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Abstract. Magnetic reconnection processes in the near-Earth
magnetotail can be highly three-dimensional (3-D) in geom-
etry and dynamics, even though the magnetotail configura-
tion itself is nearly two-dimensional due to the symmetry in
the dusk—dawn direction. Such reconnection processes can
be induced by the 3-D dynamics of nonlinear ballooning in-
stability. In this work, we explore the global 3-D geometry
of the reconnection process induced by ballooning instability
in the near-Earth magnetotail by examining the distribution
of quasi-separatrix layers associated with plasmoid forma-
tion in the entire 3-D domain of magnetotail configuration,
using an algorithm previously developed in the context of
solar physics. The 3-D distribution of quasi-separatrix layers
(QSLs) as well as their evolution directly follow the plasmoid
formation during the nonlinear development of ballooning
instability in both time and space. Such a close correlation
demonstrates a strong coupling between the ballooning and
the corresponding reconnection processes. It further confirms
the intrinsic 3-D nature of the ballooning-induced plasmoid
formation and reconnection processes, in both geometry and
dynamics. In addition, the reconstruction of the 3-D QSL ge-
ometry may provide an alternative means of identifying the
location and timing of 3-D reconnection sites in the magne-
totail from both numerical simulations and satellite observa-
tions.

1 Introduction

There has been a long-standing controversy over whether the
magnetic reconnection or the ballooning instability in the
magnetotail actually triggers the onset of substorms, since
both mechanisms found support in observation and simu-
lation (e.g., Baker et al., 1996; Lui, 1991; Angelopoulos
et al., 2008; Panov et al., 2012). To resolve the controversy,
it may be necessary to study and understand the evolution
of the magnetotail in the substorm growth phase, and to
identify and predict the signatures of magnetic reconnec-
tion and ballooning instability in the magnetotail, as well as
their potential connections. In practice, the conventional two-
dimensional reconnection models with spatial symmetries in
both in-flow and out-flow regions are often used to iden-
tify and interpret the signatures of reconnection processes
from observational data. However, one fundamental question
that remains to be addressed is whether the magnetic recon-
nection in the magnetotail, when it does occur, can always
be interpreted in the conventional two-dimensional picture,
and if not, how one may characterize its intrinsically three-
dimensional geometry.

The overall evolution of the magnetotail-like configuration
has been studied for many years (Schindler, 2007, and ref-
erences therein). In particular, the plasmoid formation pro-
cess was investigated in detail in earlier 3-D resistive magne-
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tohydrodynamic (MHD) simulations by Birn and Hones Jr.
(1981) and by Hesse and Birn (1991), for example. Recently,
our simulations based on the 3-D full MHD equations im-
plemented in the NIMROD code (Sovinec et al., 2004) have
found a plasmoid formation process in the generalized Harris
sheet that is often used as an approximate configuration of the
near-Earth magnetotail prior to a substorm onset (Zhu and
Raeder, 2013, 2014). Those simulations demonstrate that the
embedded thin current is unstable to ballooning-mode per-
turbations, and the nonlinear development of the ballooning
instability is able to induce the onset of reconnection and the
formation of plasmoids in the current sheet where there is no
pre-existing X-point or X-line.

In comparison to the low-S (i.e., Lundquist number)
regime, where S ~ 10? considered in the earlier simulations
by Birn and Hones Jr. (1981), our recent simulations are in
the higher-S regime, where S > 104, which may be more rel-
evant to the collisionless regime of plasmas in the magneto-
tail. In the low-S regime, the magnetotail plasma is linearly
unstable to resistive tearing modes, and the associated recon-
nection process is initially a linear process. In contrast, in
the higher-S regime considered in our recent work (Zhu and
Raeder, 2013, 2014), the generalized Harris sheet is linearly
stable to resistive tearing modes. The onset of reconnection
is a consequence of the nonlinear development of balloon-
ing instability, and the subsequent reconnection is a nonlin-
ear process. Thus, the reconnection processes in the low-S
regime reported in the earlier work by Birn and Hones Jr.
(1981) and by Hesse and Birn (1991) are essentially 2-D,
whereas the reconnection process in the higher-S regime in
our simulations is an intrinsically 3-D process that does not
exist in the 2-D geometry. This key difference distinguishes
our recent work (Zhu and Raeder, 2013, 2014) from the pre-
vious work by Birn and Hones Jr. (1981) and by Hesse and
Birn (1991).

Although our previous work has demonstrated in MHD
simulations the formation of plasmoids induced by bal-
looning instability in the generalized Harris sheet (Zhu
and Raeder, 2013, 2014), the global 3-D structure of the
ballooning-induced reconnection was not clear. In particu-
lar, the reconnection process in our simulations is no longer
invariant along the equilibrium current direction, unlike in a
conventional 2-D reconnection process. This leads to general
questions as to where and how reconnection takes place in
the 3-D configuration, as well as how the global structure of
the 3-D reconnection process can be characterized and cap-
tured in ways different from the more familiar 2-D reconnec-
tion process. More fundamentally, it has remained unclear
whether this 3-D reconnection process can be reducible to or
interpretable in terms of the conventional 2-D reconnection
processes.

Whereas the overall evolution of the magnetotail-like con-
figuration has been studied in the space community for many
years, the irreducible dimensionality of the reconnection pro-
cess associated with the evolution of ballooning instability
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has never been addressed before in the literature, including
the papers by, e.g., Birn and Hones Jr. (1981) and Hesse and
Birn (1991) which were reviewed in the book by Schindler
(2007). There is also a long history of work trying to iden-
tify the possible role of out-of-plane instabilities in recon-
nection (see, for example, Pritchett, 2013, and Sitnov et al.,
2014). Different from those previous works, in this work we
intend to identify the geometry features associated with the
intrinsically 3-D reconnection process induced by the bal-
looning instability in the near-Earth magnetotail, in light of
those questions raised in the previous paragraph.

Similarly to the magnetic island, the plasmoid presented
in this work is identified in the x — z plane as a finite re-
gion of closed magnetic flux bounded by a separatrix with
a single X-point (Otto et al., 1990; Zhu and Raeder, 2014).
It is a two-dimensional projection onto the x — z plane of
three-dimensional magnetic field lines in regions of mag-
netic reconnection. Whereas the plasmoid structure itself ap-
pears out of a two-dimensional projection, its occurrence in
the x — z plane is periodic in the y direction in our simula-
tions, which indicates that the overall reconnecting field-line
structure is intrinsically 3-D. Such a relation between the 2-
D plasmoid and the 3-D reconnection is indeed possible, as
demonstrated in our simulations, and may be more quantita-
tively captured in the 3-D structure and distribution of quasi-
separatrix layers (QSLs).

The QSL has long been a powerful concept and method
for the analysis and understanding of magnetic structures in
the solar atmosphere (Titov and Démoulin, 1999; Titov et al.,
2002). Recently the concept of QSLs has also been effec-
tively applied to the analysis of laboratory reconnection ex-
periments (Lawrence and Gekelman, 2009). Previously, we
calculated the spatial distribution and the structure of the
QSLs, as well as their temporal emergence and evolution,
within the equatorial plane (Zhu et al., 2017), based on the
earlier simulation results on the formation of plasmoids in-
duced by ballooning instability in the magnetotail (Zhu and
Raeder, 2013, 2014). There we found the QSL structures are
not invariant along any direction within the 2-D equatorial
plane; instead they are disconnected and isolated local struc-
tures. Those initial findings start to reveal the intrinsic 3-D
nature of the reconnection induced by ballooning instabil-
ity in the generalized Harris sheet, which is irreducible to 2-
D reconnection processes in geometry and dynamics within
the 2-D equatorial plane. In this work, we extend our previ-
ous study within the 2-D equatorial plane to the entire 3-D
domain of the near-Earth magnetotail. Using a newly devel-
oped implementation for efficiently computing the squash-
ing degree of magnetic field lines in any 3-D domain (Liu
et al., 2016), we obtain the 3-D distribution of QSLs as well
as their evolution in the near-tail plasma sheet. The intersec-
tion of the 3-D distribution of QSLs with the equatorial plane
recovers results from our previous work. More importantly,
the calculated 3-D distribution of QSLs provides a complete
and global view of the geometric structure of the 3-D recon-
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nections associated with the plasmoid formation induced by
the nonlinear ballooning instability in the near-Earth magne-
totail.

The rest of the paper is organized as follows. We first
briefly review our previous simulation results for the plas-
moid formation process induced by ballooning instability in
Sect. 2. Next in Sect. 3 we describe the method we use for ef-
ficiently evaluating the squashing degrees of entire magnetic
fields. Both 2-D and 3-D distributions of QSLs revealed from
the squashing degree calculation are reported and analyzed in
Sect. 4. Finally, summary and discussion are given in Sect. 5.

2 Plasmoid formation induced by ballooning instability

Our recent MHD simulations are developed to demon-
strate the dynamic process of plasmoid formation induced
by nonlinear ballooning instability of the near-Earth mag-
netotail. In these simulations, the magnetic configuration
of the near-Earth magnetotail is modeled using the gener-
alized Harris sheet, which can be defined in a Cartesian
coordinate system as Bo(x,z) =e, x VW (x,z), W(x,z) =

i MO 10 B () = — [ B (x, 0)dx /A, and 2. is the
characteristic width of the current sheet. The conventional
Harris sheet is recovered when F(x) = 1. The configuration
can be further specified with a particular B, profile that fea-
tures a minimum region along the x axis, corresponding to
an embedded thin current sheet (Fig. 1), such as those often
found in global MHD simulations and inferred from satellite
observations in the near-Earth magnetotail.

For a sufficiently small magnitude of the B, minimum,
the magnetotail becomes unstable to ballooning instability,
whose nonlinear development leads to the formation of tail-
ward receding plasmoids in the magnetotail (Fig. 2). The
magnetic reconnection process in these simulations is no
longer invariant along the equilibrium current direction, un-
like in a conventional 2-D reconnection process. For exam-
ple, at a time after the formation of plasmoids, those field
lines crossing the y = —90 line in the z = 0 plane encounter a
totally different plasmoid structure from the field lines cross-
ing the y = —95 line in the z = 0 plane (Fig. 3). Questions
arise as to where and how a reconnection takes place in the
3-D configuration, as well as how the global structure of the
3-D reconnection process can be characterized and captured
in ways different from the more familiar 2-D reconnection
process. Further, it remains unclear whether this 3-D recon-
nection process can be reducible to or interpretable in terms
of the conventional 2-D reconnection processes.

3 Methodology
To address these questions in this work, we for the first time

apply the concept of a quasi-separatrix layer (QSL) to the
analysis of the geometry of magnetic reconnection induced
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Figure 1. B;(x, z = 0) profile (a) and magnetic field lines (b) of a

generalized Harris sheet as a proxy to the near-Earth magnetotail
configuration.

by ballooning instability in a generalized Harris sheet that
represents the magnetotail. QSL has been adopted for the
analysis of the reconnection structures involved in the so-
lar corona for a long time (e.g., Titov and Démoulin, 1999;
Titov et al., 2002). It has also been effectively applied to the
analysis of laboratory reconnection experiments (Lawrence
and Gekelman, 2009). A QSL is a 3-D structure defined by a
steep gradient in the field-line connectivity, which is quanti-
fied by mapping field lines across a specified volume. A sur-
face, S, must first be defined to enclose this volume. Divide
S into two subspaces, Sp and S7, where Sy and 7 represent
the surfaces on which field lines enter and leave the volume,
respectively. The initial footpoint is defined as ro = (uq, vo)
in Sp. One then traces the field line from the initial footpoint
through the enclosed volume until the field line leaves the
volume through S; at the point r; = (u1, v1). The Jacobian
transformation matrix and the norm of the mapping from
(ug, vg) to (uy,v1) are defined as

u; ouy
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Figure 2. Total pressure contours in the z = 0 plane and magnetic field lines crossing the intersection of the z =0 and y = —90 planes at

selected time slices (¢ = 170, 180, 190, 220, 240, 260). The unit of all the coordinate axes is Earth radius Rg. The time unit is Alfvénic time
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A QSL is the region where the gradient of this mapping is
large compared to the average mapping, i.e., N > 1.

Mathematically, the squashing degree Q is defined as
Q = N?/|A|, where A is the determinant of the Jacobian
matrix (Titov et al., 2002; Priest and Démoulin, 1995). The
variation of Q among different field lines reflects the defor-
mation of the magnetic flux tubes. A high squashing degree
corresponds to a large variation in the cross-sectional area of
an elemental flux tube from one footpoint to another. Quasi-
separatrix layers turn into separatrices in the limit where the
layer thickness goes to zero or the corresponding squashing
degree goes to infinity. The physical significance of QSL is
that current sheets preferentially form on these layers for re-
connection.

A newly developed implementation for efficiently com-
puting the squashing degree of magnetic field lines in any
3-D domain has been successfully applied to investigating
the evolution of magnetic flux ropes in a coronal magnetic
field extrapolated from a photospheric magnetic field (Liu
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et al., 2016). The method utilizes the field-line mappings be-
tween a cutting plane and the footpoint planes to give op-
timal results for mapping the squashing factor in the cutting
plane. In order to avoid spurious high squashing degree struc-
tures for field lines touching the cutting plane, a new plane
perpendicular to the particular field line can be introduced
and switched to using the same method. We adopt this new
method to recover our previous results on 2-D QSL distribu-
tion based on the calculation of bald patches. We further use
the new method to find the 3-D distribution of QSLs in the
entire domain.

4 Major results

In this section, we compute the squashing degrees and ana-
lyze the 2-D and 3-D QSL distributions of the magnetic field
configuration as well as its evolution in the near-Earth mag-
netotail, in an attempt to understand the global geometry of
the magnetic field and the 3-D nature of the magnetic recon-
nection process in association with the plasmoid formation
process induced by ballooning instability.

www.ann-geophys.net/37/325/2019/



P. Zhu et al.: Ballooning instability induced quasi-separatrix layers 329

Pressure contour in z=0 plane
B lines crossing y=-90 and z=0

T .

P: 1216 2 242832

Pressure contour in z=0 plane
B lines crossing y=-95 and z=0

05~

BT (m

P: 1216 2 242832

10 — 0:2
t=200 2 T (b) 0.604
r_gh011013x01 X 14— 08 o0
161 AN\

Figure 3. Magnetic field lines crossing lines y = —90, z =0 (a)
and y = —95, z =0 (b), and pressure contours in the z =0 plane
at t = 200. The unit of all coordinate axes is Earth radius Rg. The
time unit is Alfvénic time 7.

4.1 2-D spatial distribution of QSLs in equatorial plane

We first review the development of QSLs in the equatorial
plane of the magnetotail (i.e., the z =0 plane) based on the
computation of squashing degrees, as shown in Fig. 4, for
the same time sequence of nonlinear ballooning development
that leads to the formation of tailward receding plasmoids in
the magnetotail (Fig. 2). Similar results on QSLs are also
obtained in our previous work, where the QSLs are identi-
fied based on the computation of bald patches (Zhu et al.,
2017). Here the QSLs are identified as the boundaries of
white patches in a plane, on which the squashing degree be-
comes singularly large.

In the initial and early stages of ballooning instability evo-
lution, QSLs are absent in the z = 0 plane (¢ = 170) (Fig. 4,
upper left). By the time r = 180 the first set of QSLs de-
noted as the white enclosed regions starts to form periodi-
cally along the y direction within the z = 0 plane around the
line of x = 9.5 (Fig. 4, upper right). As the ballooning insta-
bility continues to evolve, a second set of QSLs starts to form
in the equatorial plane near the radially extending fronts of
ballooning fingers around x<13.5 (+ = 190) (Fig. 4, middle
left). The circular shape of each of these QSLs is smaller in
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radius than the first set of QSLs. Their spatial distribution
pattern is similar to the first set of QSLs, but their locations
are shifted in the y direction from the first set by one half
distance between two adjacent QSLs. After reaching their
maximum sizes, the first set of QSLs begins to shrink into el-
lipses squeezed in the x direction and eventually disappears
(t =220-260) (Fig. 4, middle right, lower left, and lower
right). In addition, the locations of the QSLs also evolve, par-
ticularly those of the second set. As the ballooning finger tips
extend in the positive x direction, the QSLs behind each fin-
ger tip in the second set move along in the same tail direction.
Furthermore, as the first set of QSLs nearly shrinks into dis-
appearance, a third set of QSLs starts to emerge at x = 11
between the first two sets around # = 240 (Fig. 4, lower left).
This set of QSLs later becomes dominant in size after the
first set disappears and the second set also shrinks in size.
Different from the first set, the third set of QSL circles has
the same locations in the y direction as those in the second
set. The timings and locations of the emergence of these QSL
structures correlate well with those of the plasmoid develop-
ment as shown in Fig. 2.

Even within the 2-D equatorial plane (z = 0), the isolated
and discrete distribution of QSLs in both the x and y direc-
tions indicates the 3-D feature of the corresponding recon-
nection process. In other words, the X-line in conventional
2-D reconnection has broken into a group of disconnected
locations of reconnections as represented by QSLs. A close
examination of one of the QSLs centered around x = 9.5,
y =15 and another centered around x =13.5, y =10 at
t =190 finds that the variation of squashing degree at the
QSL on the boundary of an isolated region is rather spiky
instead of smooth (Fig. 5). Away from the QSL, the loga-
rithms of squashing degree are close to zero and their varia-
tion is flat and smooth. The QSL structures are indeed located
surrounding well-isolated regions, which are the outcome of
the irreducible 3-D nature of the corresponding reconnection
process.

4.2 3-D spatial distribution of QSLs

We further examine the 3-D distribution of QSLs in the en-
tire simulation domain of the magnetotail. Not only are QSLs
located in isolated regions in the 2-D plane, but they are also
localized in isolated and confined regions in the 3-D domain
(Fig. 6). As shown in Fig. 6, the circles representing QSLs in
the 2-D plane are extended to the iso-surfaces representing
QSLs in 3-D space. Such regions of QSLs are localized along
the equilibrium field line near the equatorial plane, such as
those shown in Fig. 1 (lower panel). This is consistent with
field-line structure during the nonlinear development of bal-
looning instability, where the plasmoids are centered around
the equatorial plane with north—south (z) symmetry. The dis-
tributions of the QSL structures are periodic along the west—
east (y) direction (Figs. 7 and 8), same as the QSL distribu-
tion within the 2-D equatorial plane. The 3-D distribution of
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Figure 4. Contours of the logarithm of squashing degree in the z = 0 plane at t = 170 (a), t = 180 (b), r = 190 (¢), t = 220 (d), t = 240 (e),
and ¢ = 260 (f). White circles denote the locations where the squashing degree becomes singular.

QSLs provides a global and complete view of where the re-
connection takes place. They further confirm the irreducible
3-D nature of the corresponding reconnection process.
Another approach to characterizing the 3-D distribution of
QSLs in the near-Earth magnetotail is to examine the squash-
ing degree contours on various strategically selected 2-D
slices parallel or perpendicular to coordinate axes. For ex-
ample, at an earlier time ¢t = 190, the squashing degree dis-
tributions in the y — z planes show two elliptically shaped
QSL regions centered around (y, z) = (5,0) at x =9.45 and
(v,2) = (10,0) at x = 13.38, respectively, which again are
represented by the white space where the squashing degree
becomes singular (Fig. 9, upper row). In the x — z plane,
the corresponding two QSL regions manifest themselves as
two round areas of singular squashing degree located around
(x,2) =(9.45,0) at y=5 and (x,z) = (13.38,0) at y =10
(Fig. 9, middle row). In the x — y planes with equal distance
off the equatorial plane (z = —0.03 and z = 0.03), the QSL
regions are similar to those within the equatorial plane shown
in Fig. 4 in both location and shape, and the QSL distribu-
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tions in those two x — y plane are symmetric with respect
to z =0 (Fig. 9, lower row). However, those QSL regions
disappear as the x — y planes move further away from the
equatorial plane, indicating the localized nature of the 3-D
reconnection regions.

The above approach also helps in visualizing the devel-
opment of 3-D distribution of QSLs over time. At a later
time ¢t = 240, three QSL regions appear along the x axis at
x =9.25, 11.0, and 14.3, which can be first seen from the
squashing degree contours within the y — z planes (Fig. 10,
upper row). This is in contrast with the earlier time at t =
190, when QSLs only appear in two y — z planes along the
x axis (Fig. 9, upper row). At the same time, the three QSL
regions also show up in the x — z planes, individually or to-
gether, depending on where the plane is located in the y di-
rection (Fig. 10, middle row). For example, the two QSL re-
gions in the x —z plane around (x, z) = (11.0,0) and (x, z) =
(14.3,0) (Fig. 10, middle row, right panel) correspond to the
two QSL regions in the y — z plane around (y, z) = (10.0, 0),
but one in the x = 11.0 plane (Fig. 10, upper row, middle

www.ann-geophys.net/37/325/2019/
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Figure 5. Surface plots for the logarithm of squashing degree in the
z =0 plane around x = 9.5, y =95 (a) and x = 13.4, y =90 (b) at
t =190.

panel) and another in the x = 14.3 plane (Fig. 10, upper row,
right panel), respectively. Furthermore, the time development
of QSL 3-D distribution can also be viewed from the varia-
tion of squashing degree contours in the x — y planes along
the z direction (Fig. 10, lower row). In particular, in compar-
ison to the earlier time at t = 190, the dominant QSL regions
have shifted from around (x, y) = (9,5) (Fig. 9, lower row)
to about (x,y) = (14.3, 10) near the z = 0 equatorial plane
by the time ¢t = 240 (Fig. 10, lower row). Together, and over
time, these slices with different but complementary orienta-
tions comprise a complete view of the development of the
global 3-D distribution of QSLs. In comparison with the tim-
ings and locations of the emergence of the plasmoid devel-
opment shown in Fig. 2, one can see that 3-D distribution of
QSLs as well as their evolution directly follow the plasmoid
formation during the nonlinear development of ballooning
instability in both time and space. More importantly, the 3-
D QSL distribution and evolution provide a more global and
complete view of the 3-D geometry of magnetic reconnection

www.ann-geophys.net/37/325/2019/
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Figure 6. Iso-surfaces of the logarithm of squashing degree in the
3-D domains centered at x =9.5, y =15, z =0 (a) and x = 13.4,
y =10, z =0 (b), respectively, at = 190.

processes induced by the nonlinear ballooning instability in
the near-Earth magnetotail.

5 Summary and discussion

In summary, the 3-D distribution of quasi-separatrix layers
(QSLs), as well as its evolution directly following the non-
linear development of ballooning instability in the near-Earth
magnetotail, has been thoroughly evaluated and examined
based on previous resistive MHD simulation data on the plas-
moid formation process induced by the ballooning instability.
The quasi-separatrix layers have been identified by locating
the regions of high squashing degree throughout the entire
3-D domain of the model near-Earth magnetotail in simu-
lation. It is found that the 3-D distribution of QSLs corre-
lates well not only with the 2-D-mode structures of balloon-
ing instability within the x — y plane, but also with the 3-D
ballooning-mode structures as projected onto the x — z and
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Figure 7. Iso-surfaces of the logarithm of squashing degree in
the broader 3-D domains, which include two periods of repeating
QSL distribution from x =9.5, y=15,z=0to x =9.5, y =25,
z=0 (a) and from x =134, y=10, z=0 to x =13.4, y =20,
z =0 (b), respectively, at r = 190.

y — z planes, both spatially and temporally during the evo-
lution of the magnetotail configuration. Such a close corre-
lation demonstrates a strong coupling between the balloon-
ing and the corresponding reconnection processes. It also
further confirms the intrinsic 3-D nature of the ballooning-
induced plasmoid formation and reconnection processes, in
both geometry and dynamics. In addition, the reconstruction
of the 3-D QSL geometry may provide an alternative means
for identifying the location and timing of 3-D reconnection
sites in the magnetotail from both numerical simulations and
satellite observations.

Whereas the near-Earth magnetotail can become balloon-
ing unstable under substorm conditions, the nonlinear evolu-
tion of ballooning instabilities, by themselves, may not al-
ways lead to the near-explosive growth. The coupling be-
tween ballooning and reconnection could be an alternative,
though not the necessary, route to substorm onset. Previ-
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Figure 8. (a) Iso-surface of the logarithm of squashing degree in the
broader 3-D domains, which include five periods of repeating QSL
distribution at # = 190; (b) same as the upper panel, except that only
the iso-surface of the logarithm of squashing degree equaling 3 is
plotted.

ous studies (Pritchett and Coroniti, 1999, 2010, 2013; Zhu
et al., 2004) have demonstrated the persistent presence of bal-
looning instabilities in generalized Harris sheet and magne-
totail configurations. The models have varied from the global
scales in the ideal MHD models to the meso scales of two-
fluid models, and eventually to the microscopic scales of ki-
netic models of plasmas. Since the intrinsic 3-D nature of
the reconnection process reported in this work derives from
the nature of ballooning instability, the global 3-D geometry
structure of the ballooning-induced reconnection process is
expected to persist in the presence of two-fluid and kinetic
effects, particularly on the macroscopic scales where both
MHD and kinetic models should agree. The QSL is purely
a geometric feature of the magnetic field configuration. Thus
the QSL method only relies on the magnetic field geometry
in order to identify the reconnection sites. It is independent
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Figure 9. Contours of the logarithm of squashing degree in the x = 9.45 and x = 13.38 planes (a-b); in the y =5 and y = 10 planes (c—d);

and in the z = —0.03 and z = 0.03 planes (e—f) at t = 190.

of how the plasma is modeled, be it fluid or particle. There-
fore the QSL method should be applicable for particle-in-cell
simulations of reconnection caused in the course of a kinetic
ballooning instability.

Although this work was in part motivated by the substorm
problem in magnetospheric physics, it should not be seen
as one confined only to the space plasma physics commu-
nity. Rather, with our first application of QSL to the mag-
netotail configuration represented by the generalized Harris
sheet, this work provides new insight into the ubiquitous 3-
D reconnections in nature and laboratory by identifying and
characterizing 3-D reconnection induced by ballooning in-
stability.

Because the 2-D perception of magnetic reconnection has
been the conventional paradigm for interpreting and under-
standing most phenomena and processes associated with re-
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connection in both natural and laboratory plasmas since the
beginning, our work and results provide a dramatically differ-
ent and refreshing view on one of the most fundamental pro-
cesses in all plasmas. It touches the core question as to what
exactly defines a reconnection or whether reconnections in
two dimensions and three dimensions are qualitatively differ-
ent. Different answers to such a question can lead to vastly
contrasting or contradicting interpretations and conclusions.
These issues would continue to be addressed in future work.

The QSL method may potentially be applied to in situ ob-
servation data analysis as well, since it is the knowledge of
the magnetic field lines’ connectivity itself only that is re-
quired for the calculation of QSLs. The in situ observation
data from both single-point and multi-point spacecraft mea-
surements, with additional assumptions and modeling, have
been used in various reconstruction methods for the magnetic
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Figure 10. Contours of the logarithm of squashing degree in the x = 9.25, x = 11, and x = 14.3 planes (a—c);inthe y =5,y =9,and y = 10
planes (d—f); and in the z = —0.2, z = —0.01, and z = 0 planes (g-i) at t = 240.

field-line geometry in the magnetotail. These include the
global MHD simulations of magnetotail evolution calibrated
using the in situ observation data in general (e.g., Raeder
et al., 2008), the Grad—Shafranov (GS) method for two-
dimensional (2-D) magnetohydrostatic structure based on
the single-spacecraft data analysis technique (e.g., Hasegawa
et al., 2014), and the magnetic field rotation analysis (MRA)
method based on four-point measurements of the magnetic
field (e.g., Shen et al., 2007). The reconstructed region of in-
terest using these methods and in situ observation data can
then be subject to the calculation of QSL. We plan on explor-
ing such a potential application of the QSL method to in situ
observation analysis in the near future.

Data availability. Data used in this study are available for down-
load at http://plasma.ustc.edu.cn/publication/19/zhul9a/data/ (last
access: 12 May 2019).
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