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Abstract. The objects of research in this work are evanescent
wave modes in a gravitationally stratified atmosphere and
their associated pseudo-modes. Whereas the former, accord-
ing to the dispersion relation, rapidly decrease with distance
from a certain surface, the latter, having the same dispersion
law, differ from the first by the form of polarization and the
nature of decrease from the surface. Within a linear hydro-
dynamic model, the propagation features of evanescent wave
modes in an isothermal atmosphere are studied. Research is
carried out for different assumptions about the properties of
the disturbances. In this way, a new wave mode – anelas-
tic evanescent wave mode – was discovered that satisfies the
dispersion relation ω2

= kxg (γ − 1). Also, the possibility of
the existence of a pseudo-mode related to it is indicated. The
case of two isothermal media differing in temperature at the
interface is studied in detail. It is shown that a non-divergent
pseudo-mode with a horizontal scale kx ∼ 1/2H1 can be re-
alized on the interface with dispersion ω2

= kxg. Dispersion
relation ω2

= kxg (γ − 1) at the interface of two media is sat-
isfied by the wave mode, which has different types of ampli-
tude versus height dependencies at different horizontal scales
kx . The applicability of the obtained results to clarify the
properties of the f -mode observed on the Sun is analyzed.

1 Introduction

Acoustic-gravity waves (AGWs) in the Earth’s atmosphere
have been studied theoretically and experimentally for more
than 60 years. The linear theory of AGW (Hines, 1960; Yeh
and Liu, 1974; Francis, 1975) admits the existence in the
atmosphere of a continuous spectrum of freely propagating
waves, consisting of acoustic and gravity regions on the dis-

persion plane, as well as of evanescent modes, which can
only propagate horizontally.

The freely propagating AGWs effectively transfer the en-
ergy and momentum between various atmospheric layers and
thus play an important role in the dynamics and energy bal-
ance of the atmosphere. These waves are generated by vari-
ous sources (both natural and technogenic ones), which are
accompanied by a significant energy output into the atmo-
sphere. Further, when the AGWs propagate upward, the en-
ergy conservation compensates for the decrease in the atmo-
spheric density with the height by exponentially increasing
amplitude. Therefore at a certain height the waves become
nonlinear. Significant progress in the development of the
nonlinear theory of AGWs was achieved by a number of au-
thors, in particular, Belashov (1990), Nekrasov et al. (1995),
Kaladze et al. (2008), Stenflo and Shukla (2009), and Huang
et al. (2014). Numerical modeling of the freely propagat-
ing AGWs in the realistic viscous and heat-conducting atmo-
sphere is an important area of modern studies of these waves
(i.e., Cheremnykh et al., 2010; Vadas and Nicolls, 2012).

Satellite observations of AGWs in the Earth’s polar ther-
mosphere indicate a prevailing presence of waves with os-
cillation periods concentrated around the Brunt–Väisälä pe-
riod and of horizontal scales of about 500–700 km (Johnson
et al., 1995; Innis and Conde, 2002; Fedorenko et al., 2015).
Azimuths of the propagation of these AGWs demonstrate the
close connection with the directions of background winds in
the thermosphere. Moreover, the amplitudes of the waves de-
pend on the speed of headwind, but do not depend on height
(Fedorenko and Kryuchkov, 2013; Fedorenko et al., 2018).
These experimental results cannot be sufficiently explained
by the theory of freely propagating AGWs. They may in-
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dicate waveguide or evanescent (along a horizontal surface)
propagation of at least part of the observed waves.

As well as freely propagating AGWs, evanescent wave
modes also play an important role in atmospheric dynamics
of the Sun and planets. Evanescent waves propagate horizon-
tally in an atmosphere, vertically stratified by gravity, subject
to the presence of vertical gradients of parameters. The en-
ergy of these waves should decrease both up and down from
the level at which they are generated. Therefore, evanescent
waves are most effectively generated in areas of presence of
significant vertical gradients of temperature and density or
strong local currents. For example, in the solar atmosphere
suitable conditions for realization of evanescent modes oc-
cur at the boundary between the chromosphere and corona.
This follows from the analysis made by Jones (1969) for the
so-called non-divergent modes of solar oscillations. In the
Earth’s atmosphere, such waves can be efficiently generated
at sharp vertical temperature gradients, for example, at the
base of the thermosphere or at the heights of the tropopause
and mesopause. Also, evanescent wave modes can emerge in
the presence of strong inhomogeneous winds, for example,
in the region of the polar circulation of the thermosphere.

The study of evanescent waves traditionally gets less at-
tention than the study of freely propagating AGWs. The most
known of them are the horizontal Lamb wave and vertical os-
cillations with Brunt–Väisälä (BV) frequency (Beer, 1974;
Waltercheid and Hecht, 2003). In hydrodynamics, physics
of terrestrial and solar atmosphere, the surface gravity mode
with dispersionω2

= kxg, is also well studied (Tolstoy, 1963;
Jones, 1969). In particular, it was shown that it is the fun-
damental mode (f -mode) of oscillations in the solar atmo-
sphere (Jones, 1969). Experimental f -mode observations are
used to study flows, refinement of the solar radius, and other
parameters of the Sun (Ghosh et al., 1995; Antia, 1998). In
the Earth’s atmosphere, evanescent waves are often observed
at altitudes near the mesopause using ground-based instru-
mentation (Shimkhada et al., 2009).

In this paper, different types of evanescent acoustic-gravity
modes characteristic of an isothermal atmosphere are inves-
tigated using a set of linearized hydrodynamic equations. In
particular, the possibility of the existence of a new type of
evanescent acoustic-gravity mode with the dispersion ω2

=

kxg (γ − 1) is proved in the assumption of anelasticity of the
disturbance. Also, the possibility of realizing the evanescent
modes in the model of a thin temperature gap is studied.

2 Evanescent modes in the isothermal atmosphere

Consider an unbounded ideal isothermal atmosphere, strat-
ified in a field of gravity. Linear perturbations in such a
medium satisfy a set of four first-order hydrodynamic equa-
tions (Hines, 1960). These equations are convenient to bring
to a set of two second-order equations for the perturbations of
the horizontal Vx and vertical Vz particle velocities (Tolstoy,

1963):

ρ0
∂2Vx

∂t2
=−ρ0g

∂Vz

∂x
+
∂

∂x

[
ρ0c

2
(
∂Vx

∂x
+
∂Vz

∂z

)]
, (1)

ρ0
∂2Vz

∂t2
= ρ0g

∂Vx

∂x
+
∂

∂z

[
ρ0c

2
(
∂Vx

∂x
+
∂Vz

∂z

)]
, (2)

where ρ0, γ , and g denote background atmosphere den-
sity, ratio of specific heats, and acceleration of grav-
ity, respectively; c =

√
γ gH is the sound speed, H =

−ρ0/(dρ0/dz)= kT /mg is the density-scale height, T is the
temperature, k is the Boltzmann constant, andm is the molec-
ular mass of the atmospheric gas.

Solutions to Eqs. (1) and (2) are searched for in the form

Vx,Vz ∼ exp(a z)exp [i (ω t − kxx)] , (3)

where ω and kx are cyclic frequency and horizontal compo-
nent of the wave vector, respectively; parameter a sets the
vertical scale of the change in the amplitude of velocities, Vx
and Vz, with the height, z. For brevity, we will refer to a as
the stratification of the corresponding mode.

Equations (1) and (2) admit, similarly to Hines (1960), on
the existence on the “frequency–wave number” plot of re-
gions of freely propagating gravity and acoustic waves, in
which a = 1

2H ± ikz and kz is the vertical component of the
wave vector. Also, from Eqs. (1) and (2) we get the solutions
in the form of evanescent wave modes with real a and propa-
gating horizontally (Waltercheid and Hecht, 2003). Solutions
in the form of evanescent modes are usually obtained by im-
posing additional conditions on the perturbation properties.

2.1 Non-divergent and pseudo-non-divergent modes

Let us note the well-known hydrodynamics approximation of
perturbations incompressibility (see, e.g., Ladikov-Roev and
Cheremnykh, 2010), for which

divV =
∂Vx

∂x
+
∂Vz

∂z
= 0. (4)

In frames of this approximation, we obtain the following
equations from Eqs. (1) and (2):

∂2Vx

∂t2
=−g

∂Vz

∂x
, (5)

∂2Vz

∂t2
= g

∂Vx

∂x
. (6)

After substituting Eq. (3) into Eqs. (5) and (6), we find that

−ω2Vx = ikxgVz,

−ω2Vz =−ikxgVx .

This yields a dispersion equation for incompressible wave
modes in the form

ω2
= kxg. (7)
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Given the dispersion found, we obtain an expression for the
polarization of the incompressible modes:

Vz = iVx . (8)

Further, from the condition (Eq. 4) and polarization (Eq. 8)
we get a = kx . Insofar as a is a real value, then non-
divergent (ND) wave mode has no periodic vertical solution
and is horizontally propagating.

Let us show that the dispersion relation (Eq. 7) is also
satisfied by another wave mode. After using this relation in
Eqs. (1) and (2), we get

Vx (γ Hkx − 1)− iVz (1− γ aH)= 0, (9)

iVx (1− γ Ha− γ )−Vz

(
1+

γ Ha2

kx
−
γ a

kx

)
= 0. (10)

From Eqs. (9) and (10) follow

a2
−
a

H
+
kx

H
(1− kxH)= 0,

which implies that there are two solutions to this equation:

a = kx,a =
1
H
− kx . (11)

The first solution in Eq. (11) corresponds to the non-
divergent (ND) wave mode, and the second one we call
pseudo-non-divergent mode (NDp). The expression for po-
larization NDp is obtained from Eq. (9) and has the form

Vx

(
1
γ H
− kx

)
=−i

(
kx −

γ − 1
γ H

)
Vz.

Also for this mode, the following equation holds:

divV =
Vz

H

(1− 2kxH)
(1− γ kxH)

,

which shows that for the NDp mode divV = 0 only when
kx = 1/2H .

2.2 Anelastic and pseudo-anelastic modes

Let us show that Eqs. (1) and (2) indicate that another wave
mode, not previously studied, may exist. To do this, we in-
troduce, according to Bannon (1996), the anelastic linear per-
turbations, which satisfy the condition

div(ρ0V )= 0. (12)

In the isothermal atmosphere with barometric density distri-
bution we have

∂ρ0

∂z
=−

ρ0

H
;

therefore, for such anelastic perturbations, the following
equation holds:

divV =
Vz

H
. (13)

Substituting Eq. (13) into Eqs. (1) and (2), we get

∂2Vx

∂t2
= g (γ − 1)

∂Vz

∂x
,

∂2Vz

∂t2
=−g (γ − 1)

∂Vx

∂x
.

Thus, given Eq. (3), this should be

ω2Vx = ikxg (γ − 1)Vz, (14)

ω2Vz =−ikx (γ − 1)gVx . (15)

Then the dispersion equation for anelastic (AE) modes takes
the form

ω2
= kxg (γ − 1) . (16)

With the resulting dispersion, polarization follows from
Eqs. (14) and (15):

Vx = iVz. (17)

Further, taking into account Eq. (13), we obtain a = 1
H
− kx .

Consequently, the AE mode also does not have a solution
periodic vertically and can only propagate horizontally.

After substituting the dispersion (Eq. 16) into
Eqs. (1) and (2), we get

Vx (1− γ + γHkx)− iVz (1− γ aH)= 0, (18)

iVx (1− γ + γHa)+Vz

(
1− γ −

γHa2

kx
+
γ a

kx

)
= 0, (19)

whence we get a pair of values a identical to Eq. (11). Conse-
quently, there is another wave solution that satisfies Eq. (16):
we call it the pseudo-anelastic (AEp) mode. The first value in
Eq. (11) corresponds to the AEp wave mode, and the second
to the AE one.

Polarization of the AEp mode has the form

Vx

(
kx −

γ − 1
γ H

)
=−i

(
1
γ H
− kx

)
Vz

that follows from Eqs. (18) or (19).

3 General properties of evanescent modes

Let us prove that the different types of evanescent modes
characteristic of an isothermal atmosphere are related. We
substitute Eq. (3) into Eqs. (1) and (2) without additional
conditions that were imposed in Sect. 2 when deriving ND
and AE modes. As a result, we get

Vz

(
a−

g

c2

)
− ikxVx

(
1−

ω2

k2
xc

2

)
= 0, (20)

Vx

(
a−

N2

g

)
− ikxVz

(
N2

ω2 − 1
)
= 0, (21)
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where N2
=

g
H
(γ−1)
γ

is the square of the Brunt–Väisälä fre-
quency.

From Eqs. (20) and (21) we obtain the dispersion equation(
1
γH
− a

)(
a−

γ − 1
γH

)
= k2

x

(
N2

ω2 − 1
)(

1−
ω2

k2
xc

2

)
. (22)

Expressions ω2
=N2 and ω2

= k2
xc

2 are well-known dis-
persions of Brunt–Väisälä oscillations with a = 1/γH and
Lamb waves (L) with a = (γ − 1)/γH ; in addition to these
known modes, dispersion (Eq. 22) also admits the existence
of additional solutions in the form of BV pseudo-modes
(BVp) with ω2

=N2, a = (γ − 1)/γH and Lamb pseudo-
modes (Lp) with ω2

= k2
xc

2, a = 1/γH (Beer, 1974; Wal-
tercheid and Hecht, 2003).

Then represent Eq. (22) in the form of a quadratic equation
with respect to a:

a2
−
a

H
+
ω2

c2 − k
2
x +

k2
xg

2

ω2c2 (γ − 1)= 0.

The solution to this equation is

a =
1

2H
±

√(
kxg−ω

2)(ω2
− kxg (γ − 1)

)
ω2c2 +

(
kx −

1
2H

)2

, (23)

from which it follows that for modes with dispersions ω2
=

kxg (γ − 1) and ω2
= kxg there are two possible values: a =

kx and a = 1
H
−kx . The first value corresponds to modes ND

and AEp, and the second to NDp and AE.
Thus, each evanescent mode can be associated with a

pseudo-mode which satisfies the same dispersion relation
but differs in polarization and dependence of the amplitude
from the height, i.e., in its stratification. Table 1 presents
the properties of different evanescent modes characteristic
of the isothermal atmosphere: BV oscillations, Lamb waves,
non-divergent and anelastic modes, along with associated
pseudo-modes: BVp, Lp, NDp, AEp. Table 1 shows that for
all pseudo-modes, the polarization changes depending on the
value of kx . Wave modes AE and ND at kx = 1/2H com-
pletely coincide with AEp and NDp, respectively.

The location of the dispersion curves for anelastic and
non-divergent modes relative to gravity and acoustic regions
in the (ω,kx) plane is shown in Fig. 1. The ω2

= kxg (γ − 1)
mode touches the gravity region of freely propagating AGWs
at the same value kx = 1/2H at which the ω2

= kxg curve
touches the acoustic region (see Fig. 1). In this case, the
dispersion curves of AE and ND modes are symmetric rel-
ative to the “characteristic” curve (see Beer, 1974), which
separates the AGW acoustic region from the AGW grav-
ity region. In fact, the characteristic curve is the geometric
mean of the dispersion curves of AE and ND modes with
ω2
=
√
k2
xg

2 (γ − 1)=Nkxc.
From Fig. 1 we see that the dispersion curves of differ-

ent evanescent modes have intersections at separate points.
A Lamb dispersion curve with ω2

= k2
xc

2 intersects the BV

Figure 1. Dispersion dependencies ω = f (kx): (1) boundaries be-
tween acoustic and gravity regions for freely propagating waves
(dashed lines); (2) evanescent modes: ω =

√
kxg (upper solid

curve) and ω =
√
kxg (γ − 1) (lower solid curve), ω =N (thin hor-

izontal line), and ω = kxc (thin sloping straight line).

curve with ω2
=N2 at the point kx =N/c. However, these

modes cannot interact with each other by reason of different
polarizations and values of a. At the same time, the pairs Lp-
BV and L-BVp completely coincide in these properties and
are indistinguishable at the intersection points.

Dispersion curves ω2
= kxg and ω2

= kxg (γ − 1) inter-
sect with the Lamb curve and the BV curve at points kx =
1/γ H , kx = (γ − 1)/γ H . In addition, the ND mode curve
intersects with the Lamb curve at the same value kx at which
the AE mode curve intersects with the BV curve (see Fig. 1).
ND and AE modes cannot interact with the Lamb mode
and BV oscillations due to different polarizations (Table 1).
Pseudo-modes NDp and AEp, at the points of intersection
with the Lamb wave and the BV oscillations, have the same
polarization and values of a. Similarly, ND and AE are indis-
tinguishable at the points of intersection with Lp and BVp.
Table 2 shows all evanescent modes that coincide with each
other at the points of intersection of the dispersion curves,
and between which interaction is possible. The cases of ND
and AE mode curves intersection with curves (a = 1/2H),
which separate the area of freely propagating AGWs from
the evanescent area, are not presented in Table 2.

3.1 The energy of evanescent modes in an isothermal
atmosphere

In Sects. 2 and 3, we considered a model of an un-
bounded isothermal stratified atmosphere to determine which
types of evanescent modes can satisfy the initial system
of Eqs. (1) and (2). However, in an infinitely extended
medium, the necessary condition for the existence of evanes-
cent modes is the absence of unlimited growth of oscillation
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Table 1. Properties of different evanescent acoustic-gravity modes.

Mode type Dispersion a Polarization

Lamb wave (L) ω2
= k2

xc
2 γ−1

γH
Vz = 0;Vx 6= 0

Lamb’s pseudo-mode (Lp) 1
γH

Vx (2− γ )kxg = i
(
N2
− k2

xc
2
)
Vz

BV oscillations (BV) ω2
=N2 1

γH
Vx = 0;Vz 6= 0

BV pseudo-mode (BVp) γ−1
γH

Vx

(
k2
xc

2
−N2

)
= i (2− γ )kxgVz

Non-divergent (ND) mode, divV = 0 ω2
= kxg kx Vx =−iVz

Pseudo-non-divergent mode (NDp), divV 6= 0 1
H
− kx Vx

(
1
γH
− kx

)
=−i

(
kx −

γ−1
γH

)
Vz

Anelastic mode (AE), div(ρ0V )= 0 ω2
= kxg (γ − 1) 1

H
− kx Vx = iVz

Pseudo-anelastic mode (AEp), div(ρ0V ) 6= 0 kx Vx

(
kx −

γ−1
γH

)
= i

(
1
γH
− kx

)
Vz

Table 2. The coincidence of the evanescent mode properties at the intersection points of the dispersion curves. Note: the bottom rows show
the modes that are indistinguishable from the corresponding mode of the top row at the point of intersection of the dispersion curves.

Lamb Lamb’s pseudo- BV BV pseudo- Non-divergent Pseudo-non- Anelastic Pseudo-anelastic
wave (L) mode (Lp) oscillations mode (BVp) mode (ND) divergent mode (AE) mode (AEp)

(BV) mode (NDp)

BVp BV Lp L Lp L Lp L
NDp ND NDp ND BVp BV BVp BV
AEp AE AEp AE

energy above and below the height level at which they are
generated. It is easy to verify that in an isothermal infinite
atmosphere, none of the modes listed in Table 1 satisfy this
condition.

Suppose further that an evanescent wave is generated at
a certain altitude level z= 0. The kinetic energy density
E ∼ ρ (z)

(
V 2
x +V

2
z

)
of waves should decrease both up and

down from the level z= 0. When z→+∞ the energy den-
sity E ∼ exp

(
2a− 1

H

)
z→ 0, if a < 1/2H , and E→∞,

if a > 1/2H . When z→−∞ the energy density E→ 0, if
a > 1/2H , and E→∞, if a < 1/2H . Based on these con-
siderations, it is not difficult to understand how the energy
density varies with height for different types of evanescent
modes in an infinite isothermal atmosphere (see Table 3).
Therefore, for the realization of such modes, it is necessary
to have boundaries in the medium at which the condition for
reducing energy in both directions from this boundary can be
satisfied.

The presence of boundaries is not the only condition that
can limit the energy of the evanescent mode. If the equal-
ity a = 1/2H holds for these modes, then their energy does
not vary with height in an isothermal atmosphere. For an in-
finite atmosphere, this solution does not seem to be phys-
ical, but it can make sense for a real atmosphere of finite
height. As follows from Eq. (11), for the ND and AE modes,
as well as their pseudo-modes, the condition a = 1/2H per-
formed at the point kx = 1/2H . Also, at this point, the ND
mode is identical to the NDp mode, and the AE mode com-

pletely coincides with AEp. In addition, when kx = 1/2H
these evanescent modes adjoin the border of regions of freely
propagating AGWs (see Fig. 1).

Consider some features of the energy balance for the
evanescent modes. It follows from Eq. (20) that

|Vz|
2
(
a−

g

c2

)2
= k2

x |Vx |
2
(

1−
ω2

k2
xc

2

)2

. (24)

Combining Eqs. (22) and (24) gives the relation

ρ0|Vx |
2
(

1−
ω2

k2
xc

2

)(
a−

N2

g

)
= ρ0|Vz|

2
(
N2

ω2 − 1
)( g

c2 − a
)
. (25)

The average density of the kinetic energy of the perturba-
tions is Ek =

1
4ρ0

(
V 2
x +V

2
z

)
, and of the potential energy

it is Ep =
1
4ρ0

(
V 2
x
ω2

k2
xc

2 +V
2
z
N2

ω2

)
(Yeh and Liu, 1974; Fe-

dorenko, 2010). Therefore, from Eq. (25) it follows that for
the evanescent modes Ek 6= Ep. At the same time, for freely
propagating AGWs, the equality Ek = Ep is always fulfilled
(Yeh and Liu, 1974). At the point a = 1/2H where evanes-
cent modes on the plane (ω,kx) in Fig. 1 are adjacent to areas
of freely propagating AGWs, the equality a− N2

g
=

g

c2 − a

holds. Taking this circumstance into account, from Eq. (25)
we obtain
ρ0

4

(
|Vx |

2
+ |Vz|

2
)
=
ρ0

4

(
|Vx |

2 ω
2

k2
xc

2 + |Vz|
2N

2

ω2

)
; (26)
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Table 3. The change in energy density of evanescent modes with height in an infinite isothermal atmosphere.

Domain Lamb Lamb’s BV BV pseudo- Non-divergent Pseudo-non- Anelastic pseudo-
wave Pseudo- oscillations mode (BVp) mode (ND) divergent mode (AE) anelastic
(L) mode (Lp) (BV) mode (NDp) mode (AEp)

z→+∞ E→ 0 E→∞ E→∞ E→ 0 E→ 0, E→ 0, E→ 0, E→ 0,
kx < 1/2H kx > 1/2H kx > 1/2H kx < 1/2H
E→∞, E→∞, E→∞, E→∞,

kx > 1/2H kx < 1/2H kx < 1/2H kx > 1/2H

z→−∞ E→∞ E→ 0 E→ 0 E→∞ E→∞, E→∞, E→∞, E→∞,

kx < 1/2H kx > 1/2H kx > 1/2H kx < 1/2H
E→ 0, E→ 0, E→ 0, E→ 0,
kx > 1/2H kx < 1/2H kx < 1/2H kx > 1/2H

that is, at this point Ek = Ep.

4 Evanescent modes at the interface of isothermal
media

Let us consider the possibility of realization of evanescent
modes in the atmosphere at a thin interface between two
isothermal half-spaces of infinite extent, which differ in tem-
perature T . Let the boundary be localized at some alti-
tude level z= 0. In the lower half-space (z < 0) we have
T = T1, while in the upper half-space (z > 0) we have
T = T2 and it is assumed that T2 > T1. Note that a simi-
lar model was considered by Rosental and Gough (1994).
We will search for solutions to Eqs. (1) and (2) in the form
of Vx,Vz ∼ exp(a1z)exp[i (ω t − kxx)] for the lower half-
plane and in the form Vx,Vz ∼ exp(a2z)exp[i (ωt − kxx)]
for the upper half-plane. Substituting these dependencies into
Eqs. (1) and (2) yields

a1 =
1

2H1
±

(
1

4H 2
1
−
ω2

c2
1
+ k2

x − k
2
x

N2
1
ω2

)1/2

, (27)

a2 =
1

2H2
±

(
1

4H 2
2
−
ω2

c2
2
+ k2

x − k
2
x

N2
2
ω2

)1/2

. (28)

Here indices 1 and 2 denote the values in the lower and
upper half-spaces, respectively.

The density of the kinetic energy of evanescent waves
should decrease from the level z= 0 both up and down.
This condition limits the possible values of a1 and a2. In
the upper half-space (z > 0), when z→+∞, the energy
density E2 ∼ exp

(
2a2−

1
H2

)
z→ 0 if a2 < 1/2H2. In the

lower half-space (z < 0), when z→−∞, the energy density
E1 ∼ exp

(
2a1−

1
H1

)
z→ 0 if a1 > 1/2H1. Therefore, it is

necessary to take in Eq. (27) for a1 the solution with a “+”
sign and in Eq. (28) for a2 with a “−” sign, so that the energy
decreases on both sides of the interface.

It is also necessary to consider that the possible values of
a1 and a2 must satisfy the boundary condition (Tolstoy, 1963;

Rosental and Gough, 1994), arising from Eqs. (1) and (2):

ρ1c
2
1
gk2
x −ω

2a1

ω2− c2
1k

2
x

∣∣∣∣∣
z=−0

= ρ2c
2
2
gk2
x −ω

2a2

ω2− c2
2k

2
x

∣∣∣∣∣
z=+0

, (29)

where ρ1 and ρ2 are the densities on both sides of the bound-
ary. The procedure for deriving equality (Eq. 29) is exactly
the same as in the papers by Cheremnykh et al. (2018a, b).
When obtaining Eq. (29) we require continuity of the verti-
cal velocity component (kinematic condition) and perturbed
pressure (dynamic condition). In the barometric atmosphere
we have ρc2

= γp0, where p0 is the equilibrium pressure,
which must be continuous across the interface. Therefore,
when γ1 = γ2, Eq. (29) can be written as

gk2
x −ω

2a1

ω2− c2
1k

2
x

=
gk2
x −ω

2a2

ω2− c2
2k

2
x

. (30)

Dispersion dependencies of ω = f (kx) calculated numer-
ically by means of Eq. (30) are shown in Fig. 2a for different
values of the parameter d =H2/H1. On each of these curves,
the condition for decreasing energy up and down from the
interface is satisfied. The long-wavelength part of the spec-
trum, where the most interesting features appear, is shown in
more detail in Fig. 2b. Also shown in these figures are the dis-
persion curves ω =

√
kxg and ω =

√
kxg (γ − 1) for the ND

and AE wave modes. The discontinuities of the ω = f (kx)
curves, as well as their cut-off for smaller kx values, are due
to requirements a1 > 1/2H1 and a2 < 1/2H2. Some features
of the behavior of ω = f (kx) will be discussed below.

As shown by Miles and Roberts (1992), the dispersion
Eq. (30) can be rewritten to a polynomial form suitable for
analysis:

ω8
− 2c2

1 (d + 1)k2
xω

6
+

[
c4

1(d + 1)2k4
x + (2γ − 1)k2

xg
2
]

×ω4
− 2(γ − 1)c2

1 (d + 1)k4
xg

2ω2
− c4

1(d − 1)2k6
xg

2
= 0. (31)

Non-physical solutions (Miles and Roberts, 1992) arising
from quadratic expressions under the radicals were ex-
cluded from consideration while obtaining Eq. (31) (see
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Figure 2. Dispersion dependencies ω = f (kx) at the boundary of the discontinuity for different values of the parameter d . General depen-
dence (a), long-wave part in more detail (b).

Eqs. 27 and 28). Solutions of Eq. (31) can be analyzed by
studying their asymptotic behavior.

If k2
xc

2
1� ω2, then from Eq. (31), we get

ω4
−

2N2
1

d + 1
ω2
−
(d − 1)2

(d + 1)2
k2
xg

2
≈ 0.

It follows from this expression that

ω2
=

1
d + 1

[
N2

1 +

√
N4

1 + (d − 1)2k2
xg

2
]
. (32)

Equation (32) contains an interesting dependence of the fre-
quency on the parameter d. In the limit d→∞, the disper-
sion ω2

≈ kxg of the ND (NDp) mode, independent of the
properties of both environments, follows from Eq. (32). With
d→ 1 and using Eq. (32), we obtain the dispersion of the BV
(BVp) mode with the parameters of the lower medium, that
is, ω2

≈N2
1 . The indicated asymptotic features are visible on

the curves shown in Fig. 2 below.
In the long-wave limit, i.e., at kx→ 0, from Eq. (31) it

follows that

(2γ − 1)ω4
− 2(γ − 1)c2

1 (d + 1)k2
xω

2
− c4

1(d − 1)2k4
x ≈ 0.

Hence we find that

ω2
=

c2
1k

2
x

2γ − 1

[
(γ − 1)(d + 1)+

√
γ 2(d + 1)2− 4d (2γ − 1)

]
. (33)

For the considered small kx , for different values of d , from
Eq. (33) we obtain the family of Lamb-type acoustic modes
(see Fig. 2b). For large values of d , using Eq. (33), we ob-
tain the expression ω2

≈ c2
1k

2
xd = c

2
2k

2
x ; i.e., the oscillation

frequency is determined by the characteristics of the medium
in the upper half-space.

The evanescent modes’ frequencies lie on the (ω, kx)
plane between the acoustic and gravity regions of freely
propagating AGWs determined for upper and lower media

separately (see Fig. 1). It is necessary to take into account
when considering evanescent modes at the boundary of two
isothermal media with different temperatures that the evanes-
cent regions are different in the upper and lower half-planes.
On the (ω, kx) plane, these regions are shifted more rela-
tive to each other the more the value of d is. At the same
time, the wave modes at the interface of the media should re-
main evanescent in both media, and their dispersions should
be enclosed within the overlap region of two evanescent re-
gions. The cut-off curves for evanescent regions in the media
under consideration are obtained in the case of the null ex-
pressions under the radicals in Eqs. (27) and (28). Gaps on
the ω = f (kx) dispersion curves are due to the evanescent
areas of the two media not matching (see Fig. 3).

Note that the dispersion curves ω = f (kx) for values d ≤
4 are mostly inside both evanescent regions (see Fig. 3a, b),
except for the longest waves. When d ≥ 4, the dispersion
curve ω = f (kx) breaks into two separate branches (see
Fig. 3c, d). The long-wave branch is acoustic, and another
branch with kx ≥ 0.4H1 is surface gravity by its physical na-
ture.

5 Characteristic scales of ND and AE evanescent
modes on the discontinuity

In an unlimited isothermal medium, evanescent modes are
separate “pure” solutions of hydrodynamic equations. At the
interface between two isothermal media with different tem-
peratures, dispersion of the evanescent modes has a com-
bined character, comprising different types of “pure” modes,
depending on the value of the parameter d and spectral prop-
erties ω (kx).
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Figure 3. Dispersion dependencies of the ω = f (kx) type at the temperature discontinuity boundary for d = 2 (a), d = 3 (b), d = 5 (c), and
d = 20 (d). The dashed curves represent the boundaries of the areas with free propagation of AGWs in the upper and lower half-spaces,
respectively.

For some values of d, the curves of the dispersion
Eq. (30) approach fairly closely the curves ω2

= kxg and
ω2
= kxg (γ − 1), and also intersect them at different points.

These intersection points correspond to the specific value of
kx at which the dispersions of the ND and AE modes are re-
alized, in the model under consideration, in a “pure” form.
Let us now examine these cases in more detail. For this pur-
pose, we substitute the dispersion relations ω2

= kxg and
ω2
= kxg (γ − 1) directly into Eqs. (27) and (28), and then

into the boundary condition (Eq. 30).
As was shown in Sect. 2, for the dispersion relations

ω2
= kxg and ω2

= kxg (γ − 1), the values of each of the
parameters a1 and a2 are the same for both relations and are
determined by Eq. (11). Consider the valid values of a1 and
a2 for these dispersions with regard to the requirement of en-
ergy decay in both directions from the interface a1 > 1/2H1
and a2 < 1/2H2.

5.1 Dispersion of the form ω2 = kxg

For a dispersion of the form ω2
= kxg, we first analyze the

stratification of the ND mode with a1 = kx , a2 = kx . In or-

der for the energy of this mode to decay in both directions
from the discontinuity, the following inequalities 1/2H1 <

kx < 1/2H2 must be satisfied, i.e., H1 >H2. Therefore, the
ND mode can be realized at the discontinuity if the ambi-
ent temperature in the upper region is less and the density is
greater than they are in the lower region. This situation corre-
sponds to the unstable state of the atmosphere (see Roberts,
1991).

Take the stratification of the NDp modes in the form of
a1 =

1
H1
−kx , a2 =

1
H2
−kx . The energy in this case decreases

both ways from the discontinuity, if 1/2H2 < kx < 1/2H1,
i.e., when H2 >H1. This condition corresponds to the stable
state and the case under consideration. For the NDp mode
from the dispersion Eq. (30) we get

H2

(
1
γH2
− kx

)(
2kx −

1
H1

)
=

H1

(
1
γH1
− kx

)(
2kx −

1
H2

)
,

kx 6= 1/γH1,kx 6= 1/γH2. (34)
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Figure 4. Horizontal scales kxH1, on which the modes with the dispersions ω2
= kxg (a) and ω2

= kxg (γ − 1) (b) are realized, depending
on d =H2/H1. (See text for details.)

From Eq. (34) it follows that

kx =
d + 1
4dH1

(
1±

√
1−

8d
γ
(
d2− 1

)) . (35)

Figure 4a shows values of kx for which the dispersion curve
ω2
= kxg intersects with the calculated dispersion curve ω =

f (kx) depending on the parameter d. The upper solid curve
in this figure corresponds to the solution (Eq. 35) with the
sign “+” before the radical and shows the points of intersec-
tion with the shorter wavelength branch. The lower dashed
curve corresponds to the solution with a sign “−” and rep-
resents the points of intersection with the long-wavelength
branch. For the upper curve kx→ 1/2H1 when d→∞. For
d < 2.5, there are no intersections of the curve ω = f (kx)
calculated numerically from Eq. (30) with the curve for the
dispersion ω2

= kxg.
When combining the stratifications for ND modes as a1 =

kx and for NDp modes as a2 =
1
H2
− kx , Eq. (30) yields

the only possible value of kx = 1/2H2. For a combination
of stratifications a1 =

1
H1
− kx (NDp), a2 = kx (ND) we get

kx = 1/2H1. Both of these cases do not satisfy the condition
of energy decrease with height.

Thus, consideration of the possible values of a1 and a2
leads to the conclusion that on the interface of two isother-
mal media with H2 >H1, the NDp mode can only be im-
plemented with a dispersion ω2

= kxg and a specific scale
kx ∼ 1/2H1.

5.2 Dispersion of the form ω2 = kxg (γ − 1)

For the AE stratification of the form a1 =
1
H1
− kx , a2 =

1
H2
− kx and for the AEp stratification of the form a1 = kx ,

a2 = kx , from the dispersion Eq. (30) follows the identity
H1 =H2. Therefore, such modes are not realized at a tem-
perature discontinuity. Apparently, to study the conditions of
realization of AE and AEp modes, it is necessary to consider

atmospheric models in which height profileH (z) is continu-
ous.

It should be noted that for the dispersion of the form
ω2
= kxg (γ − 1), cases of combined mode stratifications are

possible, satisfying the condition of decreasing energy on
both sides of the boundary. So, for the combination of strat-
ifications a1 = kx (AEp), a2 =

1
H2
− kx (AE) from Eq. (30),

we obtain the relation

H2kx (2− γ )=H1γ

(
kx −

γ − 1
γH1

)
,

whence kx =
γ−1

H1[γ−(2−γ )d] . In this case, the inequality d <
γ/(2− γ ) must be satisfied. When γ = 5/3 we get the fol-
lowing restriction: d < 5. Given this limitation and condi-
tion kx > 1/2dH1, we find that a mode with a dispersion
of ω2

= kxg (γ − 1) and stratification of AE type for the
upper half-space and of AEp type for the lower half-space
can propagate at the boundary in the range 1< d < 5 and
for kx > 1/2H1. For the stratifications a1 =

1
H1
− kx (AE),

a2 = kx (AEp) from Eq. (30) we obtain the relation

H2γ

(
kx −

γ − 1
γH2

)
=H1kx (2− γ ) .

It implies the ratio kx =
γ−1

H1[γ d−(2−γ )] , in which the parame-
ter d can take any values with d > 1, and the horizontal wave
number is limited by the inequality kx < 1/2H1. Features of
the behavior of the ω2

= kxg (γ − 1)mode at the discontinu-
ity, depending on the scale kx , are shown in Fig. 4b.

6 Discussion

Let us dwell on some of the results in terms of their use for
the analysis of experimental data.

With the f -mode observed on the Sun, one should iden-
tify the mode that we classify as the ND mode, for which
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ω2
= kxg, Vz ∼ exp(kxz) and divV = 0 (Roberts, 1991). In

the framework of the considered temperature discontinuity
model, it was shown that with T1 < T2 (corresponding to
the chromosphere–corona interface) the condition for de-
creasing amplitude with height to both sides of the inter-
face is satisfied only by the NDp mode with ω2

= kxg, Vz ∼
exp

(
1
H
− kx

)
z and divV 6= 0. When the ratio d→∞ (i.e.,

H2/H1→∞), the NDp mode with kx→ 1/2H1 asymptoti-
cally approaches the ND mode. On the interface between the
chromosphere and the solar corona, d is large but of finite
magnitude: d ∼ 50 (Jones, 1969; Athay, 1976). Therefore,
the condition of the presence of a free surface, which is re-
quired for the realization of the ND mode, is fulfilled only
approximately. Therefore, in the framework of the tempera-
ture discontinuity model, the f -mode observed on the Sun
should not be associated with the non-divergent ND mode,
but with non-divergent pseudo-mode NDp.

For the Earth’s atmosphere, the maximum possible value
of d is observed at the interface between the thermosphere
with T2 ∼ 800–1500 K (depending on solar activity) and the
underlying atmosphere with T1 ∼ 300 K. When d = 5, the
dispersion (Eq. 30) asymptotically tends to ω2

= kxg (γ − 1)
with kx→∞. Therefore, it can be expected that evanescent
modes in this case will be close to ω2

= kxg (γ − 1).
In other layers of the Earth’s atmosphere we have d ≤

1.3 (Jursa, 1985). As follows from Eq. (33), for small val-
ues of d ≤ 1.3 and for the wavelengths in the interval kx ∼
(0.5− 1.5)H1, the relation ω2

→N2 is satisfied (see Fig. 2).
Therefore, it can be expected that at small positive temper-
ature gradients in the atmosphere, waves with a frequency
close to the frequency of Brent–Väisälä should prevail. These
conclusions experimentally confirm (Shimkhada et al., 2009)
the results of observations of short-period evanescent waves
with small wavelengths at altitudes near the mesopause.

7 Main results

In the paper, different types of evanescent acoustic-gravity
modes characteristic of an isothermal atmosphere are inves-
tigated. A new mode was derived in the form of anelas-
tic acoustic-gravity wave mode with the dispersion equa-
tion ω2

= kxg (γ − 1). The main properties of the AE mode
are presented in Table 1 in comparison with other known
evanescent modes. It is shown that for both anelastic and
non-divergent modes there are pseudo-modes that satisfy the
same dispersions but have different polarization and the de-
pendence of the amplitude of the disturbances on the height.

For AE and ND evanescent modes, the value of kx→
1/2H sets a special scale (wavelength) at which these modes
are identical to their pseudo-modes AEp and NDp. In addi-
tion, at the same point they are adjacent to the boundaries of
the continuous spectrum (AE mode to the gravity region and
ND mode to the acoustic region, respectively).

The features of the evanescent modes’ realization at the
interface of two isothermal media are considered. It is shown
that in this case, dispersions of evanescent modes are com-
bined, merging the features of different types of modes char-
acteristic of an unbounded isothermal atmosphere. This ef-
fect is most pronounced in the following asymptotic cases:
(1) when d→∞, we obtain the dispersion for the ND (NDp)
mode in the form ω2

≈ kxg; (2) when d→ 1, for scales
kx ∼H1, a mode with ω2

≈N2
1 is realized; (3) for kx→ 0, a

Lamb wave with a dispersion relation of the form ω2
≈ c2

2k
2
x

is obtained, which depends only on the parameters of the
medium in the upper half-space.

It was demonstrated that on the interface of two isother-
mal media with T2 > T1, the NDp mode with the dispersion
ω2
= kxg and the selected scale kx ∼ 1/2H1 is realized. At

the same time, the ND mode does not satisfy the condition of
decreasing energy on each side of the interface. Dispersion
ω2
= kxg (γ − 1) on the interface of two media is satisfied

by the wave mode, which has different types of amplitude
versus height dependencies at different horizontal scales kx .
When kx > 1/2H1, the height dependence of AE amplitude
for z > 0 and AEp amplitude for z < 0 satisfy the condition
of decreasing energy from the interface. By contrast, when
kx < 1/2H1, this condition is satisfied by AEp amplitude for
z > 0 and AE amplitude for z < 0.

It is important to note that according to our analysis in the
framework of the temperature discontinuity model, (1) the f -
mode observed on the Sun should not be associated with the
non-divergent (ω2

= kxg, divV = 0) mode, but with its non-
divergent pseudo-mode (ω2

= kxg, divV 6= 0). (2) At the in-
terface between the Earth’s thermosphere and the underly-
ing atmosphere it can be expected that evanescent modes
with short wavelengths will be close to the new mode (ω2

=

kxg (γ − 1)). (3) Oscillations with a frequency close to the
frequency of Brent–Väisälä should prevail at altitudes near
the Earth’s mesopause.
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