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Abstract. The mirror mode evolving in collisionless mag-
netised high-temperature thermally anisotropic plasmas is
shown to develop an interesting macro-state. Starting as
a classical zero-frequency ion fluid instability it saturates
quasi-linearly at very low magnetic level, while forming
elongated magnetic bubbles which trap the electron compo-
nent to perform an adiabatic bounce motion along the mag-
netic field. Further evolution of the mirror mode towards a
stationary state is determined by the bouncing trapped elec-
trons which interact with the thermal level of ion sound
waves and generate attractive wake potentials which give rise
to the formation of electron pairs in the lowest-energy sin-
glet state of two combined electrons. Pairing preferentially
takes place near the bounce-mirror points where the pairs
become spatially locked with all their energy in the gyra-
tion. The resulting large anisotropy of pairs enters the mir-
ror growth rate in the quasi-linearly stable mirror mode. It
breaks the quasi-linear stability and causes further growth.
Pressure balance is either restored by dissipation of the pairs
and their anisotropy or inflow of plasma from the environ-
ment. In the first case new pairs will continuously form until
equilibrium is reached. In the final state the fraction of pairs
can be estimated. This process is open to experimental ver-
ification. To our knowledge it is the only process in which
high-temperature plasma pairing may occur and has an im-
portant observable macroscopic effect: breaking the quasi-
linear limit and, via pressure balance, generation of localised
diamagnetism.

1 Introduction

There seems to be nothing particularly interesting left about
a very low frequency effect in high-temperature magne-
tised plasma known as the mirror mode (see, for example,
Tsurutani et al., 2011, for a more recent observational re-
view). It was formally discovered some 60 years ago (Chan-
drasekhar, 1961; Hasegawa, 1975; Gary, 1993) as a theoret-
ical complement to the zero-frequency hose instability, two
purely growing linear instabilities in the presence of pressure
anisotropies. The hose instability excites propagating Alfvén
waves when the magnetically parallel temperature T‖ > T⊥
exceeds the perpendicular temperature, and the mirror mode
grows under the opposite condition T‖ < T⊥ so that the per-
pendicular temperature is higher than the parallel by a cer-
tain amount, passing a threshold. The mirror mode generates
magnetically elongated magnetic bottles in pressure balance,
thereby providing the plasma with a local texture. In the pres-
ence of weak plasma gradients, the mirror mode, formally,
assumes a small but finite real frequency (Hasegawa, 1969).
Various properties of the instability were added under differ-
ent plasma conditions and in different wavenumber ranges
like finite gyroradius effects (cf., for example, Pokhotelov et
al., 2005), dependencies on electron temperature and electron
anisotropies (cf., for example, Pokhotelov et al., 2003), and
dependencies on plasma convection. The instability saturates
quasi-linearly at a rather low level by exhausting the bulk
thermal anisotropy (cf., for example, Treumann and Baumjo-
hann, 1997; Noreen et al., 2017, for the quasilinear numer-
ics). Finally, the trapped particle components give rise to
the excitation of ion cyclotron and electron whistler waves,
if only a thermal anisotropy of resonant particles evolves
(Breuillard et al., 2018; Yao et al., 2019). Identification in
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real plasmas became possible when measuring the pressure
balance between external magnetic field and increased inter-
nal plasma pressure. In observations the two pressures in ion-
mirror modes are anti-correlated, a condition which generally
serves as the key identifier of mirror modes.

The disturbing barely understood point that remains is
how, in an ideally conducting plasma at high temperature,
the magnetic field can become expelled to a high degree
from the interior of the magnetic mirror bottle, an effect re-
sembling the Meissner effect in low-temperature supercon-
ductivity which, however, is forbidden in classical physics
as it requires the presence of quantum correlations known
to be restricted to very dense and low-temperature condi-
tions only. In superconductivity, the Meissner effect arises
from the electron–phonon interaction in the crystal lat-
tice when spin-compensated electron–Cooper pairs (Cooper,
1956) form, occupy the same quantum state and, though re-
maining fermions, together with the interacting phonons as-
sume bosonic properties.

These quasi-particles condensate in the lowest energy
level above Fermi energy and evolve into a Landau–Fermi
fluid (Landau, 1941; Ginzburg and Landau, 1950; Ginzburg,
1955), culminating in Bardeen–Cooper–Schrieffer (BCS)
theory (Bardeen et al., 1957). The condensate current be-
comes capable of generating up to ∼ 100 % bulk diamag-
netism, which is rather different from pressure balance which
in BCS is warranted by the stiffness of the crystal lattice.
In mirror modes the quasi-diamagnetic effect amounts to
roughly 50 %, many times more than the few percentage
points of magnetic amplitudes that quasi-linear theory pre-
dicts (cf., for example, Noreen et al., 2017). For its explana-
tion, no weak kinetic plasma turbulence theory (cf., for ex-
ample, Yoon, 2007) is in sight. This discrepancy suggests that
in the evolution of mirror modes some fundamental effect is
still missing.

Recently we exhumed a kind of parallelism between su-
perconductivity and the growth of the ion mirror mode
(Treumann and Baumjohann, 2018a). Here we demonstrate
that the mirror mode can be understood as a combination of
the classical plasma ion effect which generates magnetic bot-
tles at the low quasi-linear saturation level, while the main
large mirror effect may possibly be caused by the trapped
bouncing particle component in a similar though classical
way to in the BCS theory.

In this case it is the mirroring particles (preferentially elec-
trons, though possibly also ions) which interact with the
available general thermal ion-sound wave population in the
plasma, at either thermal or non-thermal level, to produce
trapped pair singlets which are dynamically distributed over
the volume of a mirror bottle. Together with the ion-sound
fluctuations, they form kind of quasi-particles. These become
locked near their centre-of-mass mirror points and conden-
sate at perpendicular energy close to the electron tempera-
ture. This leads to electron boundary currents causing some

weak diamagnetism which, probably, is incapable of explain-
ing the further growth of mirror modes.

However, evolving from the quasi-linear stable state, the
pairs generate a large perpendicular electron anisotropy that
enters the mirror growth rate and breaks the quasi-linear
stability. Further mode growth is either pressure compen-
sated by dissolution of pairs and plasma heating or by quasi-
neutral plasma inflow from the environment along the mag-
netic field. This kind of pairing is proper to the mirror in-
stability and may develop for electrons and, possibly, under
modified conditions and effects, also for ions. In order to be
specific, we concentrate on electrons only in the following.

The physical mechanism behind this effect is the interac-
tion of mirror-mode-trapped electrons with the thermal back-
ground noise of the ion-acoustic wave spectrum excited in
the mirror unstable plasma at low but sufficiently large ampli-
tude. Since ion sound is a basic plasma eigenmode, balance
between spontaneous emission and collisionless damping al-
ways leads to the presence of ion-sound noise at measurable
intensity, for instance in the magnetosheath (cf., for example,
Rodriguez and Gurnett, 1975; Treumann and Baumjohann,
2018b, for additional arguments concerning mirror mode ob-
servations). Hence, for the interaction discussed in this com-
munication it is not necessary that the ion sound is excited by
an instability. If the conditions for an ion-acoustic instability
are satisfied, the pairing condition may become positively af-
fected.

2 Electron trapping

Once the ion-mirror mode starts growing at the well known
(cf., for example, Noreen et al., 2017) ion-mirror growth rate,
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with approximately vanishing real frequency ωm ≈ 0, ne-
glecting the effect of density gradients, which would cause
a finite real part on the frequency, λi = c/ωi ion inertial
length, a magnetic bottle evolves in the slightly oblique di-
rection k‖� k⊥ with magnetic disturbances |δB‖| � |δB⊥|.
This bottle is elongated or stretched along the ambient mag-
netic field B and has a narrow opening angle θ given by
tanθ = k‖/k⊥� 1. Instability corresponds to a second-order
phase transition in plasma, which happens when the mag-
netic field locally drops below a critical threshold value,

B < Bc ≈
√

2µ0NTi⊥A |sinθ |, (2)

where we neglected the electron contribution. Though sub-
stantial, this growth rate is just a fraction of the ion cy-
clotron frequency ωci = eB/mi for k‖λi� 1 and B and A
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near the threshold, the usual case (Treumann and Baumjo-
hann, 2018a). A linearly stable case of minimum amplitude
is obtained for

Aβ⊥ = k
2/k2
⊥
. (3)

It defines a particular marginally stable propagation angle,
thereby providing a measure of the thermal mirror level.
The mirror instability stabilizes quasi-linearly (Noreen et al.,
2017; Treumann and Baumjohann, 1997) at very low level
|δB|2� B2 via depleting the anisotropy A.

More interesting is that, for an initially negligible electron
contribution Ae� A, the electron anisotropy at quasi-linear
stability may become important in the growth rate for the
mirror instability to surpass the stable quasi-linear state, in
which case the ion mirror instability may grow further.

It is thus of particular interest, whether a substantial elec-
tron anisotropy Ae can self-consistently be generated in the
mirror mode as this could cause growth of the ion mirror
mode to large amplitudes.

Below we propose such a mechanism. We may, however,
note in passing that this same mechanism can also, by itself,
drive an electron mirror mode after quasi-linear stability of
the ion mode has been reached. The electron mirror mode
is a short-scale magnetic fluctuation on the ion mode back-
ground, with fast the growth rate

γe

ωce
≈ k‖λe

√
βe‖

π

[
Ae−

k2

k2
⊥
βe⊥

]
(4)

a fraction of the electron cyclotron frequency ωce. The
marginal stability condition again requires vanishing of the
bracket for one particular angle of propagation. The electron
mode also stabilises quasi-linearly, causing short wavelength
depletions of the magnetic field on the course of the above
ion mirror mode, as has been observed previously (Baumjo-
hann et al., 1999; Treumann et al., 2004) and identified re-
cently (cf., for example, Ahmadi et al., 2018; Breuillard et
al., 2018; Treumann and Baumjohann, 2018b).

In the following we do not further investigate the electron
mirror mode, even though it will also be affected by the pro-
posed electron pairing which might be responsible for its sur-
prisingly large amplitudes it achieves. Our focus here is on
the main ion mode.

2.1 Electron dynamics, energy limit, trapped density
fraction

The conventional ion mirror mode provides a quasi-
stationary magnetic bottle (see, for example, Constantinescu,
2002, for an analytical geometric model) structure, which
necessarily traps electrons of sufficiently small magnetic mo-
mentµe. Because the mirror mode frequency practically van-
ishes and the mirror mode grows slowly compared to the
electron dynamics, electrons react adiabatically to the pres-
ence of the mirror instability. They conserve their magnetic

moment µe = Ee⊥/B = const when moving along the mag-
netic field B(s). Trapping occurs between the two mirror
magnetic fields B±m = B(±sm), with the s coordinate along
the magnetic field. The trapped-electron perpendicular ki-
netic energy Ee⊥(s)= µeB(s)≡ V (s) plays the role of a re-
tarding potential:

Ee‖(s)= Ee−V (s). (5)

At the mirror points the parallel energy of trapped electrons
vanishes, and Ee⊥(±sm)= Ee. Thus trapping occurs for all
µe ≤ µm ≡ Ee/B±m, a well-known fact. Though it does not
bunch them, mirroring keeps these electrons together by con-
fining them to the volume of the bottle, inside which they
perform the oscillatory bounce motion between mirror points
±sm. The parallel electron equation of motion is

dv‖(s, t)
dt

=−
µe

me
∇‖B(s), ∇‖ =

∂

∂s
. (6)

For symmetric bottles and motion around and not too far
away from the minimum B(s0)=min {B(s)} ≡ B0 of the
magnetic field we have

B(s)≈ B0+
1
2
B ′′0 (s− s0)

2, B ′′0 =
∂2B

∂s2
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s0
, (7)

which immediately gives the bounce frequency

ωb =

√
µe

me
B ′′0 � ωce, (8)

a frequency much less than the electron cyclotron frequency
ωce = eB/me.

We shall show below that this kind of trapping, in the case
of the mirror mode, becomes advantageous for electron pair-
ing, an effect otherwise observed only under solid-state con-
ditions in superconducting metals.

In order to get an idea of the trapping energy condition,
we consider the mirror point s =±sm. Here all the energy
is in the perpendicular direction, i.e. the local gyro motion
of electrons. Hence de-trapping of electrons occurs, once
their gyroradius exceeds the opening radius of the bottle neck
rce,s&Rs = L‖ tanθ , where L‖ ∼ 2π/k‖ is the half length of
the ion mirror bottle. This yields immediately that electrons
remain trapped as long as their energy satisfies the condition

Ee.
1

4π2
Te

k2
⊥
r2

ce
≡ Etrap, rce = ve/ωce,s, (9)

with rce is the electron gyro-radius and k⊥ the perpendicular
wave number of the ion-mirror mode. All electrons of such
energy remain trapped in the magnetic mirror bottle. Larger
energy electrons escape from the bottle along the magnetic
field. (We do not discuss the subtle problem that quasi-
neutrality requires them to be replaced by low-perpendicular-
speed electron inflow along the magnetic field which, how-
ever, has an effect on the additionally required pressure bal-
ance.)
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2.2 Fractional trapping condition

The fractional number density of Maxwellian mirror trapped
electrons is
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, (10)

where C is a normalisation constant, and γ (a,b) is the in-
complete Gamma function.

Constancy of the trapped electron magnetic moment (cf.,
for example, Baumjohann and Treumann, 1996, for a text-
book presentation), yields the parallel energy

E‖(s)= Ee

(
1−

B(s)

B(sm)

)
, (11)

which defines the angle between velocity and magnetic field
for the trapped electrons

θ(s)= cos−1

√
1−

B(s)

B(sm)
. (12)

These or the equivalent expressions we will need below.

3 Single electron wake potential

In preparing for the investigation of ion-mirror-mode trapped
electrons, we consider the interaction of an electron with the
bath of ion sound waves. This is most easily done in the
naked test particle picture, assuming that we grab one of the
electrons and ask for its reaction to the presence of the di-
electric in which it moves. This approach requires subsequent
integration over the electron energy distribution.

The electron is a point charge −e with velocity v that is
located at its instantaneous position x′ = x− vt in the ob-
server’s frame (x, t). This is represented by the point charge
density function N(x, t)=−eδ(x− vt). We assume that the
electron is non-relativistic, which for trapped electrons under
the conditions in the magnetosheath (Lucek et al., 2005) or
the solar wind is good enough. The relative dielectric con-
stant of the plasma it experiences is ε(ω,k), where ω,k de-
notes the frequency and wavenumber of the plasma wave,
which changes the dielectric properties. In general, we have
a whole spectrum of waves which is taken care of below
by integrating over the entire spectrum. The naked charged
electron polarises the plasma. The total electric potential the
moving non-relativistic charge at location x′ causes at loca-
tion x is obtained from Poisson’s equation with above charge

density and has the form

8(x, t)=−
e

(2π)3ε0

∫
dωdk

δ(ω− k · v)

k2ε(k,ω)
eik·(x−vt). (13)

This can easily be shown (originally given by Neufeld and
Ritchie, 1955; Krall and Trivelpiece, 1973, for a textbook
description) by Fourier transformation. One may note that
this expression also holds for ions.

In this representation the action of the δ function on the
exponential has been taken care of. Integration is over wave
numbers and frequencies, the wave spectrum responsible for
the dielectric properties experienced by the test electron. In-
tegration with respect to frequency ω implies ω→ k · v also
in the dielectric response function ε(ω,k), which we shift
until having discussed the latter.

In solid-state physics it is assumed that the oscillations of
the ion lattice generate a thermal spectrum of phonons. In
plasmas these waves are not restricted to the Brillouin zones
but are freely propagating waves either forming a thermal
background noise or, for Te� Ti, providing a broad spec-
trum of unstably excited ion sound for which the plasma re-
sponse function accounts. In high-temperature thermal equi-
librium it is the jitter motion of electrons which leads to the
spontaneous emission of sound and modifies the dielectric
properties of the plasma. The general electrostatic response
function reads

ε(ω,k)= 1+
1

k2λ2
e
+χe(ω,k)+χi(ω,k), (14)

with χe,i(ω,k) the electron and ion susceptibilities. Under
nonlinear conditions the susceptibilities depend, in addition,
on the wave amplitude. This electrostatic dispersion relation
contains the effects of both electrons and ions.

One may wonder why for wavelengths usually much
longer than the Debye length λe� λ the second term in this
expression is not neglected. The reason that it must be re-
tained here is that the uncompensated charge of the test parti-
cle when immersed into the plasma excites short wavelengths
waves on the Debye scale in order to screen the charge.
Therefore, independent of the wavelength of plasma waves,
the test particle dielectric response must include the Debye
term.

The dielectric response function of the thermal spectrum
of ion sound waves at frequencies far below the electron
plasma frequency ω� ωe is

ε(ω,k)= 1+
1

k2λ2
e
−

(ωi

ω

)2
, (15)

where ωi is the ion plasma frequency, λe ≈ ve/ωe is the De-
bye screening distance, and the frequency of ion sound waves
ωk is obtained by putting the real part of this expression to
zero, which as usually yields(ωk

ωi

)2
=

k2λ2
e

1+ k2λ2
e

or ω2
k =

c2
s k

2

1+ k2λ2
e
< ω2

i . (16)
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Here c2
s = ω

2
i λ

2
e ≈ (me/mi)v

2
e ≈ 2Te/mi is the ion-sound

speed square. It is a simple matter to show that the inverse
response function becomes

1
ε(ω,k)

=
k2λ2

e

1+ k2λ2
e

(
1+

ω2
k

ω2−ω2
k

)
. (17)

Actually, this is also the general inverse form of any dielec-
tric response, if only ωk is understood as the solution of the
general response function

ε(ω,k)= 0 (18)

for electrostatic waves, and

ε(ω,k)− k2c2/ω2
= 0 (19)

for very low frequency electromagnetic waves like magneto-
sonic or (kinetic) Alfvén waves. In the latter case one has (cf.,
for example, Treumann and Baumjohann, 1997), including
kinetic effects,

εA(ω,k)= 1+
1

k2λ2
e
+
c2

V 2
A

[
1+

(
k ·rci

)2(3
4
+
Te

Ti

)]−1

, (20)

with rci = vi⊥/ωci the vectorial ion gyro-radius. The rele-
vant wave frequency is ω2

kA ≈ k
2V 2

A for the ordinary Alfvén
wave, with VA� c the Alfvén speed (if wanted including the
bracketed modification factor).

The kinetic Alfvén wave propagates fast along the mag-
netic field almost at Alfvén speed, and roughly 10 times
slower perpendicular to it. The weak wave electric potential
resulting from its kinetic nature is along the magnetic field
and is believed to be responsible for electron acceleration.
Any attractive pairing effect in resonance with those fast par-
allel electrons will be in this direction as well, a very inter-
esting fact in itself which we do not investigate here, leaving
it for a separate investigation. It may be applicable to parti-
cles in the auroral magnetosphere with its magnetic trapping
configuration.

Inserting Eq. (17) into the above electrostatic potential of
the test electron

8(x, t)=−
eλ2

e

(2π)2ε0

∫
dωk⊥dk⊥dk‖

1+ k2λ2
e
×

×

(
1+

ω2
k

ω2−ω2
k

)
δ
(
ω− k · v

)
eik·(x−vt) (21)

shows that 8 consists quite generally of two contributions,
the screened Coulomb potential of the test electron, and an-
other wave-induced term 8ω which multiplies the screened
potential by the frequency-dependent term in the last ex-
pression. (We note again that a similar form trivially holds
as well for ions.) This form demonstrates the well known
self-screening Debye effect of the naked point charge, which

leads to the first term in the above expression and causes the
Debye–Yukawa potential to exponentially compensate for
the electron charge field in a spherical region of radius λe.
We are not interested here in the deformation of the Debye
sphere introduced by the electron motion as this is a higher-
order effect.

The zero-order effect of the test electron is contained in
the wave-independent term, and the proper self-screening is,
in the wave-dependent term. In the wave-dependent term the
proper self-screening is multiplied by the wave-induced fac-
tor. For frequencies ω2

= k2
·v2 > ω2

k higher than ion sound,
this factor is positive, adding to the screening, but changes
sign for frequencies ω2

= k2
· v2 < ω2

k , thereby indicating
the possibility of over-screening at wavelengths larger than
the Debye radius λe (cf. Treumann and Baumjohann, 2014,
their Fig. 1). Under certain conditions it may come into play
outside the Debye radius where the charge-electric field is
practically already compensated (and the long-range wave
electric field adds up over some distance) and may domi-
nate and cause a spatially restricted deficiency of repulsion.
In this case the potential may even turn negative, eliminat-
ing the repulsive nature of the electron locally and becom-
ing attractive for electrons. This was first shown (Neufeld
and Ritchie, 1955) for high-frequency Langmuir waves even
before the discovery of Cooper pairs in superconductivity
and solid-state physics. In a bath of Langmuir waves this at-
traction turned out to be unimportant, however, while in an
isotropic non-magnetic plasma it survives for low-frequency
ion sound, first suggested by Nambu and Akama (1985).
With θk the angle between electron speed and wavenumber,
it happens at resonant electron speeds

v2cos2θk.ω
2
k/k

2, (22)

requiring the parallel electron speed to be less than the wave
phase velocity. The above expression depends on angle θk
between velocity v and wavenumber k, which in our case
will turn out to be of crucial importance.

For completeness we note that in magnetised plasma the
ion acoustic wave is azimuthally symmetric with respect to
the magnetic field B. However, its frequency depends itself
on the angle of propagation between k = (k⊥,k‖) and B ac-
cording to

ω2
k =

c2
s30(ηi)k

2
‖

30(ηe)+ k2λ2
e
, (23)

with30(ηj )= I0(ηj )exp(−ηj ), ηj = 1
2k

2
⊥
r2

cj , and the index
j = e, i on the gyroradius is for electrons and ions (Baumjo-
hann and Treumann, 1996). I0(ηj ) is the Bessel function of
imaginary argument. rcj = v⊥,j/ωcj is the gyroradius, and
ωcj is the cyclotron frequency. It is also the case that, more-
over, k⊥λe� k⊥rci� 1 and k‖/k⊥ < 1. Long-wavelength
ion sound in magnetised plasma thus propagates essentially
along the magnetic field, a well known fact which in obser-
vations, for instance in the magnetosheath (Rodriguez and
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Gurnett, 1975), manifests itself as a complete drop-out of
the electrostatic low-frequency thermal ion noise spectrum
when the antenna points strictly perpendicular to the ambient
magnetic field (cf., for example, Treumann and Baumjohann,
2018b, for an example and discussion).

The interaction between electrons and ion sound waves
thus opens up the option that electrons in a Debye-screened
potential may, under certain conditions, experience an at-
tractive potential which compensates and overcomes the
Coulomb repulsion between two negatively charged elec-
trons, resembling the famous effect of Cooper pairing in
solid-state physics though here in the realm of classical
physics. The paired electrons and the propagating ion sound
wave form a quasi-particle in both these cases.

It is important to insist that this attraction is not due to
trapping of the electron by a large-amplitude wave in the
wave potential trough; on the contrary, it is an electron-
induced change in the dielectric properties of the wave-
carrying plasma causing the electron to evolve an attractive
electrostatic wake potential which it carries along when mov-
ing across the plasma. We have previously shown (Treumann
and Baumjohann, 2014) that this can also happen with other
waves than ion sound waves. Below we demonstrate that it
becomes crucial in the evolution of mirror modes to which
plasma wave trapping does not contribute in any sense.

Since the waves are propagating along the magnetic field
and the bounce motion of the electrons is also along the mag-
netic field, the coordinate s of interest is parallel to the mag-
netic field ŝ‖B, and the gyration of the electrons decouples
from the interaction. In this case we have for the wave num-
ber k = (k‖,k⊥) and velocity

k‖ ≡ k · ŝ, v‖(s)≡ v · ŝ = v cosθ(s)

parallel to the local magnetic field. The problem then con-
sists of solving Eq. (21) under the conditions of a bounc-
ing test electron. This task resembles the solution under non-
magnetised conditions which had been given in our previ-
ous paper (Treumann and Baumjohann, 2014). In the known
form it cannot be applied here but has to be substantially
modified in order to become adapted to the conditions of
electron trapping in mirror modes.

3.1 Conditions for an attractive potential

In the light of the previous discussion we rewrite Eq. (21) in
the magnetic field as

8(x, t)=−
eλ2

e

2(2π)2ε0

∫
ωk dωdk eik·(x−vt)

(1+ k2
⊥
λ2

e + k
2
‖
λ2

e)
×

×

[
δ(ω− k‖v‖)

(ω−ωk)
−
δ(ω− k‖v‖)

(ω+ωk)

]
. (24)

Here we left the Debye-potential term out as it is of no
interest, dropped the frequency subscript, and resolved the

denominator. We also refer to the parallel particle velocity
v‖ = v cosθ which in our case of mirror trapped test particles
is along the magnetic field. It selects the parallel wavenumber
of the wave in the Dirac δ function to replace the frequency
ω. In the same spirit the argument of the exponential becomes
ik · (x−vt)= ik⊥ρ sinφ+ ik‖(s− tv cosθ) with ρ the inde-
pendent perpendicular spatial coordinate. It is assumed that
the magnitude v of the velocity remains constant in this kind
of interaction, which holds for the adiabatic motions along
the magnetic field where no further external force acts on the
electron except for the stationary restoring magnetic force.
(Note also that the wave frequency ωk depends on k‖,k⊥ but
not anymore on angle φ because it has been determined inde-
pendently from kinetic wave theory not using the test particle
picture.)

These assumptions reduce the integral to integrations
over the perpendicular wavenumber k⊥,φ, and frequency ω.
Moreover, since the problem has become cylindrically sym-
metric with respect to B, integration over φ can easily be
performed by using the representation of the exponential as
a series of Bessel functions (Gradshteyn and Ryzhik, 1965)
which reduces to the zero-order Bessel function J0(k⊥ρ).
The formal result before final integration is

8(s,ρ, t)=−
eλ2

e

2(2π)2ε0

∫
ωk dωk⊥dk⊥dk‖
(1+ k2

⊥
λ2

e + k
2
‖
λ2

e)
×

×

[
δ(ω− k‖v‖)

ω−ωk
−
δ(ω− k‖v‖)

ω+ωk

]
×

× J0(k⊥ρ)e
ik‖(s−v‖t), (25)

where one understands v‖ = v cosθ(s). We note again that
this form is also valid for electromagnetic waves if only the
frequency is understood as the solution of the electromag-
netic dispersion relation. In view of later application to the
mirror mode we now restrict the calculation to purely electro-
static waves, in our case ion sound which, in contrast to other
electrostatic waves like Bernstein modes, has the right prop-
erty of propagating along the magnetic field with the parallel
electric field. The ion sound wave frequency is

ω2
k ≈

30(ηi)c
2
s k

2
‖

30(ηe)+ k2λ2
e
≈
30(ηi)k

2
‖
c2

s

1+ k2λ2
e
, (26)

with the right-hand side holding since the electron term in
the denominator is30(ηe)≈ 1. In the low-frequency approx-
imation applicable here, the frequency is proportional to the
parallel wave number. In the following we simplify this dis-
persion relation setting 30(ηi)≈ 1, which is its maximum
value, and in the resonant denominators neglecting the in-
verse dependence of ωk on kλe, only keeping it in the nom-
inator of the integral. Then one may perform the integration
with respect to k⊥, which gives, with ξ = λek⊥, ρ′ = ρ/λe,
ζ = k‖λe,
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I (ρ′,ζ )≡

∞∫
0

ξdξJ0(ξρ
′)(

1+ ζ 2+ ξ2
)3/2 = exp

(
− ρ′

√
1+ ζ 2

)√
1+ ζ 2

. (27)

In order to perform the integral, its singular properties
have to be elucidated. The dominant contribution will come
from the resonant denominators in the bracketed terms. Any
possible resonances in the Coulomb factor do not play any
role here. The Dirac δ functions prescribe replacing the fre-
quency everywhere with k‖v‖. It is, however, convenient to
delay this action until the singularities in the complex ω

plane are integrated out. To see their effect, one temporar-
ily replaces k‖ in the argument of the exponential with ω as
the δ function prescribes an inverse action. Then we have
ik‖(s−v‖t)= iω(s/v‖−t). Since the waves are damped, the
imaginary part of the frequency is required to be negative.
This forces demanding s/v‖− t < 0, consequently taking the
ω integration over the lower complex ω-half plane, which in
surrounding the poles in the positive sense adds a factor 2πi
to the integral and includes the sum of residua ω =±ωk in
the integral in this order. The result is

8(s,ρ, t)=−
i e

4πε0λe

cs

v‖

∫
ζ dζ e−ρ

′
√

1+ζ 2+iζ(s−v‖t)/λe√
1+ ζ 2

×

[
δ
(
ζ −

ωkλe

v‖

)
− δ

(
ζ +

ωkλe

v‖

)]
. (28)

Performing the substitution prescribed by the delta functions
in the exponential only yields the sum of two exponentials,
which turns into a sine function. One then obtains for the
potential of the particle in the presence of ion sound waves

8(s,ρ, t)=
e

2πε0λe

cs

v‖

1∫
0

ζ dζ e−ρ
′
√

1+ζ 2√
1+ ζ 2

× sin
[
ζ(s− v‖t)/λe

]
. (29)

What remains is the ζ integration with ζ = k‖λe < 1 limited.
To simplify, we can either neglect ζ or replace it by unity
in the arguments of the roots. To be conservative and decide
for the weakest case, we chose the latter, which yields the
integral

8(s,ρ, t)=−
e

4
√

2πε0λe

cs

v‖
e−
√

2ρ′
×

×

1∫
0

dζ 2 sin
[
ζ
∣∣s− v‖t∣∣/λe

]
. (30)

The argument of the sine function is negative. So we have
taken its sign out and use its absolute value. Integration gives

8(s,ρ, t)=−
e

2
√

2πε0

cs

v‖

e−
√

2ρ/λe

|σ |2
×

×
{

sin |σ | − |σ |cos |σ |
}
, (31)

where

σ = (v‖t − s)λ
−1
e > 0.

The condition for an attractive potential follows immediately
as

tan |σ |> |σ | or 0< σ <
π

2
mod (2π). (32)

Depending on the parallel velocity v‖ > 0 there is an entire
range of distances s < v‖t < πλe/2 in which the conditions
for an attractive potential are satisfied. We may note that for
negative velocities v‖ < 0 there is no range where the poten-
tial can become attractive as the braced expression is always
positive. It is the scalar product k · v between the wave num-
ber of the ion-sound and the test particle velocity which se-
lects those speeds which are parallel to the sound velocity,
not anti-parallel. One should keep in mind that this attraction
has nothing in common with wave trapping, however! It is
the over-screening effect of the particle, which is moving on
the background of the wave noise and experiences the modi-
fied dielectric properties of the plasma.

It should also be noted that in this condition the time ex-
plicitly appears because the test electron is seen from the
stationary observer’s frame in which the electron moves. In-
stead, σ is measured in the moving electron frame. This dis-
tinction is important to make as it will be picked up again
below.

The restriction on the velocity is obtained from that ω2 <

ω2
k when referring to the replacement ω = k‖v‖ = k‖v cosθ

prescribed by the δ functions. Rescaling ωk ∼ csk‖, it follows
that the parallel particle speed is limited as

|v‖|.cs or |cosθ |.
cs

v
. (33)

This is in fact a condition on the angle θ . For small speeds
v < cs the condition is trivial. The largest effect is caused
when the particle speed is parallel, below and close to the
phase velocity cs of the ion-sound wave. For large velocities
v > cs the angle between the phase speed and velocity must
be close to π/2, in agreement with the above requirement on
the potential becoming attractive.

This is an important point in application to a plasma. In
thermal plasmas we generally have cs ≈

√
me/mi ve, which

is far below the thermal speed. Hence there are only few elec-
trons in the distribution sufficiently far below thermal speed
which would satisfy the resonance condition v < cs. Higher-
speed electrons can be in resonance and thus contribute to
attraction only at strongly oblique wave and electron speeds.
Consequently under normal conditions in a plasma the gener-
ation of attractive potentials becomes obsolete, a point which
had been missed in previous work (Neufeld and Ritchie,
1955; Nambu and Akama, 1985). In the particular case of
mirror modes it becomes the crucial ingredient, as will be
demonstrated below.
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3.2 Correlation length

In all cases the attraction exceeds the repulsion outside the
Debye sphere of the electron in its wake and, therefore and
most importantly, can be felt by other electrons. From here it
is clear that two electrons must move at distance somewhat
larger than λe and at nearly the same speed in the same direc-
tion in order to be held together by their attractions and form
a pair. This is the important point when applying our model
to the mirror mode below.

Having obtained the conditions under that the wake po-
tential behind the moving test electron becomes attractive,
we would like to know the distance over which the negative
potential extends. This distance is measured in the instanta-
neous frame of the electron and is, hence, given by the above
absolute normalised value of |σ |< π/2, which repeats itself
periodically. It is, however, clear that it is only the zeroth pe-
riod which counts as the effect of the dielectric polarisation
on the electron diminishes with increasing distance s′ = σλe.
In absolute numbers this distance becomes

λcorr = |s− v‖t |<
π

2
λe ≈ 1.57λe, (34)

which can be understood as an electron “correlation length”
between neighboured electrons. Any electrons within such
a distance will behave approximately coherently, an impor-
tant conclusion which, however, has to be extended below to
many electrons.

This correlation length is to be compared with the parti-
cle spacing in the plasma. Plasmas are defined for particle
densities Nλ3

e � 1, which implies that the distance between
the particles is � λe. Consequently the extension of the at-
tractive potential in the electron wake is much larger than the
spatial distance between two electrons. It thus affects many
electrons, an effect which cannot be neglected when speak-
ing about attraction.

For example, in the magnetosheath which is the preferred
domain where the mirror mode is permanently excited, the
average density is, say, N ≈ 3× 107 m−3 at temperature
Te≈ 50–100 eV. For the Debye length we have λe ≈ 10 m,
while the inter-particle distance is a mere of ≈ 0.005 m.
Roughly 104 electrons should experience the presence of
the attraction behind the test particle, which thus becomes
a many-electron effect. Because pair formation depends on
the quite severe condition on the particle velocity, not all
those electrons of course will form pairs; however, in real-
ity, the attractive potential involves a substantial fraction of
electrons which necessarily will cause modifications of the
plasma conditions. Normally such modifications will only
cause minor effects in the wave spectrum and will be neg-
ligible. Below we show that in the evolution of the mirror
mode they become important.

3.3 Ensemble-averaged potential

If we understand the plasma as a compound of a large number
of electrons, we can ask for the ensemble-averaged potential
〈8〉 of the single electron, averaging over the particle energy
distribution. In an isotropic plasma this is the Boltzmann dis-
tribution. Writing for the parallel velocity v‖ = v cosθ the av-
erage potential becomes

〈
8
〉
=
e

ε0

Ccs
√

2λe
e−
√

2ρ/λe

∞∫
0

vdv e−v
2/v2

e×

×

(s+πλe/2)/tv∫
s/tv

dcosθ
σ 2 cosθ

[
sinσ − σ cosσ

]
, (35)

which tells that the mean potential taken over the full Boltz-
mann distribution would clearly be repulsive, because it ac-
counts for all screening for all electrons in the Debye sphere.
To calculate the cos integral we expand the trigonometric
functions to obtain

π

6

∫
σdcosθ ≈

π

6λe

[
π2

12
vt − s log

(
1+

π

2
vt

s

)]
. (36)

We now exclude the Debye sphere by restricting the integra-
tion with respect to v over a shell between the thermal and
trapped speeds. This gives up to a fractional density factor

Etrap∫
Te

dEe−E/Te

[
π2t

12

√
2E
me
− s log

(
1+

πt

2s

√
2E
me

)]
≈

−

(
1−

π

6

)
πt

2

√
2T 3

e
me

y∫
1

x
1
2 e−xdx. (37)

For a mean attractive potential the last integral should be pos-
itive. Doing it yields (Gradshteyn and Ryzhik, 1965)

y∫
1

x
1
2 e−xdx =

2
3

(
y2e−y − e−1

)
≈−y3

+ 2y2
− 1, (38)

which is positive only if y = 1+1 and

1=
(
Etrap− Te

)
/Te < 1, (39)

in which case there is a narrow energy range (or energy
“gap”) for trapped electrons where the mean potential

〈
8
〉
<

0 becomes attractive for the electrons when averaging over
their energy distribution and warranting that they behave co-
herently. We will show that the latter can under certain con-
ditions be the case.
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4 Two-electron potential

We saw that, under a certain condition, an electron moving
in the plasma in resonant interaction with an ion-sound back-
ground may give rise to an attractive potential in its wake
where another electron can be captured and thus be forced to
accompany the first electron. First of all, in plasma all elec-
trons are in permanent motion. Hence, if an electron satis-
fies the resonance condition with an ion-sound fluctuation,
it attracts another one moving at nearly the same speed. We
have seen that this attractive potential in the presence of a
large number of thermally distributed electrons becomes de-
pleted. This holds when just one electron contributes to the
potential. We now extend this to the combined effect of two
electrons in the interaction, in which case we can immedi-
ately use the above solution when, however, accounting for
the slightly different velocities v‖1,v‖2 and initial locations
s1, s2 of the electrons along the magnetic field. In view of
the later application to mirror modes, we again consider only
motion along the magnetic field not yet specifying to the pe-
culiarities introduced by bouncing in the mirror field. Then
the two-electron potential becomes

8(s,ρ, t)=−
∑
j

e

2
√

2πε0

cs

v‖j

e−
√

2ρ/λe

|σj |2
×

×

{
sin |σj | − |σj |cos |σj |

}
(40)

with j = 1,2 counting the electrons. Here

σj = (v‖j t − sj )λ
−1
e > 0.

As before, the requirement σj > 0 results from the condi-
tion that the waves in resonance with the electrons must be
damped. In order to obtain the combined effect of the two
electrons, we transform to their centre-of-mass frame

2Z = s1+ s2, 2z= s1− s2,

2U = v‖1+ v‖2, 2u= v‖1− v‖2. (41)

From the previous we saw that the large correlation length
implies that many electrons are affected. Any attractive po-
tential couples two or more particles together. The most prob-
able state to be formed is the two-particle (singlet) state.
These will be distributed over the plasma, resembling the
Cooper states in solid-state superconductivity while not be-
ing a quantum effect here. Rather it is the polarisation effect
that moving particles produce in the high-temperature colli-
sionless plasma which causes singlet states of pairs.

In order to be realistic, we now derive the condition for
singlet states to evolve. To simplify the algebra, let us define

6 =:
1
2

(
σ1+ σ2

)
≡

(
Ut −Z

)
λ−1

e > 0,

σ ′ =:
1
2

(
σ1− σ2

)
λe ≡

(
ut − z

)
λ−1

e . (42)

The restriction on 6 > 0 maps the ω resonance onto the new
variables. At the contrary, σ ′ can be positive or negative.
With these expressions and after some rather tedious though
simple calculations, Eq. (40) can be brought into the form

8(s,ρ, t)≈−

√
2e

π ε0

cst

(λe6+Z)

e−
√

2ρ/λe

|6|2
×

×

{
sin |6| − |6|cos |6|

}
cosσ ′, (43)

where we made use of the above representations and replaced

v‖1,2t =
1
2
λe
(
6± σ ′

)
+Z± z. (44)

This expression for the potential holds under the reasonable
assumptions σ ′�6 and z� Z that the difference between
the two electrons in location is small enough to be found
within the correlation length.

Only under this condition one expects that the electrons
will be correlated. Interestingly, the form of the potential re-
mains the same as that for the one-particle case with the only
difference that the potential is multiplied by cosσ ′. Hence
the condition for attraction depends on the value of σ ′.

Closely spaced electrons of similar and, as required, reso-
nant speeds not differing too much from the phase speed of
the ion-sound indeed give rise to attraction between the two
electrons if the following conditions are satisfied:

tan 6 >6 if cosσ ′ > 0,

tan 6 <6 if cosσ ′ < 0, (45)

which yields

0<6 <
π

2
if cosσ ′ > 0,

−
π

2
<6 < 0 if cosσ ′ < 0. (46)

These conditions are essentially the same as in the one-
electron case. There modification is due to cosσ ′ being pos-
itive or negative and that they apply to the centre of mass
coordinate system Z and mean particle speed U , which are
both contained in the variable 6.

We remark that these conditions are very general. They
substantially generalise the conditions found earlier by
Nambu and Akama (1985) to the much more important inter-
action between two electrons, the lowest-order singlet state
and thus most realised state in a plasma. Actually, the attrac-
tive potential of one single electron makes little sense as it
has an effect only if it affects another electron. This is exactly
what happens in the case of Cooper pairs where the attraction
becomes important only in an assembly of many electrons,
as was realised in BCS theory (Bardeen et al., 1957). We are
proceeding in the same vein here.

Higher-order states like the interaction of three electrons
leading to triplets and so on are in principle also possible but
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will not play any important role, because the interaction de-
cays with distance, even though they may be located within
the correlation length and form “quasi-particles”. In the sin-
glet state, the paired electrons behave like one particle of
double charge and double mass for the time of their interac-
tion, the time they remain inside one correlation length. This
length for the singlet is the same as was given above, pro-
duced by one electron, with the only difference being that it
now applies to the centre of mass of the two electrons. Mea-
sured from the centre of mass it extends to both its sides over
a length of roughly λcorr ≈ 1.5λe.

In physical units the first singlet state, for instance, is re-
alised for

0<Ut −Z <
π

2
λe, |ut − z| �

π

2
λe. (47)

In these cases resonant electrons, in the presence of an ion-
sound wave background, will arrange into loosely bound
electron pairs. In high-temperature plasmas, a substantial
number of such pairs will exist. However, they will mostly
not play any role in the dynamics. In order to do so, the
plasma must offer additional ways for the bound singlet pair
states to cause any susceptible effect in the plasma. Such con-
ditions are provided by the quasi-linearly stable mirror mode
and will be exploited below.

5 Mirror bottle and pairs

Being in the possession of the conditions under which elec-
tron pairs can form in a high-temperature plasma in interac-
tion with a thermal background of ion sound waves, we now
intend to apply them to the case of mirror modes. We saw that
the correlation length between electrons provided by one sin-
gle test electron is of the order of λcorr ∼ 1.5λe. This value is
only slightly increased by the interaction of two electrons,
such that we can roughly take λcorr ∼ 2λe for the singlet.

A mirror bottle is a preferred place for pair formation. This
is in contrast to any spatially extended plasma. Firstly, the
bottle confines trapped electrons which cannot easily escape.
Secondly, the parallel velocity of a bouncing electrons varies
along the mirror magnetic field and at some place may get in
resonance with the thermal ion-sound spectrum present in the
entire plasma volume. If this happens at some location along
the mirror magnetic field, electrons might form pairs and re-
main correlated for some time, bunch, perform like bound or-
bits and thus represent resonant correlated states which due
to the correlation become coherent states.

5.1 Centre of mass pair bounce motion

The application of these findings to mirror modes is not an
easy task. The electrons perform a complicated bounce mo-
tion along the inhomogeneous magnetic field with period-
ically changing bounce velocity and bounce frequency de-
pending on the value of their constant magnetic moment. Un-

der these conditions we need to know the variation of their
bounce velocity as a function of the location along the mag-
netic field between the mirror points.

Moreover, we need to satisfy the common resonance con-
dition of the pairs with respect to the phase velocity of the ion
sound. Since the electron velocity is generally much larger
than the latter this immediately suggests that the best condi-
tions for attraction will be found near the mirror points sm.
There the parallel velocity of the electrons drops to zero, and
there will be a certain range 1s at distance s.sm where the
resonance condition is satisfied most easily. Near sm one ex-
pects that attraction will become important.

In order to understand this process we thus need to trans-
form to the moving frame of the pairing electrons. For this
purpose we use the electron bounce motion to define the new
pair-electron quantities

M=:
1
2

(
µ1+µ2

)
, µ=:

1
2

(
µ1−µ2

)
, (48)

�2
=:MB ′′0 /me, $

2
=: µB ′′0 /me, (49)

U2
=:

2
m
E −�2Z2, E =:

1
2

(
E1+ E2− 2MB0

)
, (50)

u2
=:

2
m
ε̃−$ 2z2, ε̃ =:

1
2

(
E1− E2− 2µB0

)
. (51)

The mean bounce velocity U of the pair becomes a function
of the location Z of the centre of mass along the magnetic
field. This requires knowledge of its displacement as a func-
tion of the bounce phase, which again requires solution of the
two dynamics of the two electrons. Note the adiabatic con-
stants E,M,µ,�,$ . The only variables are the mean and
difference velocities U(Z) and u(z).

In the magnetic mirror symmetry, U(t) is the bounce ve-
locity of the trapped electron pair, and Z(t) is its location
along the magnetic field at time t . The difference speed u(z)
is measured in the centre of mass frame relative to Z and U .

The mean speed U along the magnetic field must be ex-
pressed either as function of time t or distance Z. For this to
be accomplished one needs to solve the parallel equation of
motion:

dU
dt
=−�2Z−$ 2z≈−�2Z, U =

dZ
dt
, (52)

which is given in the reasonable approximation of small
$ 2z. Obviously the mean speed along the field obeys
the mean bounce equation, an oscillation at frequency �.
Integrating the bounce equation of motion with U(Z)=√

2E/m−�2Z2 yields

Z(t)= Zm sin
(
πt

2tm

)
, Zm =�

√
2E
me
. (53)

Zm is the distance of the centre of mass mirror point reached
by the pair at mirror time�tm = 1

2π along the magnetic field.
Symmetric mirror bottles have been assumed, implying time
symmetry ±tm.
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Similarly, or the lag in distance z, as measured relative to
the centre of mass Z, we obtain

z(t)= zε sin
(
πt

2tε

)
, zε =$

√
2̃ε
me
, (54)

with $tε = 1
2π the lag in time in the electron pair to reach

the mirror point at relative location zm to the mirror location
of the centre of mass Zm.

These expressions give the centre of mass and jitter veloc-
ities as functions of time:

U(t)=
π

2
Zm

tm
cos

(
πt

2tm

)
, (55)

u(t)=
π

2
zε

tε
cos

(
πt

2tε

)
. (56)

It is important to remark that at this point we have only
transformed the velocity to the centre of mass motion. We
have not yet determined the paring conditions. The first of
the former expressions thus gives the two-electron bounce
velocity in the centre of mass frame, the second the jitter ve-
locity around this centre.

In order to apply to the quasi-linear stable mirror mode,
one must transform to the bounce motion. This can easily be
done inside the mirror bottle by using the parallel equation
of motion and the magnetic trapping conditions. It implies
substituting the parallel bounce solution for t (s). We shall do
it later below. Instead, here, it is first more important to obtain
the condition of pair formation in the two-electron potential.

5.2 Condition for pair formation

Electron pair formation proceeds if, in addition to the con-
ditions for attraction which have been given above, the pair
electrons are in resonance with the ion sound. This condition
is non-trivial. We mentioned already that electrons partici-
pating in attraction move at speed comparable to the thermal
speed ve, which exceeds cs substantially. Under non-mirror
conditions pair formation will thus barely take place. How-
ever, magnetic mirrors as provided by the mirror instability
are a rare exception.

The resonance condition is in fact not a condition on
U(Z) but on the angle between the pair velocity and the
direction of the magnetic field, as the latter is the direc-
tion of the propagation of the ion sound. During the bounce
motion the particle velocities are adiabatically conserved.
It is only the angle θ(s) that changes along the magnetic
field. Thus, writingU(s)= 1

2v
(

cosθ1(s)+cosθ2(s)
)
, assum-

ing that v1 ≈ v2,µ1 ≈ µ2, we have

cosθ1 =
U + u

v
, cosθ2 =

U − u

v
. (57)

Introducing the mean angles 2= 1
2 (θ1+ θ2),ϑ =

1
2 (θ1−

θ2)�2 we obtain

〈U〉

v
= cos

2

2
cos

ϑ

2
≈ cos

2

2
,

〈u〉

v
=−sin

2

2
sin
ϑ

2
≈−

ϑ

2
sin
2

2
. (58)

Note that u can be negative as it is measured in the centre
of mass frame. The condition of resonance U(Z).cs is then
reduced to

〈U〉.cs −→ cos
2

2
.
cs

v
� 1,∣∣∣∣ ϑ2

∣∣∣∣∼ 〈u〉v � 1. (59)

This condition shows that our assumption of roughly equal
magnitudes v1 ≈ v2 is not crucial because of the smallness of
this ratio. It shows moreover that the resonance condition is
nicely satisfied near the mirror points sm, where the average
angle 2/2≈ π

2 .
For example, cs/ve ≈

√
me/mi ≈ 0.023, which shows that

the average cosine is very small, and the effective angle
2/2≈ 88.7◦ is close to 90◦. Allowing for a deviation in
the ratio of ∼ 0.002, the angular variation would amount to
ϑ ≈ 0.2◦ as obtained from the average jitter velocity 〈u〉, as
is suggested by the second above condition with sin2/2≈ 1,
which gives the angular spread in case of attraction.

Once a mirror bottle evolves, there is a narrow spatial
range near the mirror points ±sm along the magnetic field
for the trapped electrons to generate attractive potentials in
their wake during their bounce motion inside the magnetic
mirror trap. This is the range of resonance where the paral-
lel speed matches the slow speed of ion sound. This attrac-
tive potential extends over approximately one to two Debye
lengths along the magnetic field outside the Debye sphere
of the acting electrons (roughly some 10 m in the magne-
tosheath!) whose charge fields are compensated by the bulk
of the surrounding electrons populating the Debye sphere.

This length is, however, much larger than the mutual parti-
cle distance. It thus affects a substantial number of electrons
which, in case their velocities do not differ much, form pairs
within a correlation length which the attractive potential at-
tributes to them.

As a consequence, there is a substantial number of paired
electrons inside the mirror bottle along the magnetic field
around all the many mirror points of trapped electrons of
different initial angle and velocity. The distribution of those
mirror points depends on the (equatorial) pitch angle distri-
bution of the electrons trapped in the field minimum B = B0
at the centre of the mirror bottle. One thus expects that over
a certain length along the mirror magnetic field an almost
homogeneous distribution of electron pairs will evolve.

The attractive potential acts to combine two electrons into
a pair at a location close to Z = sm, where the centre of mass
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velocity of the electrons goes into resonance with U ≈ cs�

ve. This effect attaches the pair to the particular group of ion
sound waves in resonance with the pair and thus locks the
pair to them.

In addition there is a small jitter velocity u around the res-
onance left over which is required to be small in order not to
destroy the resonance. Investigation of the stability of pairs
in this case is a separate problem which we do not investigate
in this communication, even though it is important for further
considerations.

However, we may note that even if pairs will not be stable
for a long time, not becoming locked completely to the group
of ion sound waves with resonant wave numbers, they will
stay for some finite time in resonance and will always be re-
placed by other, newly formed, pairs when dispersing. Since
the electrons and pairs are all completely indistinguishable,
a fluctuating population of pairs will thus always be present,
if only the conditions for pairing exist. In this sense, a mir-
ror mode is the ideal and possibly the only place in high-
temperature plasma physics where pairing can and probably
will occur. We may also point to a similar mechanism for
ions. Our basic expression for the potential for ions would be
similar to that for the electrons. It moreover holds for any
kind of waves, while pairing in addition requires that the
particle candidates for pairing must be capable of resonat-
ing with the waves. This latter condition is rather severe and
therefore the necessary condition to have pairing.

6 Dynamics of pair population

So far we just derived the conditions for pairing in the centre
of mass system of the bouncing electrons. It is most inter-
esting what happens after pairing. Naively thinking, nothing
happens. Pairs form and may dissociate. Those that formed
and do not disintegrate may perform a combined bounce mo-
tion as prescribed by the centre of mass bounce equation
given above. In this case, they remain pairs but bounce be-
tween their centre of mass mirror points. Thus, for some
pairs, both disintegration and common bounce may be the
case.

6.1 Mirror point distribution

In addition there will be a number of pairs that are stable,
at least for some longer time. They neither disintegrate nor
bounce, because they remain stable at resonance with the
group of phonons of resonant wave numbers k near Z ≈ sm
and centre of mass speed U ≈ cs. As long as this interaction
holds they will not be able to return into simply bouncing,
because the phonons, which are independent of the particle
motion, not being subject to bounce or any mirror force, do
not allow the paired electrons to return into bouncing. These
phonons continue their slow motion along the magnetic field
and, in this way, lock the pair.

Vice versa, by locking the pair, they become themselves
locked near the pair’s mirror point. Thus such pairs drop out
of bouncing and, for their lifetime, become locked near sm.
The length of this time is a question of their stability in which
not only the two electrons, but also the ion-sound phonons
are involved, while these are independent of the bounce. Sta-
ble pairs still possess a small jitter speed u around sm, which
is insufficient for re-injecting them into the bounce. They
move together with the phonons further up the field at re-
duced parallel speed ∼ cs.

The condition on the jitter energy m|u|2 for stability is
that it should not exceed the trapping potential 1

2m
∗u2.e|8|.

Pairs of smaller jitter energy should thus be stable. A more
precise selection rule requires the solution of the stability
problem.

We consider a mirror bottle. The pitch angle distribution
of trapped electrons in a mirror bottle is not known a priori.
The equatorial pitch angle θ0 is given as

sin2θ0 = B0/B(sm), (60)

the ratio of minimum magnetic field to the mirror field of
trapped electrons. Electrons with large equatorial pitch angle
mirror very close to the minimum magnetic field. Electrons
with small equatorial pitch angle mirror near the end of the
bottle. It is thus clear that there is practically a continuous
distribution of mirror points along the mirror magnetic field
in the bottle depending on the given initial distribution of
equatorial pitch angles. Moreover this applies to all magnetic
field lines inside the bottle, not only the central one.

The dependence of the mirror points sm on electron veloc-
ity v <

√
Etr/me, location s, and pitch angle θ0 is obtained

from the bounce frequency ωb, the location along the field

s(t)= sm sin ωbt, (61)

and the time to reach from s = 0 to s within the bounce mo-
tion

t (s)=

s∫
0

ds/cosθ0√
1− s2(B ′′0 /2B0)tan2θ0

. (62)

Solving the latter integral and resolving for the mirror point
yields the wanted expression

sm(v,s,θ0)=
s

sin
[
η(s,v,θ0)

] ,
η(s,v,θ0)≡ v sin−1

(
s

√
1
2
B ′′0 /B0 tan θ0

)
. (63)

This is a complicated though continuous dependence on
s and θ0. The distribution of mirror points on the mirror-
ing electron velocity and its energy can, in principle, be
integrated over the range of velocities 0< v− ve < vtrap−
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ve contributing to pairs. Assuming an equatorial isotropic
Gaussian-velocity distribution ∼ f (θ0)exp(−ε/Te) yields

〈
sm(s)

〉
∝

(
1Epair

Te

) π/2∫
0

s dθ0 sinθ0 f (θ0)

sin−1(s√B ′′0 /B0 tanθ0
) , (64)

with 1Epair = Etrap− Te > 0. For any given equatorial pitch
angle distribution f (θ0) there is a corresponding distribution
of mirror points inside the mirror bottle along s, i.e. along the
magnetic field B(s).

As a consequence, the entire narrow volume of the quasi-
linearly stable mirror bottle will be subject to the presence of
pairs, each of which is located at and along the magnetic field
line centred around its common pair-mirror point. (One may
note that the point s = 0 does not contribute to the integral,
either mathematically or physically, because it is not a real
mirror point. Also, θ0 = 0 does not contribute because those
particles do not participate in mirroring.)

Under these conditions the pairs become an important part
of the population of a mirror bottle and might contribute to
its dynamics. The locked pairs have twice the electron mass
m∗ = 2me and twice the electron charge q∗ =−2e. Energet-
ically, their parallel motion condensates in the lowest energy
bounce level ε̃ ∼ (m∗/2)〈u2

〉 � Etrap, the energy in their av-
erage jitter motion around the mirror point, negligibly small
with respect to their gyration energy which, near the mirror
point, has absorbed almost all kinetic energy into the gyra-
tion.

At the same magnetic field strength B(sm) they thus
have equal gyroradii, concentrating in a current shell which
represents a surface current J⊥pair =−e

∗Npairve1r on the
timescale of the bounce, which averages over all particle
phases. This shell has width 1r ∼ (ve/ωce)1B/B. The sur-
face current it carries might give rise to an integrated lo-
calised orbital diamagnetism. In the last subsection below we
explore its effect.

6.2 Pair-induced mirror growth

The promising macroscopic effect is the direct contribution
of pairs to both the evolution of an electron anisotropy and
its effect on the ion mirror mode, which is the content of the
following subsections.

A gyrating locked pair population has large perpendicu-
lar energy ∼ 2Te and very small parallel energy ∼me|u|

2. It
hence possesses a large anisotropy,

Apair =
2Te

me|u|2
− 1 ≈

2Te

me|u|2
� 1, (65)

which contributes to the evolution of mirror modes through
the growth rate (1) of ions as this growth rate contains the
anisotropy of all electron components, including pairs, while
the ion anisotropy A≈ 0 is about zero in the stable quasi-
linear state.

It is thus clear that a large electron pair anisotropy Apair
will directly contribute to the growth of the ion mirror mode,
once quasi-linear stabilisation of the ion mode has eaten
up the ion anisotropy, and the conditions in favour of trap-
ping and pair formation have emerged. (In addition pair
anisotropy will also destabilise the electron mirror mode
in the stable quasi-linear state of the ion mirror mode.) In
both stable quasi-linear cases the remaining ion (electron)
anisotropy is negligibly small, and the quasi-linear growth
rate of the ion mirror mode is zero by definition.

With further evolution of the mirror mode starting from the
quasi-linear level, one must use the pair anisotropy in Eq. (1),

γm, pair(k) ≈ k‖VA,ql

√
β‖i

π

(
Te⊥

Ti⊥

) 1
2
Ae, (66)

including the expression for the electron anisotropy Ae. This
applies to the quasi-linear level where the depletion of the
magnetic field is remarkable though not large, and the Alfvén
speed VA,ql is based on the weak quasi-linear magnetic field
Bql, while β‖i is on the quasi-linearly heated plasma level.
Since, quasi-linearly, Ti⊥ ≈ Ti‖ has decreased to approach
Ti‖, the temperature ratio Te⊥/Ti⊥ ≈ Te⊥/Ti‖ increases.

However, one has to determine Ae as function of the pairs.
Since Ae is a pressure ratio, one must take into account also
the non-paired isotropic electron component.

Let the fraction of pairs be α, then one has approximately

Ae ≈
(1−α)Te+ 2αTe

(1−α)Te+αme|u|2
− 1≈

2α
1−α

, (67)

which gives for the electron-pair-generated ion-mirror
growth rate

γm, pair(k)≈
2α
√

1+α
1−α

√
βe,ql

π
k‖VA,ql (68)

where βe,ql = 2µ0NTe/B
2
ql is the electron-β based on Bql at

quasi-linear stability, and the root
√

1+α arises from the
combination of electron and pair pressures.

Since α < 1, the pair-induced electron anisotropy is not
large but will be sufficient to break the quasi-linear state and
cause further growth of the ion mirror mode. This further
growth violates pressure equilibrium and, if not immediately
restored by breaking the pairs off and heating the plasma to
restore isotropy, pressure equilibrium must be restored other-
wise.

Under closed boundary conditions stabilisation proceeds
again quasi-linearly through heating the plasma at the ex-
pense of the pair anisotropy Apair and possibly, in addi-
tion, by radiation of resonant whistlers. On the other hand,
if open boundary conditions allow inflow of cold charge-
neutralised plasma from the environment, pressure balance
will be achieved in this way by sucking in a selection of low-
perpendicular energy particles of both signs. Mirror modes
will in both cases quickly restore pressure balance, while
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growing to substantially larger than quasi-linear amplitudes
because, at any quasi-linear level, new electron pairs will
continuously be newly and readily produced.

6.3 Evolution of magnetic energy density

The magnetic energy density W = B2/2µ0 will then expo-
nentially decrease,

W(t − tql)=Wql

{
1− exp

[
2γm,pair

(
t − tql

)]}
, (69)

from its quasi-linear level Wql(tql) until it reaches its final
minimum value Wmin(tfin) at the final time tfin which is in
equilibrium with the environmental pressure Pext =Wext+

β⊥,ext according to

Wmin

Wext
=

1+β⊥ext

1+β⊥fin
. (70)

Combining the last two equations gives an estimate for the
time tfin when the mirror mode reaches its final equilibrium
state:

2γm,pair(tfin− tql)= log
(

1−
Wmin

Wql

1+β⊥ext

1+β⊥fin

)
. (71)

With tfin� tql and Wmin�Wql this expression simplifies to
become

γm,pairtfin ≈
Wmin

2Wql

1+β⊥ext

1+β⊥fin
. (72)

We neglected the perpendicular magnetic stresses [−B ·

∇B/µ0]⊥ = n(s)B2/µ0R caused by the pair-surface cur-
rents J pair, with n(s) the outer normal to the local magnetic
field B(s), and R(s) the local curvature radius. Their contri-
bution requires knowledge of the current geometry.

Moreover, β⊥fin = (1+α)βqlWql/Wmin� 1. One then ob-
tains the following estimate for the final saturation time

tfin

τA
≈

√
π

2α
1−α

(1+α)3/2
1+βext

β
3/2
ql

(
Wmin

Wql

)2

≈

√
π

2αβql

(
Wmin

Wql

)2

, (73)

where τA =
(
k‖VA,ql

)−1 is the parallel Alfvén time based on
the quasi-linear saturation field Bql.

In a mirror bubble of a few 103 km parallel length, density
a few 10 cm−3 and some 10 nT internal field the Alfvén time
is of the order of τA ∼ 1 min, sufficiently long. Hence, if the
final saturation time is at least about one Alfvén time we have
for an estimate of the fraction of pairs in the mirror bubble

α ≈

√
π

2βql

(
Wmin

Wql

)2

∼ O(10−4), (74)

contributing both to the growth beyond the quasi-linear sat-
uration limit and maintenance of pressure balance with the
external plasma and field, with measurable right-hand side.

This fraction is sufficiently small: Not more than roughly
≈ 103 pairs m−3 suffice for producing the desired effect, for
instance in the magnetosheath, a rather small, unfortunately
probably barely detectable fraction. Again similar to super-
conductivity, it is only the macroscopic effect of pairs that
indicates their presence.

We have not included yet any probable inflow of plasma
along the magnetic field, to help restore the required pres-
sure balance. Such an inflow is expected to occur, because
the different mirror bubbles which form chains of bubbles
along the magnetic field, again for instance in the magne-
tosheath, will evolve on different timescales. Being magnet-
ically connected, they compete and tend to exchange low-
energy plasma along the field, which goes on their mutual
expenses. Bubbles containing the largest number of pairs will
grow fastest by sucking in plasma from the smaller ones in
order to make up for their pressure balance with the environ-
ment.

An analogous mechanism should work also for the elec-
tron mirror mode which, on the quasi-linear level, will grow
fast, within a few electron cyclotron times, and also attract
cold electrons from the environment. This will all happen in-
side the ion mirror mode on the spatial electron scale.

In addition, the perpendicular pressure anisotropy of the
pairs may in both cases, the ion as well as the electron mirror
mode, excite resonant whistlers as well as Bernstein modes,
the latter propagating in the perpendicular direction and hav-
ing a characteristic banded structure following the electron
cyclotron harmonics. Observation of these wave spectra, in
particular Bernstein modes, should provide direct informa-
tion on the presence of electron pairs. Since for pairs the
fraction q∗/m∗e = e/me is unchanged, the electron cyclotron
frequency is not affected. Those waves would, from the fre-
quency, not be distinguishable from ordinary Bernstein or
whistler modes, except for being restricted to the spatial vol-
ume of the mirror bubbles. It is clear that ion pairs, if formed,
would behave similarly in the ion mirror mode. We have,
however, not checked this possibility here.

6.4 Magnetic susceptibility

Above we developed a dynamical physical evolution model
for the mirror mode, which allows it to grow beyond the
quasi-linear limit. The final state is an equilibrium that should
be treated in the framework of thermodynamics or statistical
mechanics of open systems. Open systems do not mean open
boundary conditions. It means that the system is embedded
into a very large system with which it exchanges information
and possibly energy, and for which the distortion it causes is
negligibly small, for example say, a mirror mode train in the
magnetosheath.
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In this ultimately achieved (observed or measured) equi-
librium state the mirror mode should be described by thermo-
dynamic quantities, and the localised expulsion of the mag-
netic field should be accounted for by a diamagnetic suscep-
tibility χ . This susceptibility

χpair = µ0
∂Mpair

∂B
(75)

is defined as the derivative of the total pair-magnetic moment
with respect to the magnetic field, with the former not known
and difficult to determine. It requires knowledge of the grand
partition function Q of which it is the logarithmic derivative

Mpair = TeNpair
∂ logQ
∂B

∣∣∣∣
N,T ,µ

, (76)

with µ chemical potential, which is related to the average
density 〈N〉. Thus the susceptibility is the second derivative
of the logarithm of the grand partition function with respect
to the magnetic field at constant density, temperature, and
chemical potential. Calculation requires knowledge of all en-
ergy states of the pairs in the volume and, in addition, the spa-
tial pair distribution. The former can be restricted to only one
state, the perpendicular final temperature Te, while the spa-
tial distribution requires model assumptions on the geometry
of the ultimate mirror bubble and the diamagnetic surface
current. Both are barely known. Thus we are basically un-
able to solve this fundamental physics problem, whose solu-
tion would provide insight into the most important thermody-
namic connections in mirror modes, which clearly must hold
under stationary conditions.

Referring to a heuristic approach, we can, however, at least
determine the sign of the susceptibility when assuming that,
to some extent, the total magnetic moment of all pairs that
are localised in the mirror bubble would be proportional to
the sum of all single moments of the pairs, while the depen-
dence on the magnetic field reasonably remains unchanged.
This may not be completely true though, because in analogy
to superconductivity and superfluidity, the mirror mode dia-
magnetism is a second-order phase transition and, therefore,
the dependence on B must be modified to some power B−δ ,
with δ 6= 1 not an integer number. Neglecting this complica-
tion, we write

Mpair = αN
〈Epair〉

B
, (77)

where 〈Epair〉 ∼ Te essentially is the electron temperature
and, as above, α accounts for the fraction of pairs in the vol-
ume. Then we obtain that

χpair =−µ0αN
〈Epair〉

B2 . (78)

This important result shows that the magnetic susceptibility
is negative, which is required for observing a local diamag-
netic effect in excess of the always present general, though

weak and quite unremarkable, bulk diamagnetism of any
plasma that is caused by the orbital gyration of all the charged
particles in the magnetic field and that is of the order of Lan-
dau diamagnetism (Huang, 1987), a fraction of Bohr’s mag-
neton.

Though the precise dependence on the magnetic field is
not known, this argument suggests that the process leading
to pair formation in mirror modes indeed causes the diamag-
netism required for blowing up the mirror bubble, expelling
the magnetic field, and causing chains of mirror bubbles.

Of course, such an estimate suffers from the involved
uncertainties and the impossibility of constructing the con-
ditions of phase transition in the high-temperature mirror
plasma, which also accounts for pressure balance with the
surrounding plasma and determines the final magnetic am-
plitude Bfin in saturated thermodynamical equilibrium from
the general relation Bfin = Bql

(
1+χpair

)
. This becomes an

implicit third-order equation

x
3
2 ≈ x−α

βql

2
(79)

for the final magnetic field, where x =Wfin/Wql, and βql =

NTe/Wql.
Neglecting the left-hand side yields

Wfin

Wql
≈ α

βql

2
(80)

for a very rough estimate. From the previous subsection,
which includes the condition of the required pressure balance
with the surrounding environment, we conclude that the left-
hand side is of same order as α, say. Thus

βql/2∼ O(1), (81)

which, in spite of the severe assumptions made, is not an un-
reasonable value for the quasi-linear equilibrium where pair
formation sets in.

However, the main important result is the negative sign of
the susceptibility which, independent of the real numerical
value of χ(B), suggests that the mirror mode is not a simple
plasma instability as such. Rather it is a particular plasma
state occurring in high-temperature plasmas. This kind of
diamagnetism resembles a phase transition (Binney et al.,
1999) whose precise physics has still to be developed.

Our discovery of the possibility of the involvement of elec-
tron pairing in the ion mirror mode in this case is an interest-
ing first step into that direction.

7 Conclusions

Mirror modes seem to be an exception in high-temperature
collisionless plasmas. They start from a simple magnetohy-
drodynamic instability in an anisotropic pressure configu-
ration far from thermal equilibrium that has been produced
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for instance in the magnetosheath (Lucek et al., 2001; Con-
stantinescu et al., 2003) by the forced flow across the bow
shock (for a comprehensive review cf., for example, Tsuru-
tani et al., 2011; Balogh and Treumann, 2013, for the rela-
tions around the bow shock) and may be a general property
of shocked plasma flows (Lucek et al., 2005). Linear theory
shows that this instability produces magnetic-field-elongated
magnetic bottles which stabilise by quasi-linear interaction
between the anisotropic ions and the magnetic field in the
course of which the thermal anisotropy is depleted and set-
tles at a low stable rudimentary value. The amplitude of the
magnetic depletion, as numerical simulations with periodic
boundary conditions demonstrate, is very low. It is in fact so
low that the quasi-linear mirror mode would in observations
not be noticed but added to the ordinary thermal fluctuations
of the magnetic field and thermal pressure. It does not ex-
plain the notorious though not persistent observation of very
large-amplitude chains of mirror modes of up to 50 % mag-
netic depletion.

Open boundary simulations (Shoji et al., 2012) show the
evolution of large-amplitude mirror modes with electron dy-
namics reduced to a neutralising fluid. Dynamics is purely
ionic then, and pressure balance is provided by forced inflow
of plasma from the external surrounding. This suggests that
ions are capable of generating large-amplitude structures,
and that pressure balance is achieved by external plasma in-
flow. However, the assumption of fluid electrons is strong in
this case and may not apply to real natural plasmas where
electrons are far from being a fluid. For this to happen ion
anisotropies must be large enough for the pressure deficit to
enforce inflow prior to quasi-linear stabilisation. As noted
above ion pairing would be a reason to generate such a
deficit.

In the present communication we have not considered
ion pairing except for pointing to its possibility. Instead
we demonstrated that the physics of large-amplitude mir-
ror modes can be affected by a pairing mechanism which is
unique in application to mirror modes, as these provide the
rare conditions where it may happen. We demonstrated this
in the example of electrons but the theory can indeed be ex-
tended to include ions as well.

A possible resolution of the large mirror amplitude prob-
lem is thus found when accounting for the dynamics of the
electron (or possibly ion) component trapped in the mag-
netic mirror bottle. Electrons perform their bounce motion
and can, in the vicinity of their mirror points, where the par-
allel speed drops to near zero, get into resonance with the
always-present thermal ion-acoustic noise spectrum. Expe-
riencing a modified dielectric constant they generate an at-
tractive potential difference in their wake outside the charge-
compensating Debye sphere that may affect another close
electron, attract it, and form an electron singlet pair which
consists of the primary and attracted electrons in interaction
with the resonant spectrum of ion-sound background waves.

Formation of triplet pairs are of higher order and thus sub-
stantially less probable. The conditions for this to happen
have been obtained. The electron pairs are not spin compen-
sated because at the high temperatures in classical plasmas
the Pauli principle plays no role. The remaining electron jitter
energies are still high above spin energies but may be in many
cases too low for letting the pair, which near its common
mirror point Z(sm) is at average velocity U(zm)= cs� ve,
return into bounce motion as this would require that the jit-
ter energy exceeds the attractive pair potential. We have not
solved the stability problem of this process as this would be-
come a separate investigation.

However, a group of pairs fulfils an important function
in mirror modes. Trapped in attraction, they drop out of
the bounce motion, become locked near mirror points along
the quasi-linearly stable mirror bottle, and spend all their
kinetic energy in their gyration. Thus the pair distribution
in mirror modes becomes highly and narrowly peaked just
above and near the perpendicular thermal velocity, an effect
which is very interesting to investigate in all its further con-
sequences. These may be manifold, since the pairs contribute
a highly anisotropic population which, as noted, may become
unstable to electrostatic and electromagnetic plasma modes.
Among those are both whistlers and electrostatic Bernstein
modes. Whistlers are actually known to exist in observations
and may be related to electron pairing. In the case of ion
paring one would expect similar effects, in particular kinetic
Alfvén waves.

Closer investigation has been given to two effects, the di-
rect production of diamagnetism via the magnetic suscepti-
bility (see the last subsection), and the contribution of the
temperature anisotropy of the pairs to the envisaged further
evolution of ion-mirror modes.

It has turned out that this effect may be realistic. It is
based on two observations, the dependence of the ion mirror
growth rate on the electron anisotropy which under normal
conditions would not be of any interest as it provides just a
small negligible electron contribution. However, in the case
of quasi-linear stabilisation the ion anisotropy is depleted and
the growth rate vanishes. It is just this case when electron
(and possibly ion pairs) are produced and come into play,
as we have demonstrated above. (Considering the ion effect
which we did not do leads to the result that ion pairs would
restore an ion anisotropy and in this way break the quasi-
linear state and cause further growth of the mirror mode. This
may have happened in the simulations of Shoji et al. (2012)
where it has neither been discussed nor taken into account
and where just large mirror modes have been demonstrated
to develop in open boundary simulations.)

We suggested that electron pairs produce such an effect
just in the ion mirror mode. This seems reasonable because
of the high vulnerability of the mobile electrons to interact
strongly with a background field. The production of even a
small fraction of electron pairs breaks the quasi-linear sta-
bility condition and causes further growth of the ion mirror
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instability. Pressure balance is restored as we have shown
even for a small fraction of electron pairs per unit volume
being created. It can also be warranted by forced inflow of
cold plasma from the environment along the magnetic field,
which probably happened in the cited simulations, an effect
we are aware of but have not included in any detail here.

Altogether, the present communication discovered an in-
teresting new effect in a high-temperature plasma which
might have other consequences as well. It brings the the-
ory of mirror modes to an intermediate physical conclusion
by contributing to the so far badly understood generation of
large magnetic amplitudes of mirror bubbles, the deep dia-
magnetic holes in the magnetic field. It also provides an im-
portant unexpected, at least interesting application of the ap-
parently superficial attractive electron potentials in a plasma.
Here we have demonstrated its possible importance in the
evolution of mirror modes when electron-pair singlets form
in close analogy to superconductivity.

It would be of interest to investigate which effects the
process elucidated here might have in turbulence theory as
well as in astrophysical applications, in particular in view of
our above finding that kinetic Alfvén waves would also be
capable of generating attractive potentials to form electron
pairs. Since they naturally have high phase speeds, satisfac-
tion of the resonance condition seems to be natural for them,
with bouncing electrons for instance in the auroral magneto-
sphere. An example of where kinetic Alfvén waves could be-
come involved is auroral–plasma-sheet coupling where elec-
trons are naturally trapped in the geomagnetic field and per-
form large-scale bounce motions. The relaxed kinetic Alfvén
pairing condition may generate a fraction of trapped pairs
along the auroral magnetic field in this case to produce ob-
servable effects for instance in the aurora, generation of radi-
ation, and reconnection.

In mirror modes kinetic Alfvén waves are of little inter-
est, as there is no obvious reason for them to be generated.
They have, moreover, never been identified in relation to mir-
ror observations while ion sound waves are generally present
within and outside them. In ion-inertial range turbulence ki-
netic Alfvén waves seem to play some role as various ob-
servations indicate and theory also supports for the reason
that the scale of the ion-inertial range coincides with the per-
pendicular wavelengths of kinetic Alfvén waves. Our pair-
singlet mechanism should work in those cases as well and
might have consequences for turbulence, entropy generation,
and turbulent dissipation.
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