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Abstract. In this work, a period of 2 years (2016–2017)
of ionospheric total electron content (ITEC) from ionoson-
des operating in Brazil is compared to the International
GNSS (Global Navigation Satellite System) Service (IGS)
vertical total electron content (vTEC) data. Sounding in-
struments from the National Institute for Space Research
(INPE) provided the ionograms used, which were filtered
based on confidence score (CS) and C-Level flag evaluation.
Differences between vTEC from IGS maps and ionosonde
TEC were accumulated in terms of root mean squared er-
ror (RMSE). As expected, we noticed that the ITEC values
provided by ionosondes are systematically underestimated,
which is attributed to a limitation in the electron density
modeling for the ionogram topside that considers a fixed
scale height, which makes density values decay too rapidly
above ∼ 800 km, while IGS takes in account electron den-
sity from GNSS stations up to the satellite network orbits.
The topside density profiles covering the plasmasphere were
re-modeled using two different approaches: an optimization
of the adapted α-Chapman exponential decay that includes a
transition function between the F2 layer and plasmasphere
and a corrected version of the NeQuick topside formula-
tion. The electron density integration height was extended
to 20 000 km to compute TEC. Chapman parameters for the
F2 layer were extracted from each ionogram, and the plas-
maspheric scale height was set to 10 000 km. A criterion to
optimize the proportionality coefficient used to calculate the
plasmaspheric basis density was introduced in this work. The
NeQuick variable scale height was calculated using empirical

parameters determined with data from Swarm satellites. The
mean RMSE for the whole period using adapted α-Chapman
optimization reached a minimum of 5.32 TECU, that is, 23 %
lower than initial ITEC errors, while for the NeQuick topside
formulation the error was reduced by 27 %.

1 Introduction

The understanding of ionospheric behavior provides impor-
tant information about the space weather. In addition, the
electron content affects group and phase delays of radio
waves passing through the ionosphere and impacts, among
others, the Global Navigation Satellite System (GNSS). Dif-
ferent instruments are capable of evaluating electron density
in the ionosphere, and validations among different sources
of data can lead to interesting conclusions. While ionosonde
instruments provide “ground truth” measures for the bottom
side of the ionospheric profile and estimate the topside using
an exponential decay function, ground GNSS stations receiv-
ing radio signals from orbiting satellites can provide large-
scale details of the entire ionosphere structure and even plas-
masphere (Huang and Reinisch, 2001; Reinisch and Huang,
2001; Jakowski, 2005; Reinisch and Galkin, 2011; Jin and
Jin, 2011). The analysis proposed in this work is based on
comparisons between total electron content (TEC) estimated
using density profiles derived from ionograms and vertical
total electron content (vTEC) from the International GNSS
Service (IGS). While the IGS has its own intrinsic quality
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control through a ranking system (Hernández-Pajares et al.,
2009), ionosonde data are evaluated by its auto-scaling sys-
tem, and quality scores are assigned to each ionogram. The
study was performed in the Brazilian region for a 2-year pe-
riod (2016–2017), where ionosonde data from National In-
stitute for Space Research (INPE) were available. Indeed,
the plasmaspheric electron density has been considered us-
ing two different models: an adapted α-Chapman function
(Jakowski, 2005) with a simple optimization and a corrected
version of the NeQuick topside formulation (Pezzopane and
Pignalberi, 2019).

1.1 IGS vTEC maps

IGS vTEC maps are considered to be a reliable ionospheric
information product, which was achieved from integrat-
ing scientific community efforts (Hernández-Pajares et al.,
2009). Such maps are generated by a combination of data
from different research institutions within a method that is
based on ranking different vTEC maps to compose the final
product (Hernández-Pajares et al., 2009). The process begins
with raw data from the GNSS ground network being acquired
and sent to Ionospheric Associate Analysis Centers (IAACs)
so the vTEC maps can be generated using the IONosphere
map EXchange (IONEX) format (Schaer et al., 1998). To
achieve a high level of quality, these vTEC maps are eval-
uated, and its ability to reproduce corresponding slant TEC
(STEC) maps is checked. Next, a combination process takes
place using a weighted mean of the available vTEC maps.
The final step before making the maps available for access on
the IGS server is a validation process. It compares the vTEC
maps to an independent source: dual-frequency altimeters
onboard the TOPEX, JASON, and ENVISAT satellites.

1.2 Ionosonde data

An ionosonde measures the returning echoes of pulse signals
at a fixed location to estimate ionospheric characteristics, and
the ionogram trace can be processed to result in a vertical
electron density profile. The bottom side profile starts with
measures at ∼ 90 km up to the peak of the F2 layer (foF2),
around 350 km. The ionosphere topside profile, instead, is
modeled using an exponential decay function. The integra-
tion of electron density in height produces an estimate for
the TEC value.

Ionograms can be interpreted either manually by experts
or automatically using software. The auto-scaling ionosonde
data availability, rather than manual scaling, contributes to
meeting practical applications (Jiang et al., 2015). Different
systems were created and concentrated efforts have been ap-
plied to improve auto-scaling (Reinisch and Xueqin, 1983;
Scotto and Pezzopane, 2002, 2007; Reinisch et al., 2005).
Also, a standard archiving output (SAO) format was cre-
ated by the initiative of the Ionospheric Informatics Work-
ing Group (IIWG) to store and disseminate auto-scaled data.

Table 1. Correspondent CS values for C-Level flag representation,
adapted from Galkin et al. (2013).

Confidence score C-Level

81. . . 100 11
61. . . 80 22
41. . . 60 33
21. . . 40 44
0. . . 20 55

Figure 1. Locations of available ionosonde data during 2016–2017.

Initially, SAO format considered only ionograms scaled by
an automatic real-time ionogram scaler with true height
(ARTIST); however, it evolved to hold scaled data from other
sounder systems (Galkin, 2006).

Ionogram quality

Several attempts had been made to verify ionogram auto-
scaling system quality (Reinisch et al., 2005; Enell et al.,
2016; Pezzopane et al., 2017). Early comparisons between
manual and automatic scaled ionospheric parameters re-
vealed limitations in ARTIST system performance due to
the absence of quality metrics (Gilbert and Smith, 1988).
Recent versions of the ARTIST system improved quality-
proof methods, enhancing their results (Bamford et al., 2008;
Galkin and Reinisch, 2008) and facing problems related to
auto-scaling (Pezzopane and Scotto, 2007; Stankov et al.,
2012).
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Figure 2. Distribution of C-Level flags for ionograms during 2016–
2017.

Table 2. Ionosonde locations and correspondent closest IGS grid
data location.

Ionosonde: lat, long Closest IGS data: lat, long

BVJ03: 2.8◦, −60.7◦ 2.5◦, −60.0◦

CAJ2M: −22.7◦, −45.0◦ −22.5◦, −45.0◦

CGK21: −20.5◦, −55.0◦ −20.0◦, −55.0◦

FZA0M: −3.9◦, −38.4◦ −5.0◦, −40.0◦

SAA0K: −2.6◦, −44.2◦ −2.5◦, −45.0◦

Ionosonde data scaled by ARTIST 5 have a quality metric
called the confidence score (CS). Such a metric is based on
quality criteria supported by concepts of ionogram interpre-
tation and algorithms that specify the uncertainty and con-
fidence of scaled results (Galkin et al., 2013). The CS met-
ric includes quality checking solutions introduced by con-
fidence calculation schemes developed since the late 1980s:
the auto-scaling confidence level (ACL) quality flag, the two-
digit confidence level (C-Level), and the QualScan quality
control (McNamara, 2006; Galkin et al., 2013). The estima-
tion of the confidence score occurs during ionogram process-
ing. Ionogram interpretation criteria consider not only analy-
sis of extracted trace shapes, but also ionospheric conditions
to compute per-point-error reduction. The CS starts with a
value of 100. If an interpretation criterion is found, its per-
point-error value is subtracted from the CS. To be considered
acceptable for further use, auto-scaling records need to reach
a CS above a predefined threshold value, which is generally
40 (Galkin et al., 2013).

The SAO format version 4 does not have the CS on its
specifications, but has the C-Level representation. The two
digits’ range goes from 11 (highest confidence) to 55 (low-
est confidence). The CS produced by ARTIST 5 can be con-
verted to C-Level representation using Table 1 (Galkin et al.,
2013).

Figure 3. The same as Fig. 2 but for each ionosonde station sepa-
rately.

Figure 4. Hourly distribution of C-Level flags.

2 Methodology

Ionosonde data were obtained from the INPE database using
files in SAO format (version 4) and scaled by the ARTIST
auto-scaling system (version 5). Data from up to five instru-
ments (see Fig. 1) were available at the same time for the pe-
riod considered (2016–2017). Although ionosondes can gen-
erate ionograms in less than 10 min intervals, a 1 h interval
between soundings was considered in this work, except for
the comparisons with IGS data. In that case, a 2 h interval is
used to match IGS data availability.

C-Level values were extracted from all ionograms, and de-
spite auto-scaled ionosonde data with a CS above 40 able to
be considered acceptable (Galkin et al., 2013), we chose to
use only those achieving a CS above 60, corresponding to
C-Levels 11 and 22. Figure 2 shows the total number of C-
Level flag occurrences for the available data. Figure 3 shows
the same distribution, however, considering each ionosonde
station separately. It can be seen from Figs. 2 and 3 that the
majority of C-Level flag occurrences are in classification lev-
els 11 or 22. Also, more than half of C-Level flags achieve a
CS above 80 (C-Level 11).
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Figure 5. vTEC and ITEC daily mean variation for the period under analysis considering the mean value for each C-Level flag classification.

Considering the daily variation in ionosphere electron den-
sity, it would be interesting to analyze also the ionosondes’
data quality variation within daytime hours taking into ac-
count all available data. In Fig. 4 the increase in the occur-
rence of C-Level 11 after sunset can be seen, while C-Level
22 decreases. The aggregation of C-Level flags 11 and 22
ionograms (used in this work) provides ionosonde data with
over 1000 samples even for the period with low occurrences
– see the red curve in Fig. 4.

TEC values from IGS maps and ionosondes were com-
pared at the same date or time using the closest geographic
correspondence as shown in Table 2, considering the IGS
data grid (5◦ in longitude per 2.5◦ in latitude, every 2 h). The
analysis is mainly based on the accumulation of TEC differ-
ences by applying the root mean squared error (RMSE) as
defined in Eq. (1) (Chai and Draxler, 2014):

RMSE=

√√√√1
n

n∑
i=1

e2
i , (1)

where errors ei are the differences (with i = 1,2, . . .,n) be-
tween TEC values from the IGS and ionosonde, and n is the
total number of values considered.

3 Experiments and results

Ionospheric total electron content (ITEC) daily variability
for each ionosonde C-Level flag is shown in Fig. 5, and for
each ionosonde station separately, considering only C-Level
flags 11 and 22, it is shown in Fig. 6. Since the daily mean
ITEC values from flags 11 and 22 follow the IGS vTEC data
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Figure 6. The same as Fig. 5 but considering only C-Level flags 11 and 22 and for each ionosonde station separately.

variation, they are coherent. On the other hand, it can be seen
that the vTEC values are consistently higher than ITEC for
the whole period and for every ionosonde. In Fig. 5, a noisy
and incoherent TEC variation for flags greater than 22 in both
vTEC and ITEC is noticeable. Obviously, since the results
for flags greater than 22 have low confidence, they may have
errors, but this reason can not be used to explain the noise in
vTEC values. The data representative of higher flags is low;
i.e., there is a reduced number of points and heterogeneous
distributions during daytime and nighttime. Such unbalanced
distribution can produce daily mean TEC representing only
daytime or nighttime that during consecutive days leads to
noisy curves.

In Fig. 6 we can observe that some ionosondes presented
a lack of data for a few days or even entire months. The sea-
sonal variation in ITEC was similar for all stations. During
the autumn and winter seasons in the Southern Hemisphere

we can notice a decrease in ITEC values for both years eval-
uated.

All the panels in Fig. 7 present daily mean values, consid-
ering the density profiles of all ionosondes. In panel (a) the
RMSE when comparing ITEC and IGS vTEC is shown. The
seasonal variability in TEC differences seems highly corre-
lated with the ionization distribution along the analyzed pe-
riod. Figure 7b shows the peak of plasma frequency (foF2),
and we can observe the periods of high foF2 values corre-
sponding to high RMSE. The maximum altitude used for
electron density integration in ionosondes (Fig. 7c) does
not change significantly, rarely reaching 900 km. Figure 7d
shows the plasma frequency at the maximum altitude of the
density profile, which indicates the level from where it is
necessary to extend the ionosphere structure evaluation to
higher altitudes. Considering the fixed scale height used in
digisonde topside profile modeling, such a contribution has

www.ann-geophys.net/38/347/2020/ Ann. Geophys., 38, 347–357, 2020
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Figure 7. Daily mean, considering all ionosondes: (a) ITEC and IGS vTEC differences in terms of RMSE; (b) F2 layer critical frequency;
(c) maximum altitude of density profile; and (d) plasma frequency at maximum altitude.

not been included in the ITEC calculation, since values of
electron density decay too rapidly above ∼ 800 km, and the
simple extension of maximum integration altitude is insuffi-
cient for proper comparisons to IGS vTEC. This is the main
reason why the ITEC values from ionosondes are underesti-
mated when compared to IGS values. It is well known that
vTEC values from the IGS data represent the integrated elec-
tron density along the signal path between the receiver and
the satellite altitude (∼ 20 000 km). Thus, this analysis is in
agreement with what is shown in Figs. 5 and 6.

Different analytical functions have been used to model
the topside ionospheric density profile (e.g., exponential,
Epstein, Chapman) (Nsumei et al., 2012; Pignalberi et al.,
2018a; Reinisch et al., 2007). These functions and their
variations may adopt fixed or variable scale height. In this

Figure 8. Variation of total RMSE with plasmaspheric basis density
proportionality coefficient.
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Figure 9. Daily mean, considering all ionosondes, of ITEC (blue), IGS vTEC (red), and density profile integration up to 20 000 km with
topside reconstruction using adapted α-Chapman (orange) and NeQuick formulation (green).

work, the ionogram topside profiles were re-modeled us-
ing two different approaches that consider fixed and vari-
able scale heights: an adapted α-Chapman exponential decay
(Jakowski, 2005) that includes an optimized transition func-
tion between the F2 layer and plasmasphere and the NeQuick
topside formulation with modeled scale height as a function
of a corrected version of the empirical parameter H0 (Pez-
zopane and Pignalberi, 2019).

3.1 Adapted α-Chapman

The adapted α-Chapman introduced by Jakowski (2005) de-
fines the topside profile NT as

NT(h)= NmF2 · exp
(

1
2
(1− z− e−z)

)
+NP0 · exp

(
−h

Hp

)
,

where z=
h− hmF2
HT

. (2)

The ionograms provided F2 scale height HT , the elec-
tron peak density NmF2 that can be derived from measured
critical frequency foF2 using NmF2= (1/80.6) ·(foF2)2, and
peak height hmF2. According to Jakowski (2005), the plas-

maspheric scale height Hp can be defined as 10 000 km and
the plasmaspheric basis density NP 0 is assumed to be pro-
portional to NmF2, i.e., NP0 =K ·NmF2. Using the topside
reconstruction of the density profile shown above, the maxi-
mum integration height used to estimate ionosonde TEC val-
ues was defined as 20 000 km, corresponding to an approxi-
mation for the satellite orbit.

In this work, different values for the proportionality coeffi-
cient K are examined, and the optimal factor that minimizes
the global RMSE is used. Figure 8 shows the ionosonde TEC
differences to IGS vTEC in terms of the mean RMSE in the
whole period, considering all ionosondes. When K is set to
zero, Eq. (2) is reduced to regular α-Chapman decay, and the
plasmaspheric slowly decaying exponential term is ignored.
As K increases, the underestimated ionosonde TEC values
move closer to IGS, hence reducing RMSE. However, after
an optimalK , in this experiment equal to 1/175, the plasma-
spheric contribution is exceeded, increasing again RMSE.

www.ann-geophys.net/38/347/2020/ Ann. Geophys., 38, 347–357, 2020
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Figure 10. Daily mean RMSE variation, considering all ionosondes, for ITEC (blue circle), adapted α-Chapman (orange triangle), and
NeQuick topside formulation (green cross).

3.2 NeQuick topside formulation

The NeQuick topside analytical formulation (Nava et al.,
2008; Pezzopane and Pignalberi, 2019) is based on a semi-
Epstein layer describing the topside electron density profile
NT as

NT(h)= 4 ·NmF2 ·
exp(z)

(1+ exp(z))2
,

where z=
h− hmF2
HT

, (3)

In this approach, the modeled scale height HT is depen-
dent on height h, hmF2, and also on the empirical parameter
H0:

HT (h)=H0 ·

[
1+

100 · 0.125 · (h− hmF2)
100 ·H0+ 0.125 · (h− hmF2)

]
. (4)

H0 can be calculated using NmF2, foF2, the propagation
factor (M(3000)F2), hmF2, and the smoothed sunspot num-
ber (R12) as presented by Nava et al. (2008). Pezzopane and
Pignalberi (2019) proposed a new formulation for H0 based

on electron density measurements made by the Swarm satel-
lite constellation. The formulation is

H0 =


H0,AC+ (H0,B−H0,AC) ·

h−hmF2
600 ,

for hmF2≤ h < hmF2+ 600,
H0,B,

for h≥ hmF2+ 600,

(5)

where two 2-D grids provide the values of H0,AC and H0,B
as a function of foF2 and hmF2. Specifically, the grids have
been calculated as the median values obtained by using the
NeQuick topside formulation, IRI UP modeled values (Pig-
nalberi et al., 2018b, c), Swarm A and C (for H0,AC), or
Swarm B (for H0,B) electron density measurements (Pez-
zopane and Pignalberi, 2019). In our experiments, hmF2
and foF2 were obtained from the post-processed ionograms
and H0,AC and H0,B grids were generously provided by
Michael Pezzopane and Alessio Pignalberi from the Istituto
Nazionale di Geofisica e Vulcanologia, Italy.
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3.3 Comparative evaluation

Figure 9 presents a comparison, considering all ionosondes,
among the daily mean ITEC (in blue), IGS vTEC (in red),
and density profile integration up to 20 000 km with topside
reconstruction using an adapted α-Chapman function (in or-
ange) and a NeQuick formulation (in green). The results are
for the years 2016 (top panel) and 2017 (bottom panel). All
calculated values follow the reference, i.e., the IGS vTEC
variations showing a semi-annual dependency with a mini-
mum in June solstice as well as the day-to-day variability.
Indeed, the TEC values obtained with the optimization of an
adapted α-Chapman are very similar to the ones from the
NeQuick topside procedure, and both are much closer to IGS
vTEC than ITEC values.

To identify the best methodology to estimate the plasmas-
pheric TEC, the daily mean RMSE variation shown in Fig. 10
can be assessed. The differences to IGS vTEC using adapted
α-Chapman (orange triangle) and NeQuick (green cross) ap-
proaches can be compared to the ITEC errors (blue circle)
as shown in Fig. 7a. In general, the RMSE values calculated
with adapted α-Chapman and NeQuick are similar. However,
the lowest RMSE values along the 2 years 2016 and 2017 be-
long to the NeQuick criterion, as shown in Fig. 10. In addi-
tion, the mean RMSE for the whole period, using adapted α-
Chapman reconstruction with the proportionality coefficient
optimization, has a minimum value of 5.32 TECU, while us-
ing NeQuick topside reconstruction the error is 5.05 TECU.

4 Conclusions

This paper presented a 2-year period validation of ionosonde
data, using IGS vTEC as a reference. Ionogram electron
density profiles were first selected based on the confidence
score and then integrated in height. As expected, ITEC val-
ues were systematically underestimated, which is consistent
with an ionospheric topside modeling limitation that uses
a fixed scale height, which almost neglects plasma above
∼ 800 km, while IGS data consider electron densities from
the GNSS stations up to the satellite. This claim was sup-
ported by the examination of Figs. 5, 6, and 7. The iono-
gram topside profiles were re-modeled using two different
approaches: optimization of an adapted α-Chapman expo-
nential decay and the NeQuick topside formulation, based on
a semi-Epstein layer with modeled scale height as a function
of a corrected version of the H0 empirical parameter. The
electron density integration height was extended to an ap-
proximation of satellite orbits. Hence, as expected, for both
topside reconstructions the plasmaspheric ionization contri-
bution brought ionosonde TEC values closer to IGS obser-
vations. In our experiments, the improvement was signifi-
cant for determining TEC using ionosonde data, as shown
in Figs. 9 and 10. Although both procedures for calculating
plasmaspheric TEC yield similar results, the NeQuick cri-

terion shows lower RMSE values, as we can clearly see in
Fig. 10.
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