

Supplement of

Forcing mechanisms of the migrating quarterdiurnal tide

Christoph Geißler et al.

Correspondence to: Christoph Geißler (christoph.geissler@uni-leipzig.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. Zonal mean QDT amplitudes (colors) for the NO_NLIN run with no nonlinear forcing mechanism enabled. (a,c) temperature, (b,d) zonal wind. (a,b) February conditions. (c,d) October conditions. Standard deviations σ are added as gray contour lines.

Figure S2. Zonal mean QDT phases for the NO_NLIN run with no nonlinear forcing mechanism enabled. (a,c) temperature, (b,d) zonal wind. (a,b) February conditions. (c,d) October conditions.

Figure S3. Zonal mean QDT amplitudes (colors) for the NO_GW run with no nonlinear forcing mechanism enabled. (a,c) temperature, (b,d) zonal wind. (a,b) February conditions. (c,d) October conditions. Standard deviations σ are added as gray contour lines.

Figure S4. Zonal mean QDT phases for the NO_GW run with no nonlinear forcing mechanism enabled. (a,c) temperature, (b,d) zonal wind. (a,b) February conditions. (c,d) October conditions.

Figure S5. Zonal mean temperature amplitudes (colors) for the diurnal tide (a-d) and semidiurnal tide (e-h) for February and October. Left from MUAM REF ensemble simulation and right from Global Scale Wave Model (GSWM). Standard deviations σ are added as gray contour lines for the MUAM simulation.