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Abstract. The coverage of regional ionosphere maps is de-
termined by the distribution of ground-based monitoring sta-
tions, e.g., GNSS receivers. Since ionospheric delay has a
high spatial correlation, ionosphere map coverage can be ex-
tended using spatial extrapolation methods. This paper pro-
poses a support vector machine (SVM) to extrapolate the
ionosphere map data with solar and geomagnetic parame-
ters. One year of IGS ionospheric delay map data over South
Korea is used to train the SVM algorithm. Subsequently, 1
month of ionospheric delay data outside the input data re-
gion is estimated. In addition to solar and geomagnetic en-
vironmental parameters, the ionospheric delay data from the
inner data region are used to estimate the ionospheric delay
data for the outside region. The accuracy evaluation is per-
formed at three levels of range −5, 10, and 15◦ outside the
inner data regions. The extrapolation errors are 0.33 TECU
(total electron content unit) for the 5◦ region and 1.95 TECU
for the 15◦ region. These values are substantially lower than
the GPS Klobuchar model error values. Comparison with an-
other machine learning extrapolation method, the neural net-
work, shows a substantial improvement of up to 26.7 %.

1 Introduction

Ionospheric delay is one of the main error sources for single-
frequency global navigation satellite system (GNSS) re-
ceivers. Ionosphere models or ionosphere maps can be used
to correct for ionospheric delay. For real-time applications,
a regional ionosphere map using regional GNSS monitor-
ing stations can be used to provide highly accurate correc-
tions. The regional ionosphere map coverage is determined
by the distribution of GNSS ground-based monitoring sta-

tions. Since ionospheric delay has a high spatial correlation,
ionosphere map coverage may be extended by using spatial
extrapolation methods. In addition to the spatial correlations,
time variables such as observation hour and day number, and
solar and geomagnetic indices can serve as input parameters
for the extrapolation.

A series of research studies have been conducted on the
temporal extrapolation (prediction) of regional ionosphere
maps using past observations. With respect to using machine
learning algorithms, Kumluca et al. (1999) applied the neural
network (NN) method to forecast ionospheric critical plasma
frequencies, foF2. McKinnell and Friedrich (2007) used a
NN to predict the lower ionosphere in the aurora zone. Okoh
et al. (2016) developed a regional vertical total electron con-
tent (VTEC) model for Nigeria based on observational data
from 12 stations and tested temporal and spatial extrapo-
lation performance. Unlike previous studies, the extrapola-
tion performance was improved by adding the International
Reference Ionosphere (IRI) as an input. Razin and Voosoghi
(2016) applied a wavelet NN with particle swarm optimiza-
tion to predict the total electron content (TEC) over Iran.
Huang and Yuan (2014) used time and temporal variation
of the TEC values as radial-basis function (RBF) network
inputs to temporal extrapolation. A support vector machine
(SVM) model has been used to predict the ionospheric foF2
above Chinese stations (Ban et al., 2011; Chen et al., 2010).
Akhoondzadeh (2013) used a SVM to predict the TEC and
to detect seismo-ionospheric anomalous variations.

On the other hand, research on the spatial extrapolation
of the ionosphere map is sparse. Wielgosz et al. (2003) used
kriging and multiquadric method to produce instantaneous
TEC maps near the Ohio continuously operating reference
station (CORS) stations in near-real time. Kim and Kim
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(2014) applied a biharmonic spline method to extend a small
ionospheric correction coverage area. Ionospheric delay ob-
servations were used as the input parameters, and the iono-
spheric delay outside the coverage area was extrapolated. Le-
andro and Santos (2006) used geographical information as
inputs of a NN model for spatial extrapolation of TEC over
Brazil. For spatial extrapolation, Jayapal and Zain (2016)
used a NN with time and solar or geomagnetic indices. In
addition to these environmental parameters, Kim and Kim
(2016) used the ionospheric delay of the inner area to im-
prove the performance of spatial extrapolation.

In addition to the NN method, a SVM algorithm can be
considered for spatial extrapolation. A SVM finds a solution
to the convex quadratic programming problem in training to
optimize the margin so that it can be both optimal and unique.
On the other hand, a NN finds the weight between each layer
through the gradient descent method, and the solution has
a possibility to fall into the local minima in this process. A
NN is based on empirical risk minimization (ERM), which is
a method of minimizing learning errors during the learning
process. On the other hand, a SVM is based on structural risk
minimization (SRM), so it has excellent generalization per-
formance (Gunn, 1998). SVMs have been widely used as pre-
dictive models in various fields. Huang et al. (2015) success-
fully performed stock market movement predictions using a
SVM. Mohandes et al. (2014) performed wind speed predic-
tions using a SVM and compared the performance against
the NN method. The results showed that the SVM achieved
superior prediction performance.

This paper proposes a SVM algorithm to extend iono-
sphere map coverage by applying temporal and environmen-
tal parameters and ionospheric observations. The IGS iono-
sphere map is used as a reference map, and the extrapolation
accuracy of the SVM is evaluated by comparing it to the IGS
map data. The extrapolation accuracies are compared with
the GPS Klobuchar model and the NN model.

2 Parameter modeling

Three types of input parameters are used for the extrapola-
tion of a regional ionosphere map – temporal parameters, en-
vironmental parameters, and ionospheric delay observations.
An extrapolated ionospheric delay, IDext, may be represented
as a function of these three parameters.

IDext = f (xt xe xobs) , (1)

where xt and xe are the time and the environmental parame-
ters, respectively, and xobs is ionospheric delay observations
in the inner area. The inner area is defined as a geographi-
cal area where ionospheric delay information or observations
are available. The outer area is defined as a geographical area
where ionospheric delay will be estimated.

The ionospheric variation is correlated with the diur-
nal and seasonal time variation, and the ionospheric delay

above the locations involved in the study reaches its maxi-
mum around 14:00 local time (LT) and its minimum around
02:00 LT (Wu et al., 2012). Also, the daily mean ionospheric
delay is higher in spring and autumn, and lower in summer
and winter (Wu et al., 2012; Mansoori et al., 2015). In order
to adopt these correlations, time parameters are included in
the extrapolation model. The diurnal variation is represented
by an hour number (00:00–23:00 LT), and the seasonal vari-
ation is represented by a day number (0–365). To represent
the repeatability of these variations, the time parameters are
modeled as sinusoidal functions.

xt = [SD CD SH CH] , (2)

where SD and CD are the sine and cosine, respectively, of the
day number, and SH and CH are the sine and cosine, respec-
tively, of the hour numbers. The periods used for the sinu-
soidal functions are set to 24 h and 365.25 days for the di-
urnal and seasonal parameters, respectively. The ionosphere
activity is also highly correlated with solar and geomagnetic
activity. Three parameters are selected to reflect the space
environment – the F10.7 index, geomagnetic index Kp, and
sunspot number (SSN).

xe =
[
F10.7 Kp SSN

]
(3)

Although SSN has a similarity with F10.7 in representing
solar activity, use of both parameters yielded slightly better
estimation accuracy than use of single parameter. Therefore,
both F10.7 and SSN are adopted for the environmental pa-
rameters. Experiments on the selection of optimal solar ac-
tivity indices will be discussed in Sect. 5.

Disturbance storm time (Dst) may replace Kp for iono-
sphere storm detection but it was not selected. Dst response
performance depends on ionosphere storm driver. Dst is ef-
ficient for storms driven by coronal mass ejection (CME),
but it is less effective for storms driven by corotating interac-
tion regions (CIRs) or coronal hole high speed streams (CH
HSSs) (Borovsky and Denton, 2006; Denton et al., 2006).
After a series of numerical experiments on selecting Dst or
Kp, Kp was selected for the parameter because of its better
estimation performance. The numerical experiments will be
discussed in Sect. 4.

Past inner-area ionospheric delays are used to train the ma-
chine learning algorithms, and current inner-area delays are
used for the extrapolation. The observation data set for theN
observation points is derived as follows.

xobs =
[
ID1

obs ID2
obs · · · IDNobs

]
(4)

The proposed algorithm is using fixed locations both for in-
put and output, and it does not require a spatial structure.
Other researchers’ works on ionosphere prediction used raw
GPS TEC measurements at varying IPP (ionospheric pierce
point) and the measurement locations should be registered in
the input. Our algorithm uses a grid-based ionosphere map
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with fixed grid points, and their location information is not
required as the model inputs.

In the event of high temporal or geographical decorrelation
due to geomagnetic storms, two inputs are affected: the solar
or geomagnetic parameters and the ionosphere input data in
inner region. Because of observation latency, the real-time
solar or geomagnetic parameters may not be available in real
time. However the ionosphere input data may be available in
real time from GPS observations, and this fact makes for the
estimation algorithm to respond to the geomagnetic storm in
real time.

3 Extrapolation methods

3.1 Support vector machine (SVM)

The SVM method is a machine learning theory that was pro-
posed by Vapnik in 1995. It uses an algorithm to find a hy-
perplane that maximizes the margin (Gunn, 1998). It is used
in data classification and regression problems, and SVMs
used in regression are referred to as support vector regres-
sion (SVR). A SVM sets the regression function, f (xsvm),
such that target ysvm is in the following range.

f (xsvm)= ŷsvm = w
Txsvm+ b, (5)

f (xsvm)− ε ≤ ysvm ≤ f (xsvm)+ ε, ε > 0, (6)

where xsvm is the input that contains [xt xe xobs], and wT

is the transposed weighting matrix; ysvm is the target that rep-
resents the true ionospheric delay in the extrapolation region,
and xε is the allowable error level for ysvm. In many practical
cases, ysvm is not in the range of (f (xsvm)− ε,f (xsvm)+ ε),
and ysvm is frequently adjusted to the range of (f (xsvm)−

ξ,f (xsvm)+ ξ), where ξ is a slack variable. The optimal re-
gression function is determined when the total magnitude of
the slack variable,

∑
iξi is minimized. Also, the distance

between f (xsvm) and the support vector should be maxi-
mized. The distance between the SVM and f (xsvm) is called
the margin, and the margin may also be minimized. There-
fore, the optimal regression function minimizes ‖w‖ and ξ
to achieve the maximum margin (Gunn, 1998).

min
‖w‖2

2
+C

∑n

i=1

(
ξ−i + ξ

+

i

)
, (7)

subject to ysvm− f (xi,svm)− ξi ≤ ε if ysvm− f (xi,svm)≥ ε

ysvm− f (xi,svm)+ ξi ≥−ε, if ysvm− f (xi,svm)≤−ε (8)

In Eq. (7), the superscript – denotes a lower boundary and
+ denotes an upper boundary. The slack variable disappears
while expanding equations. C is the penalty set by users. As
the C value approaches zero, the weight for the slack vari-
able decreases and the relative weight for ‖w‖2 increases.
Therefore, the regression function that maximizes the margin
can be calculated. This implies that the regression function
differs from ysvm. As C increases, the weight for the slack

Figure 1. Flow chart of the SVM training process.

variable sum increases rather than maximizing the margin
magnitude. Therefore, a regression function is calculated in
a form similar to ysvm. Equation (7) can be modified using a
dual problem, as follows.

argmin
β

1
2
βTK

(
xi,SVM, xj,SVM

)
β − f Tβ

f =−ysvm+ ε, (9)

where β is α−−α+ and α is Lagrange multiplier.K is a ker-
nel function that maps input data xsvm to a higher dimension.
Kernel functions have several functions, including linear and
polynomial functions. The most commonly used functions
are Gaussian kernel functions (Cristianini, 2001).

K (xsvm, ysvm)= exp

(
−
‖xsvm− ysvm‖

2

2σ 2

)
(10)

After mapping xsvm to feature space, one can determine the
optimal β by using quadratic programming (QP). The opti-
mal regression function can be computed by using the fol-
lowing equation (Gunn, 1998).

f (xsvm)= w
Tx+ b =

∑N

i=1
βTK

(
xi,SVM, xj,SVM

)
+

1
n∑N

i=1

∑N

j=1

{
yi,SVM−β

∗

jK
(
xi,SVM, xj,SVM

)}
(11)

The flow chart of the SVM training process is shown in
Fig. 1. The input variables consist of temporal and environ-
mental parameters and ionospheric delays in the observation
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region, and these inputs are identical for each extrapolation
point. Targets include the true ionospheric delay in the j -th
extrapolation point. After the input and output of the SVM
is defined, a kernel matrix is generated for each input. Then,
the training is performed to find the optimal coefficients and
bias of the regression function, f (xsvm). The kernel function
is calculated for the epoch of each input so that the size of the
matrix becomesN×N , whereN is the number of epochs. As
the input increases, the computational time and memory us-
age also increase. Therefore, the elements of the kernel ma-
trix, including the oldest epoch, are deleted, and the kernel
functions of the recent epoch are included in the matrix. After
defining the kernel function and the boundary of the regres-
sion function, the optimal weights and biases are calculated
using the interior point method (Ferris and Munson, 2004).
When the initial training is completed, the extrapolation and
update of the kernel function are repeated.

3.2 Neural network (NN)

A NN is a statistical learning model similar to a biological
neural network. It consists of neurons or perceptions, and a
synapses. Neurons are interconnected with synapses, which
store weights. A NN can solve problems such as pattern
recognition and regression by calculating the weights from
the learning of the neurons (Habarulema et al., 2011).

Several types of NNs exist – e.g., back-propagation neu-
ral network (BPNN), recurrent neural network (RNN), and
time delay neural network (TDNN). This study implements
a BPNN, which is one of the most commonly used NN algo-
rithms. It is a feed-forward, multi-layer perceptron (MLP),
supervised learning network (Jwo et al., 2004). In the hidden
layer, activation functions determine whether the values from
the previous layer are activated or not. Training is generally
performed using the gradient descent method.

Figure 2 shows a flow chart of the BPNN used for the
regional ionosphere map extrapolation. The input layer in-
cludes the network inputs, xNN, shown in Eqs. (2), (3), and
(4). The network inputs and targets are the same as those used
in the SVM. An input neuron multiplied by a weight can be
computed through the hidden layer towards the output neu-
ron, as follows.

ŷNN = f
n
(
W n,n−1f n−1

(
W n−1,n−2f n−2

(· · ·f 1(W 1,0xNN+ b
1)· · · + bn−2)+ bn−1

)
+ bn

)
, (12)

where b is the network bias, n represents the nth layer, and
W n,n−1 is the weight from n− 1 to the nth layer; xNN is the
network input, which includes the three input parameters for
extrapolation, ŷNN is the network output, and f is an acti-
vation function. The hyperbolic tangent sigmoid function is
implemented, which is the most widely used method. The
network is trained using the BPNN algorithm with true iono-
spheric delays and three input parameter sets to find the op-
timal weights and biases.

Figure 2. Flow chart of the neural network training process.

The network data are generally divided into training, vali-
dation, and test sets. The training set is used to calculate and
update the weights. The validation set is used to verify the
training results. The test set is finally used to calculate the
extrapolation error. This paper uses three data sets divided
by 70 %, 15 %, and 15 %, respectively. A detailed implemen-
tation of the NN can be found in Kim and Kim (2016).

4 Data processing

An IGS global ionosphere map (GIM) is used to acquire ref-
erence ionospheric delay data because of its high accuracy
and global coverage (IGS, 2019). Regional ionospheric de-
lay time series are generated with the GIM data, and they
are used to train the extrapolation algorithms. The extrap-
olated ionospheric delays outside the observation area are
compared with the GIM data to evaluate the accuracy. The
IGS GIM grid size is 2.5◦×5◦, but other regional ionosphere
maps such as the space-based augmentation system (SBAS)
ionosphere corrections have an equal latitude–longitude grid
size. Therefore, a 5◦× 5◦ grid size is used for the regional
ionosphere map in this research.

The estimation interval is the same as the ionosphere in-
put data interval. In this research, 2 h interval was used be-
cause 2 h interval IGS global map is implemented for the in-
ner map. If a shorter interval inner map is used, e.g., a 5 min
SBAS map or real-time GPS-derived map, and then the es-
timation interval becomes shorter. The proposed algorithm
is not a time-prediction algorithm, as in preceding research,
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Figure 3. Observation and extrapolation regions of ionospheric de-
lay grids.

and the estimation interval is not an important factor for de-
termining the accuracy.

Figure 3 illustrates the observation and extrapolation grid
points. The observation regions (blue) are set with a radius
of 2650 km centered on South Korea, and the extrapolation
regions (red) are set with a radius of 4500 km in order to in-
clude the 15◦ extended grid point from South Korea. There-
fore, the latitude of the observation area ranges from 15 to
55◦ N, and the longitude ranges from 105 to 150◦ E. The ac-
curacy evaluation points are selected to perform the extrap-
olation. In order to accommodate the directional characteris-
tics of the extrapolation performance, the evaluation point set
is selected for each direction (north, south, east, and west).
In each direction, three points are selected with different dis-
tances from the inner observation region: −5, 10, and 15◦.
All the locations of the extrapolation points are represented
in Table 1.

In the case with the environmental parameters (i.e., F10.7,
Kp, and SSN), real-time data may not exist at the extrapola-
tion epoch due to data latency. In order to simulate this data
latency, previous one-epoch (2 h) values are used instead of
the current values during the extrapolation process. This time
interval is not large because it is not a temporal prediction
method, but a spatial extrapolation method. The influence
of the time interval on the estimation performance is much
smaller than the ionosphere input data. True environmental
parameters are used in the training process, but the previous
one-epoch values are used in the extrapolation process. The
correlation analysis between the current and previous one-
epoch values confirms the correlation. The correlation coef-
ficients between the two adjacent epochs of data for F10.7,
Kp, and SSN are 0.930, 0.863, and 0.852, respectively. Since
the IGS GIM uses 2 h intervals, the Kp, which is provided
every 3 h, is interpolated at intervals of 2 h.

Figure 4. One-year variation of ionospheric delay (1 October 2013
to 30 October 2014, S15 (south 15◦ point)).

Previous research showed that extrapolation errors have a
high correlation with the ionospheric delay magnitude and
variation (Kim and Kim, 2014). Therefore, the high iono-
spheric delay season is more appropriate when evaluating the
extrapolation algorithm than the low ionospheric delay sea-
son. It means that if the magnitude of the ionospheric delay
and variation is small, all the extrapolation values and errors
are small. In this case, it is difficult to compare the extrap-
olation performance for each model. The training period is
set to 1 year from 1 October 2013 to 30 September 2014. In
this period, the minimum and maximum ionospheric delays
are 5.1 and 112.2 TECU (total electron content unit), respec-
tively, as shown in Fig. 4. The extrapolation period is set to
1 month from 1 to 31 October 2014. The region analyzed in
this paper is located around the midlatitudes. In this region,
the ionospheric spatial gradient is large in the north–south
direction. Also, since the southern area is close to the geo-
magnetic equator, its ionospheric variation is very large.

The training and extrapolation performance depend on
user parameters. In the case of the NN, extrapolation per-
formance mainly depends on the number of hidden neurons.
If the number of hidden neurons is too high, over-fitting may
occur, and the calculation time is long. Since there are no
criteria for determining the number of hidden neurons, the
optimal number of hidden neurons must be found by ana-
lyzing the extrapolation error variation due to the number of
neurons. The model parameters with the lowest test error are
adopted as the optimal values. In Figs. 5 and 6, test errors
are computed by the mean RMS extrapolation errors at the
5◦ extrapolation regions. In case of the NN, the number of
hidden neurons was selected as 80 where the error becomes
a minimum. In the case of the SVM, the extrapolation re-
sult also varies with the model parameters. This paper sets
the penalty, C, as 106 (Fig. 6), which causes the regression
function to almost equal y. The Gaussian function, which is
widely used in SVMs, is used as a kernel function, and σ is
set to 10−6. The values of σ and ε are selected via trial and
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Table 1. The locations of the extrapolation points.

Extrapolation point North East South West
(◦)

5 60◦ N, 125◦ E 35◦ N, 155◦ E 10◦ N, 125◦ E 35◦ N, 100◦ E
10 65◦ N, 125◦ E 35◦ N, 160◦ E 5◦ N, 125◦ E 35◦ N, 95◦ E
15 70◦ N, 125◦ E 35◦ N, 165◦ E 0◦ N, 125◦ E 35◦ N, 90◦ E

Figure 5. Test errors of different numbers of hidden neurons by the
NN model (5◦ extrapolation point).

error to determine the lowest extrapolation error case. They
are set to 10−6 and 10−7, respectively.

In order to select an ionospheric storm-related input pa-
rameter between Kp and Dst, a series of experiments was
performed by replacing Kp with Dst. The experiments con-
cluded that Kp is better for our estimation algorithm than Dst.
After replacing Kp with Dst, both the SVM and NN estima-
tion accuracies were degraded. At 5◦ extrapolation points,
the SVM estimation error was increased from 0.33 TECU
(Kp) to 0.44 TECU (Dst) and the NN estimation error was
increased from 0.45 to 0.63 TECU. Similar levels of error
increases were observed at both the 10 and 15◦ points. The
NN accuracy degradation with Dst was more significant dur-
ing high ionospheric disturbance period, when Dst <−25 nT
(9, 19–21, 28 October). However only 1 month of data is
tested in this research. One month may not be sufficient for
evaluating the estimation performance under various iono-
sphere conditions, e.g., CME-, CIR-, or CH HSS-related
ionospheric disturbances. Comprehensive analysis with a
longer data period, e.g., multiple years, can be a further re-
search topic.

5 Results

The regional ionosphere map extrapolation is performed us-
ing the SVM, and the IGS GIM is used as a truth value. The
SVM extrapolation results are compared with the NN and
Klobuchar model results. Hourly variations of the extrapo-

Figure 6. Test errors of different C values by the SVM model (5◦

extrapolation point).

lation results are analyzed with 1-day data, and then daily
variations of the results are analyzed with 1-month data.

5.1 Single-day extrapolation analysis

The variations of the ionospheric delay and the extrapolation
results are analyzed for the data from 28 October 2014, when
the daily ionospheric delay magnitude reaches its maximum
for the extrapolation period (October 2014).

Figure 7 shows the ionospheric delay variations of the IGS
GIM and Klobuchar model on 28 October 2014. Data from
two evaluation points, 5◦ north and south, are presented. Uni-
versal time (UT) is used. The ionospheric delay reaches its
maximum at 15:00 LT (06:00 UT) and then decreases. There
are large differences between the ionospheric delays at the
north and south points because of the ionospheric spatial
gradient (Kim et al., 2014). The north–south difference pro-
duced by the Klobuchar model is significantly smaller than
the IGS GIM.

Figure 8 shows the extrapolation results for 28 October
2014. Two extrapolation points, north 5◦ (N5) and south 5◦

(S5), are selected. In the case of N5, the extrapolation RMS
errors of the SVM and NN are 0.23 and 0.63 TECU, respec-
tively. The SVM outperforms the NN with a 63.5 % error
reduction. The NN error increase at 06:00 UT corresponds
to the ionosphere maximum at 06:00 UT in Fig. 7, and the
overall NN error variation at S5 follows the ionospheric de-
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Figure 7. Ionospheric delays of the IGS GIM and Klobuchar model
(south 5◦ and north 5◦ points).

Figure 8. Extrapolation error variations on 28 October 2014 (north
5◦ and south 5◦ points).

lay variation. The NN error at N5 and SVM errors at S5 and
N5 do not follow the ionospheric delay variation.

Figure 9 compares the RMS errors of four 5◦ extrapolation
points (N5, S5, E5, and W5) on 28 October 2014. The error
magnitude is the largest at the south point where the iono-
spheric delay magnitude is the largest. The SVM shows sim-
ilar error levels for the north, east, and west points. However,
the NN shows larger errors than the SVM even at the north
point. This difference in extrapolation accuracy may be ex-
plained via the ionospheric spatial gradient. The spatial gra-
dient along the north–south direction is significantly greater
than the gradient along the east–west direction (Kim et al.,
2014; Vuković and Kos, 2016). The large gradient increases
the geographical ionospheric delay difference and frequently
causes the NN error increase. However, the SVM is more
robust for this large amount of gradient data. In general iono-
sphere estimation errors increase at low geomagnetic latitude
(Song et al., 2018). However, the errors at E5 and W5 are
smaller than those at N5 point even though E5 and W5 are
located to the south of N5. This is because the input of the
model includes the internal ionospheric delay for solving a

Figure 9. Extrapolation errors for each direction (5◦ extrapolation
regions).

Figure 10. Extrapolation errors for each direction (10◦ extrapola-
tion regions).

spatial extrapolation problem. It implies that the ionospheric
spatial gradient is the main factor of the extrapolation perfor-
mances.

Figure 10 compares the RMS errors of four 10◦ extrapola-
tion points (N10, S10, E10, and W10) on 28 October 2014.
Unlike the 5◦ results in Fig. 7, there is little difference be-
tween the two models for the northern area. However, the
difference between the two models in the southern region is
increased to 0.63 TECU. It means that the extrapolation per-
formance of the SVM and the NN model is larger for the high
ionospheric variation region. The extrapolation errors of the
east and west region are not significantly different from those
in Fig. 9.

Figure 11 compares the RMS errors of four 15◦ extrapola-
tion points (N15, S15, E15, and W15). The overall error level
increases from that of the 5◦ points, but the SVM still out-
performs the NN, particularly at the south and north points.
The SVM error at the south point is 3.24 TECU, and the er-
ror reduction over the NN is 1.40 TECU, or 30.2 %. As the
extrapolation points become far away from the ionosphere
input data points, the extrapolation algorithm efficiency be-
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Figure 11. Extrapolation errors for each direction (15◦ extrapola-
tion regions).

Figure 12. Daily extrapolation RMS error variations in October
2014 (south 10◦ point).

comes diminished. Therefore, the accuracy difference be-
tween SVM and NN has been reduced.

5.2 One-month extrapolation analysis

The spatial extrapolations are performed for the 1-month pe-
riod from 1 to 31 October 2014. As with the single-day ex-
trapolation, the 1-year data from October 2013 to September
2014 are used for the training process.

Figure 12 shows the daily extrapolation errors for the
south 10◦ extrapolation point (S10) in October 2014. The 1-
month means of the daily RMS errors are 1.89 TECU for the
SVM and 2.54 TECU for the NN. During the 31 days, the
SVM achieved better performance than the NN for 26 days
(83.9 %). During low ionospheric delay periods, the differ-
ence in extrapolation performance between the two methods
is not significant (e.g., 9 and 10 October). However, during
high ionospheric delay periods, the difference becomes sig-
nificant (e.g., 28 October).

In order to analyze the hourly extrapolation performance,
the 1-month mean of each 2 h time interval is presented

Figure 13. Extrapolation RMS errors for each 2 h interval on Octo-
ber 2014 (south 10◦ point).

in Fig. 13. The time unit is Universal Time (UT). Both
the SVM and NN show an increase in extrapolation errors
at 06:00 UT. During the high ionospheric variation period,
04:00–08:00 UT, the mean of the SVM error is 0.88 TECU
lower than the error of the NN. Even during the low iono-
spheric variation period, 18:00–22:00 UT, the SVM error is
0.88 TECU lower than the NN. These results prove that the
extrapolation performance of the SVM model is better for
both large and small ionospheric delays. A correlation analy-
sis with the geomagnetic index, Kp, is performed by comput-
ing statistics for each Kp value. (This is not shown as a fig-
ure.) Over all Kp values, the SVM outperforms the NN with
the same level of improvement. The only exception is Kp= 5
on 5 October 12:00 UT, where the NN outperforms the SVM.
However, this high Kp happens only one time among 360
epochs, and a generalized conclusion requires a further re-
search.

Table 2 summarizes the extrapolation errors for all evalu-
ation points in October 2014. The 1-month mean of the er-
rors from four directions, north, south, east, and west, and
three ranges, 5, 10, and 15◦, are presented. The Klobuchar
model of the GPS navigation message (Klob.) is also shown
for comparison. In all ranges, even at the 15◦ points, both the
SVM and NN outperform the Klobuchar model. This proves
that the extrapolation methods are useful even in large ar-
eas. In the east and west points where the ionospheric spatial
gradient is small, the accuracy improvement provided by the
SVM is not significant because it can be suitable to gener-
alize the ionospheric delay by internal ionospheric delay in-
formation. The SVM error is 11.8 % smaller than that of the
NN in the W15 region. In the south region, the extrapolation
error is very large due to the large ionospheric variation, and
this results in the largest improvement provided by the SVM.
In particular, the S10 region contains the largest error dif-
ference, at approximately 0.65 TECU. The average error for
each region is the largest at the 10◦ extrapolation region.
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Table 2. One-month mean of extrapolation RMS errors using the SVM, NN, and Klobuchar models (unit=TECU).

Extrapolation region 5◦ 10◦ 15◦

Klob. SVM NN Klob. SVM NN Klob. SVM NN

North 14.41 0.32 0.68 13.07 1.02 1.06 12.04 1.97 1.90
East 14.63 0.17 0.20 14.57 0.51 0.71 14.47 1.00 1.13
West 13.38 0.24 0.25 13.29 0.64 0.63 13.12 1.27 1.44
South 25.13 0.57 0.67 24.40 1.89 2.54 26.97 3.58 3.79

Total 16.89 0.33 0.45 16.33 1.01 1.23 16.65 1.95 2.06

Table 3. One-month mean of extrapolation RMS errors with three parameterizations (SVM model, unit=TECU).

Extrapolation region 5◦ 10◦ 15◦

F10.7 SSN SSN+F10.7 F10.7 SSN SSN+F10.7 F10.7 SSN SSN+F10.7

North 0.31 0.31 0.32 1.11 1.14 1.02 2.05 1.98 1.97
East 0.26 0.25 0.17 0.58 0.57 0.51 1.06 1.06 1.00
West 0.26 0.26 0.24 0.78 0.80 0.64 1.25 1.26 1.27
South 0.66 0.67 0.57 1.95 1.93 1.89 3.62 3.65 3.58

Total 0.34 0.34 0.33 1.11 1.11 1.01 2.00 1.98 1.95

Table 4. One-month mean of extrapolation RMS errors with three parameterizations (NN model, unit=TECU).

Extrapolation region 5◦ 10◦ 15◦

F10.7 SSN SSN+F10.7 F10.7 SSN SSN+F10.7 F10.7 SSN SSN+F10.7

North 0.66 0.64 0.68 1.16 1.20 1.06 2.05 2.01 1.90
East 0.25 0.24 0.20 0.73 0.68 0.71 1.14 1.15 1.13
West 0.25 0.23 0.25 0.78 0.83 0.63 1.46 1.48 1.44
South 0.88 0.73 0.67 2.82 2.63 2.54 3.90 3.91 3.79

Total 0.51 0.46 0.45 1.37 1.34 1.23 2.14 2.14 2.06

The difference may mainly result from the fact that the
generalization performance of the SVM model is better than
that of the NN for the ionospheric variations. Since iono-
sphere environment depends on its geomagnetic locations,
the proposed extrapolation algorithm performance might
be different at other locations. If the estimation region is
changed, a new training and optimization process should be
performed.

In order to determine optimal parameters between F10.7
and SSN, two more cases are tested; F10.7 only and SSN
only. Optimal estimator structure is changing with the selec-
tion of input parameters. Before comparing the single param-
eter (F10.7 only or SNN only) results with the dual parameter
(F10.7 and SNN) results, the same types of parameter opti-
mizations are performed as those in Figs. 5 and 6 for each
single parameter case. The SVM C value is set to 10 000 for
both cases. The optimal numbers of hidden neurons are se-
lected to 55 for the F10.7 case and 45 for the SSN case.

The extrapolation RMS errors of the single (F10.7 or SSN)
and dual (F10.7+SSN) parameters are presented in Table 3
(SVM) and Table 4 (NN). The total mean errors of the single
parameter cases are greater than the dual parameter case at
all extrapolation points for both estimation models. Increase
of the NN errors with the single parameters at north and
south points are significant. Effect of F10.7 and SSN may
be complementary to each other during geomagnetic storm
days (19–22 October). In this period, the estimation error re-
duction by the dual parameters are 26 % for SVM model and
22 % for NN model.

6 Conclusions

The coverage area of a regional ionosphere map is deter-
mined by the distribution of GNSS ground stations. This pa-
per proposes a spatial extrapolation algorithm to extend the
ionosphere map coverage using a SVM. One year of IGS
GIM ionospheric delay data over South Korea and environ-
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mental parameters are used as input data sets to train the
SVM algorithm. From the training results, 1 month of iono-
spheric delay data outside the input data region is estimated.
In addition to solar and geomagnetic environmental param-
eters, current ionospheric delay data in the inner data region
are used to estimate the ionospheric delay data in the outside
region.

The estimation accuracy is evaluated at 12 points; four di-
rections (north, south, east, and west) and three distances (5,
10, and 15◦). The accuracy improvement by the SVM is com-
pared with the NN. The 1-month mean of the estimation er-
ror produced by the SVM is 0.33 TECU for the 5◦ region,
1.01 TECU for the 10◦ region, and 1.95 TECU for the 15◦

region. The improvement levels over the NN for the 5, 10,
and 15◦ regions are 26.7, 17.9, and 5.3 %, respectively. The
error reduction by the SVM over NN is more significant at
near points than at remote points.

Among the four directions, the error in the south region is
the largest. The ionospheric delay and variation in the north
region is usually smaller than the delay either in the east or
west, but the extrapolation accuracy in the north region is
even larger than in the east or west. A larger spatial gradient
along the south–north direction over the east–west direction
may explain this difference. This dependency on the iono-
spheric spatial gradient can be explained by the inherent na-
ture of extrapolation. A large gradient along the south–north
direction implies more sensitivity along the south–north di-
rection data. The north point data are more sensitive to the
southern region’s input data than the western or eastern re-
gions’ input data. Since the southern region’s input data has
a larger variation than other regions, its variation directly af-
fects the north point estimate and increases the error.

Although artificial neural networks are the most widely
used machine learning algorithm for classification and re-
gression problems, a SVM model is also powerful for pre-
dicting problems because of its generalization performance.
Because a SVM is defined by a convex optimization prob-
lem, there are no local minima solutions. As SVM is based
on structural risk minimization, it shows excellent general-
ization performance. In the case of our ionosphere extrapo-
lation problem, the SVM demonstrates a better performance
than the NN.

Data availability. The IGS global ionosphere map data are avail-
able in the IGS data center. Ionosphere map data used in the analy-
sis can be freely accessed at ftp://cddis.nasa.gov/pub/gps/products/
ionex/ (IGS, 2019).
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