are dependent
on each other. When keeping the uncertainty level constant, a
better range resolution goes on the cost of the time resolution.
With an increase in the electron density, the resolution in time
and/or range can be improved without increasing the noise
level. Under normal conditions in the E layer (7 ~ 400K,
T; =~ 300K, ne ~ 10!t m~3), with a desired integration time
of 10, the achievable range resolution is slightly more above
1500 m.

The horizontal (imaging) resolution depends on the radar
layout and the imaging technique. The imaging techniques
that were evaluated were matched filter, least squares (using
singular value decomposition without and with regulariza-
tion), Capon, and CLEAN. Of these techniques, only regu-
larized least squares gave satisfactory results. The two regu-
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larization techniques of either truncating or damping of the
inverse singular values both worked and gave similar results.

These image reconstructions can be reduced to a simple
matrix multiplication by saving the inverted theory matrix.
Regularized SVD is therefore among the fastest reconstruc-
tion techniques amongst the ones evaluated. With Tikhonov
regularization with a damping coefficient of 100, or truncat-
ing away singular values below 2 % of the largest value, the
relative error of the recovered image can go down to 10 %.
The resolution of the recovered image is about 60 x 60 pixels;
at a 100 km range this corresponds to 30 x 30 m, but features
smaller than 90 x 90 m will be blurred out.

The simulation results show that using the outriggers in-
creases the imaging accuracy. Dividing the core array into
multiple transmitters to obtain a MIMO system seems to in-
crease the imaging resolution if the target is smooth. MIMO
also has the drawback that it needs stronger signals or more
integration time to keep the same measurement accuracy as
SIMO. However, this needs further investigation as MIMO
may be useful for very bright targets, such as PMSE, and
point-like targets, like space debris or meteors, but the latter
needs further investigation.

We conclude that radar imaging with EISCAT 3D is feasi-
ble.
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Figure 13. Comparison of regularization techniques. Mean SD of the result is shown in panels (a) and (c). Panels (b) and (d) show the
similarities between the recovered image and the true image. Both are shown relative to the mean intensity of the original image. Panels (a)
and (b) show the relative SD and the similarity for the SIMO cases and the lower plots for the MIMO cases. The solid lines show recoveries
when only using the core array, and the results with dashed lines include the outriggers. The line colour shows the type of regularization; blue
is not regularized (ordinary least squares), orange is TSVD (including only singular values higher than 2 % of the greatest singular value),
and green and red lines are Tikhonov damped singular values with @ = 10 and 100, respectively.
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