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Abstract. Current knowledge on the description of the inter-
planetary magnetic field is reviewed with an emphasis on the
kinematic approach as well as the analytic expression. Start-
ing with the Parker spiral field approach, further effects are
incorporated into this fundamental magnetic field model, in-
cluding the latitudinal dependence, the poleward component,
the solar cycle dependence, and the polarity and tilt angle
of the solar magnetic axis. Further extensions are discussed
in view of the magnetohydrodynamic treatment, the turbu-
lence effect, the pickup ions, and the stellar wind models.
The models of the interplanetary magnetic field serve as a
useful tool for theoretical studies, in particular on the prob-
lems of plasma turbulence evolution, charged dust motions,
and cosmic ray modulation in the heliosphere.

1 Introduction

The interplanetary magnetic field (IMF) is a spatially ex-
tended magnetic field of the Sun and forms together with
the plasma flow from the Sun (referred to as the solar wind)
a spatial domain of the heliosphere1 around the Sun sur-
rounded by the local interstellar cloud. Starting with the first
direct measurements in the 1960s (Ness et al., 1964; Ness
and Wilcox, 1964; Wilcox and Ness, 1965; Wilcox, 1968),
the IMF is becoming increasingly more accessible in vari-
ous places in situ in the solar system; e.g., the inner helio-
sphere (closer than the Earth orbit from the Sun) was cov-
ered by the Helios mission (Porsche, 1981; see monograph
by Schwenn and Marsch, 1990, 1991), the outer heliosphere
(beyond the Earth orbit) by Voyager (Stone, 1977; Kohlhase
and Penzo, 1977; Stone, 1983), and the high-latitude region

1IMF is also referred to as the heliospheric magnetic field.

by the Ulysses mission (Wenzel and Smith, 1991; Wenzel
et al., 1992).

In the lowest-order picture, the IMF has an Archimedean
spiral structure, also referred to as the Parker spiral after
Parker (1958), imposed by the solar wind expansion and the
solar rotation, and exhibits spatial variation (e.g., sectors with
the opposite directions of the radial component of the mag-
netic field, latitude dependence) and time variation (e.g., so-
lar cycle dependence).

Typical values of the IMF magnitude (in the sense of the
mean field) B0 turn out to be of the order of 3–4 nT at the
Earth orbit (1 astronomical unit, hereafter au). Long-term
measurements of the IMF by the Ulysses spacecraft show
that the field magnitude of about 3–4 nT is typical not only
in the solar ecliptic plane but also in the high-latitude regions
(Forsyth et al., 1996). Of course, irregular or transient phe-
nomena (such as coronal mass ejections or co-rotating inter-
action regions) cause local, large-amplitude deviations from
the mean field. Recent study by Henry et al. (2017) indi-
cates that the IMF (at the Earth orbit) can be regarded as the
Parker spiral type when the IMF is sufficiently inclined to the
Earth orbital plane, either (1) Bx > 0.4B and By <−0.4B
or (2) Bx <−0.4B and By > 0.4B, where Bx is the sun-
ward component of the magnetic field (GSE-X direction),
By is the dawn-to-dusk component of the field (GSE-Y di-
rection), and B is the magnetic field magnitude. The IMF
can be more radial and of the ortho-Parker spiral type (valid
under |Bx |> 0.4Bt, where Bt denotes the transverse com-
ponent of the magnetic field to the radial direction from the
Sun, Bt =

√
B2
y +B

2
z ) or oriented more northward or south-

ward |Bz|> 0.5Bt.
Model construction of the IMF has immediate applications

in the following plasma physical or astrophysical problems:
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1. Solar wind turbulence.

Plasma and magnetic field in interplanetary space de-
velop into turbulence. Early in situ measurements in
the 1960s have already shown that the frequency spec-
trum of the fluctuation of the IMF is a power law over a
wide range of frequencies (typically in the MHz regime)
(Coleman Jr., 1968), and the spectral index is close to
−5/3 (Matthaeus et al., 1982; Tu and Marsch, 1995),
known as the inertial-range spectrum of fluid turbu-
lence. Properties of solar wind turbulence are exten-
sively studied using in situ spacecraft such as Helios,
Voyager, and Ulysses, and the observational properties
are documented in reviews by, e.g., Tu and Marsch
(1995), Petrosyan et al. (2010), and Bruno and Carbone
(2013). Solar wind is the only accessible natural lab-
oratory of turbulence in collisionless plasmas, relevant
to astrophysical applications to interstellar turbulence.
Knowledge on the IMF structure is an important ingre-
dient in turbulence modeling. In particular, the large-
scale inhomogeneity or velocity shear is the driver of
turbulence when the solar wind plasma evolves into tur-
bulence. For example, the mean-field models of turbu-
lence explicitly need the large-scale structure as an input
(Yokoi and Hamba, 2007; Yokoi, 2011).

2. Charged dust motion.

Dust grains in interplanetary space have typically a
length scale of nanometers to micrometers and are
electrically charged by various processes, e.g., sticking
of the ambient electrons onto the dust surface (which
makes the dust charge state negative) or photo-electrons
(which makes the charge state positive) (Shukla, 2001;
Mann et al., 2014). Unlike the electrons or ions in the
plasma, the charged dust grains undergo not only the
gravitation attraction by the Sun and the planets and
the Poynting–Robertson effect but also the electromag-
netic interaction (Coulomb and Lorentz force). Combi-
nation of these forces results, e.g., in a long-time tilt of
the orbital plane (on the timescale of 10 to 100 years),
e.g., perihelion or aphelion shift from the solar ecliptic
plane to the high-latitude region. Knowledge on the IMF
structure is important because the orbital motion and the
orbit drift can be tracked, either in a static IMF structure
or in a time-evolving IMF structure (Grün et al., 1994;
Mann et al., 2007, 2014; Czechowski and Mann, 2010;
Lhotka et al., 2016).

3. Cosmic ray modulation.

A cosmic ray consists mostly (more than 90 %) of pro-
tons. The spectrum of the cosmic ray is well character-
ized by a power law as a function of the particle energy
(kinetic energy, strictly speaking) with a peak at about
1 GeV and a slope of about −2.7. The number flux of
the cosmic ray can be measured by the neutron moni-
tors and is known to be anti-correlated to the sunspot

number variations with a period of about 22 years (cos-
mic ray modulation). The cosmic ray transport in the he-
liosphere is modeled by the convection–diffusion equa-
tion system, which can be treated both in a kinetic way
based on the Boltzmann transport theory (Parker, 1965)
and in a fluid–physical way using the continuity equa-
tion with the convection and diffusion terms (Duldig,
2001). See also the recent review by Potgieter (2013).
The knowledge of the IMF is important because the cos-
mic ray exhibits charged particles undergo drift motions
in a curved, inhomogeneous magnetic field (i.e., curva-
ture drift and grad-B drift), as pointed out by, e.g., Isen-
berg and Jokipii (1979). In fact, the 22-year variation of
the cosmic ray modulation (as measured by the neutron
monitors on the Earth ground) can be explained and the-
oretically reconstructed by including the IMF structure
(Kóta and Jokipii, 2001a; Burger et al., 2008; Miyahara
et al., 2010).

Here we review various models of the IMF with an empha-
sis on the hydrodynamic approach and the analytic expres-
sion. This review is intended to complement a more compre-
hensive review by Owens and Forsyth (2013). We limit our
review to the kinematic approach in the sense that the mag-
netic fields behave passively and are frozen-in into the given
plasma flow. The review is organized in a concise way by
primarily taking the kinematic approach. There is an increas-
ing amount of literature and studies about the IMF, and the
modeling approach is becoming diverse, e.g., hydrodynamic,
hydromagnetic, and kinetic. We point out, however, that even
in the simple kinematic approach, the IMF models are still il-
lustrative and have various applications as introduced above.

We also limit our review to the analytic expression as
much as possible. Analytic expression of the magnetic fields
is a useful tool in space science and has been constructed
for various plasma domains or plasma phenomena in the
solar system other than the solar wind: solar corona (Ba-
naszkiewicz et al., 1998), coronal mass ejection (CME)
(Isavnin, 2017), Earth’s magnetosphere (Katsiaris and Psil-
lakis, 1987; Tsyganenko, 1990, 1995; Tsyganenko and Sit-
nov, 2007), and local interstellar medium surrounding the
heliosphere (Röken, 2015). One can of course numerically
solve the governing equations to reproduce the magnetic field
and its dynamics more realistically, but the numerical treat-
ment is not in the scope of this review.

The advantage of the analytic or semi-analytic expression
is that one can implement the magnetic field models by them-
selves for the theoretical studies of the solar system plasma
phenomena. Verification of the magnetic field models is pos-
sible using the existing in situ spacecraft data from, e.g., the
Helios, Voyager, and Ulysses missions as well as the upcom-
ing measurements in interplanetary space by Parker Solar
Probe (Fox et al., 2016), BepiColombo’s cruise in interplane-
tary space (Benkhoff et al., 2010), and Solar Orbiter (Müller
et al., 2013).
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2 Kinematic approach

We focus on the kinematic approach such that the flow pat-
tern is given as an external field of a model field. The mag-
netic field is passive in the sense of the frozen-in field into the
plasma. The reaction of the magnetic field onto the plasma
motion (such as the Lorentz force acting on the plasma bulk
flow) is not considered here.

2.1 Parker model

2.1.1 Thermally driven wind

In this section we review the formulation of the original
Parker spiral model of the interplanetary magnetic field.

As suggested by Biermann (1951, 1957) the solar gas out-
flows into interplanetary space. The existence of the radial
outflow of the solar gaseous material, nowadays known as
the solar wind, and the spiral structure of the IMF associated
with the solar rotation was predicted by Parker (1958) be-
fore the confirmation by in situ spacecraft measurements. It is
worthwhile to note that the spiral structure in interplanetary
space was also indicated in the comet tail study by Alfvén
(1957) as a beam extending away from the Sun. The solar
wind is mainly composed of protons, electrons, and helium
alpha particles (there are, in addition, heavier ions from the
Sun and pickup ions from the local interstellar medium) and
streams radially away from the Sun far beyond the orbits of
the planets over distances of about 100 au. The solar wind
first encounters the termination shock located before the he-
liopause, a boundary layer between the solar plasma and the
local interstellar medium at a distance of about 110–160 au.
At the Earth orbit distance (1 au), the solar wind velocity typ-
ically ranges between 300 km s−1 (referred to as the slow so-
lar wind) and 700 km s−1 (the fast solar wind). During the
coronal mass ejection events, the solar wind speed can reach
about 1400 km s−1.

The Parker model treats the solar wind as a one-
dimensional (in the radial direction), steady-state, isothermal
thermally driven stream. Basic equations are the continuity
equation,

d

dr

(
ρUrr

2
)
= 0, (1)

the momentum balance,

Ur
dUr

dr
+

1
ρ

dp
dr
+

GM�
r2 = 0, (2)

and the adiabatic law or the equation of state,

p = ρc2
s . (3)

Here ρ denotes the mass density, Ur the radial component of
the flow velocity, r the distance from the Sun, p the gas pres-
sure, G the gravitational constant, M� the solar mass, and

cs the sound speed. Note that the sound speed is considered
constant due to the assumption of the isothermal medium.
Equations (1)–(3) can be reduced into the following form:

Ur
dUr

dr
=

(
2c2

s
r
−

GM
r2

)(
1−

c2
s

U2
r

)−1

. (4)

One sees immediately that Eq. (4) has a singularity at which
Ur = cs is satisfied. The flow speed reaches the sound speed
(called the critical point or the sonic point) at

rc =
GM�
2c2

s
. (5)

The critical point is located about 6 solar radii for a (coronal)
temperature of 1 MK. Equation (4) exhibits difference types
or classes of the flow velocity profile as a function of the
distance from the Sun. Above all, a continuous flow acceler-
ation over the sonic point meets the condition for the solar
wind, i.e., acceleration in the subsonic domain (r < rc) and
further acceleration in the supersonic domain (r > rc). See,
e.g., Tajima and Shibata (2002) for a more detailed descrip-
tion about the Parker model. At a larger distance than the
critical radius rc, the flow velocity has an asymptotic form,

Ur ' 2cs

(
ln
r

rc

)1/2

. (6)

A comparison between the approximation ofUr using Eq. (6)
and a numerical solution of Eq. (4) is shown in Fig. 1. The
solution shown in red and obtained for T = 1MK perfectly
agrees with the analytical solution shown in dashed black.
The Parker model thus predicts that the solar corona ex-
pands radially outward at subsonic velocities close to the Sun
(within the critical radius), and the coronal gas is gradually
accelerated to supersonic velocities further out. Hereafter we
also use an expression of Usw for the magnitude of the solar
wind velocity.

A more detailed analysis of the Parker model with the
asymptotic solution of the flow velocity is presented by Sum-
mers (1978). A two-fluid model of the solar wind is pre-
sented by Summers (1982) as a hydrodynamic extension of
the Parker model for the electron and the protons under the
adiabatic law for each fluid type.

2.1.2 Spiral magnetic field

Using the angular velocity of the Sun, ��, the radial, po-
lar, and azimuthal components of the solar wind velocity are
given in the HG (heliographic) frame of reference as follows:

Ur = Usw, (7)
Uθ = 0, (8)
Uφ =−��r sinθ. (9)

A magnetic streamline satisfies the differential equation at a
given polar angle θ ,

1
r sinθ

dr
dφ
'
Ur

Uφ
=−

U

��r sinθ
. (10)
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Figure 1. Radial solution of the solar wind Ur for different temper-
atures in megakelvin (right frame ticks). Vertical lines indicate the
position of the planets; the dark-shaded region covers the region of
main belt asteroids of the solar system, where blue lines mark the
position of mean motion resonances of asteroids with planet Jupiter.

We make use of a rough assumption that the flow speed is
nearly constant over the critical radius beyond some distance
r > rc. The field-line equation (Eq. 10) has then the solution
as

r − r0 =−
Usw

��
(φ−φ0) . (11)

Here, the magnetic field line passes through the coordinate
at (r0,θ,φ0). The IMF is obtained from the divergence-free
condition of the Maxwell equations,

∇ ·B = 0. (12)

That is, using the assumption of spherical symmetry, the IMF
is expressed as

Br = B0

( r0
r

)2
, (13)

Bθ = 0, (14)

Bφ =−B0
��r0

Usw

r0

r
sinθ, (15)

where B0 is the radial component of the magnetic field at a
reference radius r0.

The transformation into the stationary frame (HGI, helio-
graphic inertial) yields the same expression of the magnetic
field as Eqs. (13)–(15).

Note that, due to a Galilean transformation, the electric
field has a convective contribution in the polar direction eθ ,

E =−U ×B =−UswBφeθ . (16)

Realizations of the magnetic field lines in the Parker spiral
model are shown for different (constant) solar wind speeds
in Fig. 2. The angle between the magnetic field line and
Earth’s orbit is about 45◦ for a typical solar wind speed of

Figure 2. Streamlines in the Parker spiral model of interplanetary
magnetic field around the Sun (a filled circle in yellow) in the helio-
spheric ecliptic plane up to 5 astronomical units (au) under different
conditions of the solar wind speed. The orbit of the Earth is marked
by a blue curve at a radius of 1 au, that of Mars by a red curve
(1.5 au), and that of Jupiter by a green curve (5 au).

400 km s−1 and increases (becomes more radial) at a higher
flow speed. Note that when considering the magnetohydro-
dynamic (MHD) effect, the above discussion is valid outside
the Alfvén radius at which the flow speed reaches the Alfvén
speed, rA ' 50R� = 0.25 au, where R� is the solar radius.

We rewrite Eqs. (13)–(15) into a simpler form as

Br = B0

( r0
r

)2
, (17)

Bφ =−r0B0

( r0
r

)�� cosϑ
Usw

, (18)

where, again, B0 = B (r0,θ,φ0) is the reference radial com-
ponent of the magnetic field (Meyer-Vernet, 2012).

We note that in Eqs. (17)–(18) the latitude ϑ (measured
from the Equator) is related to the polar angle θ (measured
from the rotation axis) by θ = π−ϑ . By identifying or defin-
ing the radial and tangential components as BR = Br and
BT = Bφ , respectively, it is straightforward to transform the
Parker spiral field into its radial (R), tangential (T), and nor-
mal (N) components as

BR = B0

( r0
r

)2
, (19)

BT =−r0B0

( r0
r

)�� sinθ
Usw

. (20)

Note that the normal component vanishes, BN = 0, because
the Parker model does not include the polar component like
the dipolar field of the Sun.
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Figure 3. Heliocentric distance r in astronomical units (au) at which
the spiral angle of the interplanetary magnetic field reaches 45◦ to
the radial direction from the Sun (Br = Bφ). The curves are plotted
as a function of the solar wind speed in units of km s−1 for 3 differ-
ent rotation rates, a period of 26.24 h (upper curve), 25.38 h (middle
curve), and 24.47 h (lower curve). A typical value of the solar wind
speed is 430 km s−1 (shown by a vertical thin line).

2.1.3 Spiral angle

The distance to the surface on which an azimuthal angle of
45◦ is realized (or Bθ ' Br) is approximately located at

r '
Usw

��
sinθ. (21)

Using the rotation period of the Sun of 25.38 d (equivalent
to an angular velocity of ω = 2.865× 10−6 rad s−1) and the
flow speedUsw ' 430 km s−1, the transition from the radially
dominant to the azimuthally dominant magnetic field indeed
happens around r = 1au. The transition distance is displayed
as a function of the flow speed in Fig. 3 for three different
solar rotation periods, 24.47, 25.38, and 26.24 d.

Alternatively, the Parker spiral model can be formulated in
terms of the spiral angle ψ :

tanψ =
��(r −R�)sinθ

Usw
. (22)

In this setting, the magnetic field B is, by using the unit vec-
tors in the radial direction er and in the azimuthal direction
eφ , given as

B = B0

( r0
r

)2 (
er− tanψeφ

)
. (23)

In this formulation the magnitude of the magnetic field is
estimated as

B = B0

( r0
r

)2√
1+ tan2ψ. (24)

2.1.4 Vector potential

The magnetic vector potential A for the Parker spiral mag-
netic field under the Coulomb gauge ∇ ·A= 0 can analyti-
cally be evaluated (Bieber et al., 1987). The vector potential
has the following form:

Ar =
2a��
3Usw

(
1−

3x
2
− x ln(1+ x)

)
, (25)

Aθ =
2a��
3Usw

sinθ
(

x

1+ x
+ ln(1+ x)

)
, (26)

Aφ =
a

r sinθ
(1− x), (27)

where x = |cosθ |. Equations (25)–(27) correspond to the
IMF in the following expression:

Br =
a

r2
cosθ
|cosθ |

, (28)

Bθ = 0, (29)

Bφ =−
a��

Usw

sinθ cosθ
|cosθ |

. (30)

Here a is a free parameter proportional to the magnitude
of the magnetic field in units of nT au2 (for example, a =
3.54 nT au2 produces a magnetic field of 5 nT at 1 au). The
polar component of the vector potential can be multiplied by
a scalar function f (θ) to improve the accuracy of the model
as Aθ → f (θ)Aθ .

Another formulation of the vector potential (again, under
the Coulomb gauge) is to introduce a scalar potential as

8C =−
2a��r

3u

(
1−

3x
2
− x ln(1+ x)

)
, (31)

which yields the following vector potential (Webb et al.,
2010):

A= a

(
1− |cosθ |
r sinθ

eφ −
f (θ)�� sinθ

Usw
eθ

)
. (32)

Of course, in both cases, Eqs. (25)–(27) and (32), the mag-
netic field is obtained by the definition of the vector potential
as B =∇ ×A. The electrostatic potential for the convective
electric field E =−U ×B =−∇8 is

8=−a�� cosθ. (33)

The magnetic field lines for the Parker spiral model are
shown in Fig. 4. Black lines have been calculated by the in-
tersection of the two surfaces of constant Euler potentials αE,
βE (Webb et al., 2010):

αE =−a|cosθ |, βE = φ+
��r

Usw
−��t. (34)

It is worth mentioning that the spiral magnetic field lines
are constructed with the radial component from the Sun and
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Figure 4. Magnetic field lines (black curves) in the Parker spiral
model for different latitude angles θ from the rotation axis. Curves
are defined as the intersection of the surfaces of the Euler potentials,
αE = const. and βE = const., as presented by Webb et al. (2010).
Note that the spiral magnetic field lines are constructed with the ra-
dial component from the Sun and the azimuthal component around
the rotation axis and do not contain the polar component (in the
direction toward the rotation axis and perpendicular to the radial di-
rection). The spiral field lines have an axial component along the
rotation axis, but this is due to the radial component of the spiral
field line (in the sense of being away from the rotation axis).

the azimuthal component around the rotation axis and do not
contain the polar component (in the direction toward the ro-
tation axis and perpendicular to the radial direction) as in
Eqs. (28)–(30). The Parker spiral field lines have an axial
component along the rotation axis, but this is due to the radial
component of the field line which has the axial component.
For the sake of convenience one may set a value of unity to
the variables a, t ,��, and Usw to provide the topology of the
problem: αE defines a cone (in green) that intersects a shell
(in red) defined by βE. Intersection lines define the magnetic
field lines of the Parker model.

2.2 Generalization of the Parker model

The Parker spiral model well approximates the mean and
large-scale structure of the interplanetary magnetic field of
our solar system. However, it fails to describe the three-
dimensional geometry and evolution in time on various
scales.

2.2.1 Latitudinal dependence

The Parker model does not recognize the sign reversal of the
dipolar magnetic field over the Northern Hemisphere and the
Southern Hemisphere; the divergence-free nature of the mag-
netic field is not well represented. The hemispheric sign re-
versal can be incorporated into the Parker model as follows
(Webb et al., 2010):

B =
af (θ)

r2

(
er −

��r sinθ
Ur

eφ

)
. (35)

Here, the constant a and function f = f (θ) are given by

a = σpB0r
2
0 , (36)

f (θ)= 1− 2H(θ −π/2)=
cosθ
|cosθ |

, (37)

where σp =±1 defines the polarity of the magnetic field
in the Northern Hemisphere of the Sun, and f (θ) is the
Heaviside step function with the property f (θ)=+1 for
0< θ < π/2 and f (θ)=−1 for θ > π/2.

A more elaborated analytic model is proposed along
with the Ulysses measurements over the solar polar regions
(Zurbuchen et al., 1997; Forsyth et al., 2002). The three-
dimensional model allows a nonzero field in the polar com-
ponent and is expressed as

Br = B0

( r0
r

)2
, (38)

Bθ =
B0r

2
0

Uswr
ω sinβF sin

(
φ+

r��

Usw
−φ0

)
, (39)

Bφ =−
B0r

2
0

Uswr

[
�� sinθ −ω

(
cosβF sinθ+

sinβF cosθ cos
(
φ+

r��

Usw
−φ0

))]
, (40)

where B0 is the radial component of the magnetic field at
the source surface located at heliospheric distance r = r0, ω
the differential rotation rate of the magnetic field line at foot
points, βF (the Fisk angle) the polar angle at which a field line
originating in the rotational pole crosses the source surface
and is related to the angle between the solar magnetic dipole
axis and the rotation axis, and φ0 the heliographic longitude
of the plane defined by the rotation and magnetic axes. The
source magnetic field is defined at r = r0. The angle φ = φ0
occurs in the plane defined by the rotation axis and the mag-
netic axis of the Sun. Angle βF is the polar angle where the
field line p crosses the source surface (from the heliographic
pole). The angle βF can be calculated in the model by Fisk
(1996) for a given orientation αF of the magnetic axis M and
a given non-radial expansion. For the configuration discussed
by Fisk (1996), the value of βF is about 30◦.

A model of latitudinal dependence of the magnetic field
is constructed by employing the method of separation of the
variable for an axisymmetric magnetohydrodynamic outflow
(Lima et al., 2001). The radial and the azimuthal components
of the magnetic field are proposed as

Br =
B0

r2

√
1+µsin2εθ, (41)

Ann. Geophys., 37, 299–314, 2019 www.ann-geophys.net/37/299/2019/



C. Lhotka and Y. Narita: Interplanetary magnetic field 305

Bφ = λB0
sinεθ
r

 r2

R2
s
− 1

1−M2
A

 , (42)

where ε is a free parameter, µ is the ratio of the flow kinetic
energy (or energy density, strictly speaking) in the equato-
rial region to that in the polar region, and λ is the ratio of
azimuthal to radial velocity (and also magnetic field) at the
base of the wind. Rs is the radius of the star or the Sun. MA
is the Alfvén Mach number of the flow. The polar compo-
nent of the magnetic field is assumed to vanish due to the
assumption of the axial symmetry around the rotation axis.

2.2.2 Poleward component

The IMF can have a nonzero polar (or latitudinal) compo-
nent, e.g., from the solar dipolar field. Generalization of the
Parker model to the nonzero polar component case (Bθ 6= 0)
is based on the analysis by Forsyth et al. (1996). Let φB be
the azimuthal angle that the projection of the IMF vector onto
the R–T plane makes with the R axis in the right-handed
sense and δB be the meridional angle of the IMF to the R–T
plane. These angles are defined in terms of the magnetic field
components (Forsyth et al., 1996):

tanφB = BT/BR,

sinδB = BN/B, (43)

where B =
√
B2

R+B
2
T+B

2
N.

The azimuthal angle of the spiral field φP that the tangent
to the ideal Parker spiral magnetic field makes with the ra-
dially outward direction at a position in interplanetary space
specified by radial position r and heliographic latitude δ is
then given by

tanφP =
Uφ −�r cosδ

Ur
. (44)

On the assumption that Uφ is small, φP turns out to be neg-
ative. A magnetic field with a direction in agreement with
the Parker spiral model will have either φB = φP in a region
of outward polarity or φB = 180◦+φP in a region of inward
polarity field. In both regions the Parker model predicts that
an ideal magnetic field has a meridional angle δB = 0◦ with
respect to the R–T plane. Therefore, up to the second order
in BN the sine of the meridional angle δB according to the
second equation in Eq. (43) is given by

sinδB '
BN√

B2
R+B

2
T

. (45)

If we combine the first of Eq. (43) together with Eq. (45) and
solve for BT and BN we find up to O(B3

N):

BT =−B0

( r0
r

)2
(
Uφ − r�� cosδ

)
Ur

, (46)

BN = B0

( r0
r

)2

√√√√1+

(
Uφ − r�� cosδ

)2
U2

r
sinδB , (47)

where we substituted BR by Br in Eqs. (17)–(18),

BR = B0

( r0
r

)2
. (48)

Equations (46)–(48) provide a type of the Parker spiral mag-
netic field with the generalization to a nonzero normal com-
ponent BN 6= 0 parameterized by δ and δB . For δB = 0◦ and
ignoring the azimuthal component of the solar wind Uφ , the
model reproduces the Parker model, i.e., Eqs. (17)–(18):

BR = B0

( r0
r

)2
, (49)

BT =−
( r0
r

)
r0B0�� cosδ, (50)

BN = 0. (51)

Another way of generalization is to use the power-law de-
pendence using the power-law index κ as a free parameter
(Lhotka et al., 2016),

BR = BR0

( r0
r

)2
bR (t) , (52)

BT = BT0

( r0
r

)
bT (t) , (53)

BN = BN0

( r0
r

)κ
bR (t) . (54)

Here, BR0, BT0, and BN0 are the mean magnetic field. bR,
bT, and bN can be time-dependent such as the solar cycle
(see Sect. 2.2.3). The power-law index κ is a free parameter
and determines the dependence of BN on the inverse distance
from the Sun 1/r .

2.2.3 Solar cycle dependence

The solar cycle is a periodic change in the sunspot number
over 11 years. In the plasma physics sense, the solar cycle is
more associated with the magnetic activity of the Sun with a
period of 22 years (the magnetic polarity is reversed after one
sunspot cycle). During solar maximum the entire magnetic
field of the Sun flips, thus alternating the polarity of the field
every solar cycle. The solar (magnetic) activity is diverse,
such as solar radiation, ejections of solar material, and the
number and the size of sunspots and the occurrence rate of
solar eruptions. As a consequence, the periodic change in the
solar magnetic field (or dipolar axis) affects the polarity of
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the IMF as well. To include the time-dependent effect Kocifaj
et al. (2006) suggests the following magnetic field model:

BR = B0

( r0
r

)2
cos

(
πt

11[yr]
+φ0

)
, (55)

BT =−B0

( r0
r

)
cosϑ cos

(
πt

11[yr]
+φ0

)
. (56)

Here, ϑ is again latitude with θ = π −ϑ . Note that the
transverse direction (with a unit vector eT) is constructed
as eT = ωmag× eR, where ωmag is the magnetic axis of the
Sun. If we assume that ωmag coincides with the rotation
axis of the Sun, ��, then the relation BT =−Bφ holds with
Bφ given in Eqs. (17)–(18). However, in comparison with
the second equation in Eqs. (17)–(18), the second equation
in Eq. (35) differs by a factor r0��/Ur in addition to the
inclusion of the time-dependent terms. However, assuming
solar wind speed Usw ' 450 km s−1 and solar rotation rate
�� ' 2π/24.47 d−1, this factor becomes close to unity at
r0 = 1 au.

2.2.4 Polarity and tilt angle

Two additional effects can further be incorporated into the
IMF model, the polarity Amag and the tilt angle θtilt. The po-
larity Amag is defined such that a case of Amag > 0 corre-
sponds to the magnetic fields pointing outward from the Sun
in the Northern Hemisphere (the angle between the magnetic
axis and the solar rotation axis is below 90◦), and a case of
Amag < 0 is in the opposite sense to Amag > 0. Using the po-
larity A, the Parker spiral magnetic field is given by the fol-
lowing equation (Jokipii and Thomas, 1981):

B =
Amag

r2

(
er −0eφ

)
×{

1− 2H
[
θ −

(
π

2
+ θtilt sin

(
φ−

r��

Usw

))]}
, (57)

where H is the Heaviside step function. 0 is defined as

0 =
r�� sinθ
Usw

. (58)

The polarity Amag is expressed in units of magnetic flux (see
Eq. 23). An equivalent formulation of Eq. (57) is as follows
(Kota and Jokippii, 1983):

B =
Amag

r2

(
er −

r�� sinθ
Usw

eφ

)[
1− 2H(θ − θ∗)

]
, (59)

cotθ∗ =− tanθtilt sinφ∗, (60)

where φ∗ is the azimuthal angle in the co-rotating frame at
an angular speed of the solar rotation,

φ∗ = φ+
r��

Usw
. (61)

Figure 5. Shape of the “ballerina skirt” model of the heliocentric
current sheet defined by cosθ∗ = cosθ . Topology at t = 0 and for
θt0 = 5◦ (a) and θt0 = 30◦ (b).

The tilt angle θtilt is larger at near solar maximum and
smaller at near solar minimum (Thomas and Smith, 1981)
and typically varies from 75◦ at high level of solar activity to
10 down to 3◦ during solar minimum activity. A model of tilt
angle variation over a 22-year solar cycle was constructed by
Jokipii and Thomas (1981) and Kota and Jokippii (1983) as
follows:

θtilt = θt0+ θt1 cos
(

2πt
T

)
, (62)

where θt0 = 20◦, θt1 = 10◦, and T = 11yr. The tilt angle θtilt
is set to be at sunspot maximum at t = 0.

The wavy, flapping shape of the heliospheric current sheet
is expressed by the equation for the polar angle as follows
(Jokipii and Thomas, 1981):

θcs =
π

2
+ sin−1

[
sinθtilt sin

(
φ−φ0+

r��

Usw

)]
, (63)

'
π

2
+ θtilt sin

(
φ−φ0+

r��

Usw

)
. (64)

The approximation in Eq. (64) is valid for θtilt� 1 rad (up
to about 30◦).

A sketch of the topology of the heliospheric current sheet
is shown in Fig. 5, where the magnetic field is discontinuous,
i.e., for vanishing θ − θ∗ = 0 in H(θ − θ∗). For small values
of θtilt the sheet is close to the plane defined in terms of the
solar equator (left) while for larger values (θtilt = 20◦) the
wavy structure of the “ballerina skirt” is found to be much
more pronounced.

The drift motion depends on the sign of qAmag, a combi-
nation of the electric charge of the particle and the polarity
of the solar magnetic field. During the period of qAmag > 0,
the time variation of the cosmic ray flux shows a flatter max-
imum, while during qAmag < 0 the time variation of the cos-
mic ray flux shows a shape maximum; see, e.g. Jokipii and
Thomas (1981) or Kota and Jokippii (1983).

A more refined magnetic field model is constructed by
Burger et al. (2008), which offers an extension of the tilted
heliospheric current sheet (with respect to the rotation axis)
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to the solar cycle dependence. The latitude-dependent mag-
netic field model is expressed as follows:

Br = B0

( r0
r

)2
, (65)

Bθ = Br
r

Usw
ω∗ sinβ∗ sinφ∗, (66)

Bφ = Br
r

Usw

[
ω∗ sinβ∗ cosθ cosφ∗+

sinθ
(
ω∗ cosβ∗−��

)
+

dω∗

dθ
sinβ∗ sinθ cosφ∗+

ω∗
dβ∗

dθ
cosβ∗ sinθ cosφ∗

]
. (67)

Here

φ∗ = φ−��t +
�(r − r0)

Usw
+φ0. (68)

B0 is again the radial component of the magnetic field at the
reference radius r0. The symbol βF is the angle (the Fisk an-
gle) between the virtual magnetic axis (p axis) and the ro-
tation axis of the Sun, and ω is the differential rotation rate
of the Sun. Both the angle βF and ω are generalized to the
latitude-dependent case by introducing the transition func-
tion Ft(θ) in the following way:

β∗ = βFFt(θ), (69)
ω∗ = ωFt(θ). (70)

The transition function is constructed as follows (Burger
et al., 2008):

Ft =
∣∣tanh[δpolθ ] + tanh[δpol(θ −π)]

− tanh[δeq(θ − θ
′

b)]
∣∣2 (71)

for the northern high-latitude region (0≤ θ < θ ′b),

Ft = 0 (72)

for the equatorial or low-latitude region (θ ′b ≤ θ ≤ π − θ
′

b),
and

Ft =
∣∣tanh[δpolθ ] + tanh[δpol(θ −π)]

− tanh[δeq(θ −π + θ
′

b)]
∣∣2 (73)

for the southern high-latitude region. θ ′b is the equatorward-
limit polar angle of the coronal hole (characterized by open
field lines) and is between 60 and 80◦ from the solar ro-
tation axis in Burger et al. (2008). The symbols δpol and
δeq are the control parameters of the transition from the
high-latitude magnetic fields (Fisk-type model) into the low-
latitude fields (Parker-type model), e.g., δpol = δeq = 5.0 pro-
posed by Burger et al. (2008). The magnetic field model in
Eqs. (65)–(67) represents a natural extension of the Parker
model in that the case Ft = 1 reproduces the model proposed

by Zurbuchen et al. (1997) and the case Ft = 0 reproduces
the Parker model. The associated polar and azimuthal com-
ponents of the flow velocity are

Uθ = r0ω
∗ sinβ∗ sinφ�, (74)

Uφ = r0

(
ω∗ sinβ∗ cosθ cosφ�+ω∗ cosβ∗ sinθ+

dω
dθ

sinβ∗ sinθ cosφ�+

ω∗
dβ∗

dθ
sinθ cosφ�

)
. (75)

The Fisk angle βF is related to the tile angle of the helio-
spheric current sheet αF by Burger et al. (2008):

cos(αF+βF)= 1−
(
1− cosθ ′mm

) sin2αF

sin2θmm
, (76)

where θmm and θ ′mm are the equatorward (low-latitude)
boundary of the polar coronal hole on the level of photo-
sphere source surface in heliomagnetic coordinates, respec-
tively. The boundary angles are expressed in heliographic co-
ordinates as θb = θmm−αF and θ ′b = θ

′
mm−αF, respectively.

The tilt angles αF and βF and the boundary angles θb and
θ ′b can be modeled in a time-dependent way when construct-
ing the Fisk–Parker hybrid model (Burger et al., 2008) as
a solar-cycle-dependent one: the time dependence of the tilt
angle αF is modeled as

αF = αmin+
(π

4
−
αmin

2

)[
1− cos

(π
4
T [yr]

)]
(77)

for 0≤ T [yr] ≤ 4 yr and

αF = αmin+
(π

4
−
αmin

2

)[
1− cos

(π
7
(T [yr] − 11)

)]
(78)

for 4< T ≤ 11yr, where αmin = π/18 is an offset tilt angle.
Time T is measured in units of years after a solar minimum.
The time dependence of the boundary angles is

θb =
θb(min)

2

[
1+ cos

(π
4
T [yr]

)]
(79)

θ ′b =
θ ′b(min)

2

[
1+ cos

(π
4
T [yr]

)]
(80)

for 0≤ T ≤ 4yr and

θb =
θb(min)

2

{
1+ cos

[π
7
(T [yr] − 11)

]}
(81)

θ ′b =
θ ′b(min)

2

{
1+ cos

[π
7
(T [yr] − 11)

]}
(82)

for 4< T ≤ 11yr.

www.ann-geophys.net/37/299/2019/ Ann. Geophys., 37, 299–314, 2019



308 C. Lhotka and Y. Narita: Interplanetary magnetic field

3 Further models and effects

3.1 Magnetohydrodynamic models

The models of the solar wind and the interplanetary mag-
netic field can be extended from kinematic or hydrodynamic
treatments to magnetohydrodynamic (MHD) treatments. An
overview of the MHD wind models is given by Tajima and
Shibata (2002). Various magnetic effects are introduced in
the MHD picture, e.g., the Alfvén velocity as a characteristic
propagation speed (the Parker model, in contrast, recognizes
the sound speed as a characteristic propagation speed) and
the associated critical radius, collimation of the flow toward
the rotation axis by magnetic pinching in the twisted field
geometry.

3.1.1 One-dimensional treatment

An MHD model is proposed for an axisymmetric, one-
dimensional, centrifugal-force-driven wind on the solar
equatorial plane (Weber and Davis, 1967). Six variables are
determined as a function of the radial distance (mass den-
sity, ρ; radial and azimuthal components of flow speed, Ur
and Uφ ; and that of the magnetic field, Br and Bφ ; and pres-
sure p) using six equations (continuity equation, magnetic
flux conservation, force balance, induction equation, adia-
batic pressure, and energy conservation) and six integral con-
stants (mass flux, magnetic flux, angular velocity of the Sun,
Alfvén radius, entropy, and total energy). The Alfvén radius
is defined as the radius at which the flow velocity reaches the
Alfvén velocity in the radial component, Ur = VA,r. At larger
distances from the Sun, the solution is given asymptotically
as

ρ ∝ r−2, (83)
Ur→ U∞, (84)

Br ∝ r
−2, (85)

Bφ ∝ r
−1. (86)

The magnetic field becomes more azimuthal and thus twisted
with increasing distance, Bφ/Br ∝ r .

The momentum balance equation by Parker (1958) is ex-
tended to including the effect of magnetic field and Alfvén
wave heating rate (Alazraki and Couturier, 1971; Belcher,
1971; Woolsey and Cranmer, 2014; Comişel et al., 2015):

1
U

dU
dr

(
U2
−U2

c

)
=−U2

c
d
dr

lnB − c2
s

d
dr

lnT

+
QA

2ρ(U +VA)
−
GM�

r2 . (87)

Here QA denotes the Alfvén wave heating rate. Uc is the
critical speed:

U2
c = c

2
s +

WA

4ρ
3U +VA

U +VA
, (88)

where WA is the energy density of the Alfvén waves includ-
ing the perpendicular fluctuation components of the flow ve-
locity δU⊥ and that of the magnetic field δB⊥,

WA =
1
2
ρδU2

⊥
+
δB2
⊥

2µ0
. (89)

3.1.2 Two-dimensional treatment

In the two-dimensional picture, the energy conservation (the
generalized Bernoulli equation) and the conservation law
perpendicular to the magnetic field (the generalized Grad–
Shafranov equation) are derived using the force balance
equation among the advection of the flow itself (flow nonlin-
earity such as steepening and eddies), the pressure gradient,
the Lorentz force, and the gravitational attraction by the Sun,
the mass flux conservation, the induction equation, and the
adiabatic condition along the flow (Heinemann and Olbert,
1978; Sakurai, 1985; Lovelace et al., 1986). The generalized
Grad–Shafranov equation cannot be solved analytically but
needs to be solved numerically. It is found that the wind be-
comes collimated toward the rotation axis of the Sun (or the
star) by the magnetic pinching of the spiral or twisted field.
In fact, any stationary, axisymmetric magnetized wind colli-
mates toward the rotation axis at large distances (Heyvaerts
and Norman, 1989).

It is useful to introduce the poloidal–toroidal expression of
the magnetic field in the two-dimensional MHD treatment:

Bp =∇× (aeφ)+Bφeφ, (90)

where a denotes the magnetic stream function and eφ is the
unit vector in the azimuthal direction around the rotation
axis. The poloidal fields Bp (the first term in Eq. 90) are ob-
tained by a family of curves under a = const. We introduce
the barred radius, which is the distance from the rotation axis,
r = r sinθ . The flow velocity is decomposed by referring to
the local magnetic field as

U =
αm(a)

ρ
B + r2�(a)eφ, (91)

where the first term (denoted byUp) is the flow velocity com-
ponent parallel to the magnetic field in the frame rotating
with the angular velocity �, and the second term (denoted
by Uφ) is perpendicular to the magnetic field. The toroidal
component of the magnetic field is determined by the angu-
lar momentum conservation,

r

(
Uφ −

Bφ

µ0a

)
= l =�r2

A(a), (92)

where l is the specific angular momentum and rA is the
Alfvén radius at which the poloidal component of the flow
velocity becomes equal to the Alfvén speed for the poloidal
component of the magnetic field. Equation (92) is obtained
from the (steady-state) MHD momentum equation and the
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flow velocity expression in Eq. (91). The magnetic stream
function needs to be determined for the flow velocity and
the poloidal component of the magnetic field. The magnetic
stream function is numerically evaluated from the momen-
tum equation (or force balance) perpendicular to the mag-
netic field by solving the following equation (Sakurai, 1985):

∇ ·

[(
α2

m
ρ
−

1
µ0

)
∇a

r2

]
= ρ

(
E′−

1
γp− 1

p

ρ

K ′

K
+ r2��′

)
+

B2
p

ρ
αmα

′
m+D

[
D

µ0
�2r2αmα

′
m−α

2
m�

2(r2
A)
′

−α2
m��

′

(
r2

A− rA

)]
, (93)

where

D =
µ0ρ

(
r2

A− r
2)

r2(µ0ρα2
m− ρ)

(94)

and the prime (·)′ denotes the differentiation with re-
spect to the magnetic stream function, d/da. Equation (93)
is the generalized Grad–Shafranov equation for the two-
dimensional centrifugally driven wind. The density ρ follows
the Bernoulli equation:

U2
p

2
+

1
2
(Uφ−�r)

2
+

γp

γp− 1
p

ρ
−
GM·

r
−
�2r2

2
= E(a) (95)

under the polytropic or adiabatic equation of state

p =K(a)ργp . (96)

In the two-dimensional MHD treatment of the flow, the wind
becomes collimated toward the rotation axis by the pinch of
toroidal fields (Sakurai, 1985), causing a nonzero poleward
(northward or southward) component of the magnetic field.

3.2 More ingredients

Solar wind models can further be improved by considering
turbulent diffusion and pickup ions.

3.2.1 Turbulent diffusion

Turbulence on smaller spatial scales serves as an energy sink
to large-scale mean fields, which leads to the notion of turbu-
lent diffusion (mean-field electrodynamics). To see this more
clearly, one may decompose the magnetic field into a large-
scale mean field B0 and a fluctuating field δB (with the zero
mean value), as well as the flow velocity:

B = B0+ δB, (97)
U = U0+ δU . (98)

The induction equation for the large-scale magnetic field has
then the frozen-in term for the large-scale fields B0 and U0
and the electromotive force term Eem:

∂B0

∂t
=∇× (U0×B0)+∇×Eem. (99)

The electromotive force is an averaged electric field coming
from the coupling of the flow velocity fluctuations with the
fluctuating magnetic field by the cross product:

Eem = 〈δU × δB〉 . (100)

A widely used model in the mean-field electrodynamics is
that the electromotive force depends on the large-scale quan-
tities such as the large-scale magnetic field, the curl of the
large-scale magnetic field, and the curl of the large-scale flow
velocity. By introducing the proper transport coefficients αt,
βt, and γt, the electromotive force is modeled as

Emodel = αtB0−βt∇×B0+ γt∇×U0. (101)

After some algebra using Eqs. (99) and (101), one identi-
fies that the term βt∇×B0 becomes nothing other than the
diffusion term for the large-scale magnetic field (under the
condition that the coefficient βt is not negative):

∂B0

∂t
=∇× (U0×B0)+∇× (αtB0)+βt∇

2B0

+∇× (γt∇×U0) . (102)

The terms with αt and γt in turn may amplify the large-scale
magnetic field when the coefficients are in favor of field am-
plification (dynamo mechanism). The transport coefficients
are theoretically estimated as follows:

αt = Cατ(−hkin+hcur), (103)
βt = Cβτ

(
ekin+ emag

)
, (104)

γt = Cγ τhcrs, (105)

where Cα , Cβ , and Cγ are dimensionless scalar factors and
are estimated as (Yoshizawa, 1998)

Cα ' 0.02, (106)
Cβ ' 0.05, (107)
Cγ ' 0.04. (108)

The symbol τ denotes the turbulent correlation time length,
and h and e represent the helicity and the energy quantities:
hkin the kinetic helicity density, hcur the current helicity den-
sity, hcrs the cross helicity density, ekin the turbulent kinetic
energy density, and emag the turbulent magnetic energy den-
sity. The helicity density quantities and the energy density
quantities are defined for the fluctuating field:

hkin = 〈δU · (∇× δU)〉 , (109)

hcur =
1

µ0ρ0
〈δB · (∇× δB)〉 , (110)

hcrs =
1

√
µ0ρ0

〈δU · δB〉 , (111)

ekin =
1
2
〈|δU |2〉, (112)
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emag =
1

2µ0ρ0
〈|δB|2〉. (113)

Note that different definitions are possible for the helicity and
energy density quantities. In the definition above (Eqs. 109–
113) the fluctuating magnetic field is converted into the ve-
locity dimension such as δB/

√
µ0ρ0, and the energy den-

sity is represented as that per unit mass. The correlation time
length τ can in the simplest case be modeled or represented
by the eddy turnover time,

τed =
`

δU
=
ekin+ emag

ε
, (114)

where ε is the dissipation rate which needs to be obtained by
solving an equation in the similar fashion to the turbulence
energy (Yokoi et al., 2008). The estimate of timescale can
be extended by including the Alfvén time effect into a syn-
thesized timescale τs in the additive sense in the frequency
domain as

1
τs
=

1
τed
+χ

1
τA
, (115)

where τA denotes the Alfvén time

τA =
`

VA
=
|ekin+ emag|

2

εV 2
A

, (116)

with the length scale ` and the Alfvén speed VA. The symbol
χ is the weight factor for the Alfvén time and is estimated to
be of the order 102 in the solar wind application (Yokoi et al.,
2008). A more rigorous treatment is to solve two sets of equa-
tions, one for the large-scale mean fields and the other for the
small-scale turbulent fields. This task can be achieved either
analytically using the two-scale direct interaction approxi-
mation (Yokoi, 2006; Yokoi and Hamba, 2007; Yokoi et al.,
2008) or numerically (Usmanov et al., 2012, 2014, 2016).

3.2.2 Pickup ions

Pickup ions from interstellar neutral hydrogen atoms are one
of the ingredients to the solar wind and contribute to addi-
tional mass of the plasma, which results in deceleration of the
solar wind expansion and in increase in the plasma temper-
ature. Pickup ions originate in (1) charge exchange with the
solar wind protons and (2) photoionization by the solar ra-
diation. Steady-state MHD equations for the wind including
pickup ions are introduced by Isenberg (1986) and Whang
(1998) and are numerically implemented to simulation stud-
ies for a three-component fluid (thermal protons, electrons,
pickup protons) by Usmanov and Goldstein (2006) and Us-
manov et al. (2014) and for a four-component fluid by adding
interstellar hydrogen (Usmanov et al., 2016).

The continuity equation in the one-fluid sense (mixture of
electrons, solar wind protons, and pickup ions of interstel-
lar origin) has a contribution from the photoionization as a

source term and is written for the steady state as (Whang,
1998)

∇ · (ρU)=mpqph, (117)

where ρ and U denote the mass density and the flow velocity
in the one-fluid sense,mp the proton mass, and qph the pickup
ion production rate by the photoionization process,

qph = ν0

(
r2

0
r

)
nnt. (118)

Here ν0 = 0.9× 10−7 s−1 is the photoionization rate per hy-
drogen atom at the Earth orbit distance as reference r0 =
1 au, and nnt is the number density of neutral hydrogen (of
interstellar origin). The one-fluid momentum equation in the
steady state is approximated into (by neglecting higher-order
terms) (Whang, 1998)

ρU ·U+∇P − ρ∇

(
GM�

r

)
−

1
µ0
(∇×B)×B =

− (qex+ qph)mpU . (119)

Here qex is the pickup ion production rate by the charge ex-
change process,

qex = σexnswnntU, (120)

where σex is the cross section of charge exchange between
a hydrogen atom and the solar wind protons, and nsw is the
number density of solar wind protons.

3.3 Stellar wind and interstellar space

Various outflow models have been proposed for the stellar
wind. For example, a wind model is constructed and numeri-
cally studied for the thermally driven hydrodynamic outflow
from low-mass stars (Johnstone et al., 2015). A dead zone
due to the magnetic dipole field effect can arise in the equa-
torial region (Keppens and Goedlbloed, 1999). A model is
also constructed for the stellar winds around asymptotic giant
branch (AGB) stars with dust grains by employing the MHD
equation for the stellar wind plasma and the Euler equation
for the dust grains under the gravity, the radiation pressure,
and the drag force (Thirumalai and Heyl, 2010), showing the
possibility of a stellar wind driven by dust grains. The mass-
loss rate is observationally studied via stellar winds for sub-
luminous stars (Krtička et al., 2016), in which the following
flow velocity model is used for fitting with three parameters
U1, U2, and γsw:

U =

[
U1

(
1−

Rs

r

)
+U2

(
1−

Rs

r

)2
]

{
1− exp

[
γsw

(
1−

r

Rs

)2
]}

, (121)

Ann. Geophys., 37, 299–314, 2019 www.ann-geophys.net/37/299/2019/



C. Lhotka and Y. Narita: Interplanetary magnetic field 311

where Rs is the stellar radius.
Stellar winds can be detected by the spectroscopic inves-

tigation. A line spectrum becomes distorted to blue-shifted
absorption and red-shifted emission by the retarding stellar
wind (away from the observer), known as the P Cygni pro-
file. One type of the stellar wind models is the Lucy model
(Lucy, 1971):

U = Ut

[
1−

(1− asw)Rs

r
− asw

R2
s

r2

]1/2

, (122)

where asw is a free parameter with −1< asw < 1. Equa-
tion (122) satisfies the conditions of zero speed at the stel-
lar surface (U = 0 at r = Rs) and asymptotic behavior at
very large distances from the star (U → Ut as r→∞).
Ut is the terminal flow velocity. The flow speed increases
monotonously as a function of the radius,U > 0 and dU

dr > 0.
The other type is a variant of the Lucy model (Kudritzki and
Puls, 2000):

U

Ut
=

(
1− bsw

Rs

r

)βsw

, (123)

where the constant bsw is the flow velocity at the inner bound-
ary of the stellar wind. An even more simplified expression
is (Lamers, 1998)

U

Ut
=

(
1−

Rs

r

)βsw

, (124)

where Ut is the asymptotic, termination flow speed. βsw is
a free parameter and is empirically chosen as 0.5≤ βsw ≤ 4
(Sapar et al., 2003).

4 Summary and conclusions

There is an increasing amount of models for the interplane-
tary magnetic field. Starting with the Parker model, the mag-
netic field model can be extended to include the latitudinal
dependence, the poleward component, the time dependence,
and the polarity and tilt effect even in the analytic or semi-
analytic treatment. Which model to choose would depend on
the application, e.g., if the solar cycle is to be included or not,
or if the latitudinal dependence is to be or not. In the tem-
poral sense, cosmic ray diffusion has the shortest timescale,
about 13 h for relativistic particles nearly at the speed of light
to travel over 100 au distance in the heliosphere. In contrast,
plasma turbulence evolves together with the solar wind, and
the timescale is intermediate, being of the order or days; i.e.,
the solar wind travel time from the Sun to the Earth orbit,
1 au, is about 100 h or roughly 4 d. Charged dust motions and
modulation of the cosmic ray flux in the heliosphere evolve
on the longest timescale among the three applications, of the
order of of years (secular variation of the orbital parameters).

The accuracy or the uncertainty of the reviewed mod-
els needs to be verified using in situ magnetic field mea-
surements from the previous, current, and upcoming space-
craft missions. Above all, the magnetic field in the inner
heliosphere will be extensively studied with Parker Solar
Probe, BepiColombo (in particular, the cruise-phase mea-
surements), and Solar Orbiter.

It is interesting to note that the analytic expression is also
available for the coronal magnetic field (during the solar min-
imum) and the local interstellar magnetic field surrounding
the heliosphere. Hence, naively speaking, one may expect
to construct a more complete model of the magnetic field
from the Sun to the local interstellar medium. Such a model,
once smoothly and rationally connected from one region to
another, enables one to improve the accuracy of theoretical
studies on plasma turbulence evolution, charged dust mo-
tions, and diffusion of cosmic ray and energetic particles.

It is also worth noting the limits of the models. First, the
magnetic fields are highly irregular in structure in the so-
lar corona and at the solar surface. At some distance suf-
ficiently close to the Sun, the interplanetary magnetic field
should smoothly be connected to the coronal magnetic field.
Second, the outer heliosphere has the termination shock and
the heliopause, which are not included in the models in this
review. Third, the solar variability includes not only the 11-
year sunspot number variation or the 22-year magnetic struc-
ture variation, but also modulations of the solar cycle on long
timescales such as 100 or even 1000 years.
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