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Abstract. A model-independent first-principle first-order in-
vestigation of the shape of turbulent density-power spectra
in the ion-inertial range of the solar wind at 1 AU is pre-
sented. Demagnetised ions in the ion-inertial range of quasi-
neutral plasmas respond to Kolmogorov (K) or Iroshnikov–
Kraichnan (IK) inertial-range velocity–turbulence power
spectra via the spectrum of the velocity–turbulence-related
random-mean-square induction–electric field. Maintenance
of electrical quasi-neutrality by the ions causes deformations
in the power spectral density of the turbulent density fluctu-
ations. Assuming inertial-range K (IK) spectra in solar wind
velocity turbulence and referring to observations of density-
power spectra suggest that the occasionally observed scale-
limited bumps in the density-power spectrum may be traced
back to the electric ion response. Magnetic power spectra re-
act passively to the density spectrum by warranting pressure
balance. This approach still neglects contribution of Hall cur-
rents and is restricted to the ion-inertial-range scale. While
both density and magnetic turbulence spectra in the affected
range of ion-inertial scales deviate from K or IK power law
shapes, the velocity turbulence preserves its inertial-range
shape in the process to which spectral advection turns out to
be secondary but may become observable under special ex-
ternal conditions. One such case observed by WIND is anal-
ysed. We discuss various aspects of this effect, including the
affected wave-number scale range, dependence on the angle
between mean flow velocity and wave numbers, and, for a
radially expanding solar wind flow, assuming adiabatic ex-
pansion at fast solar wind speeds and a Parker dependence
of the solar wind magnetic field on radius, also the presum-

able limitations on the radial location of the turbulent source
region.

1 Introduction

The solar wind is a turbulent flow with an origin in the so-
lar corona. It is believed to become accelerated within a
few solar radii in the coronal low-beta region. Though this
awaits approval, it is also believed that its turbulence orig-
inates there. Turbulent power spectral densities in the solar
wind have been measured in situ at around 1 AU for several
decades already. They include spectra of the magnetic field
(e.g. Goldstein et al., 1995; Tu and Marsch, 1995; Zhou et
al., 2004; Podesta, 2011, for reviews, among others), but with
improved instrumentation also of the fluid velocity (Podesta
et al., 2007; Podesta, 2009; Šafránková et al., 2013), elec-
tric field (Chen et al., 2011, 2012, 2014a, b), temperature
(Šafránková et al., 2016), and (starting with Celnikier et al.,
1983, who already reported its main properties) also of the
(quasi-neutral) solar wind density (Chen et al., 2012, 2013;
Šafránková et al., 2013, 2015, 2016).

Complementary to the measurements in situ, the so-
lar wind, ground-based observations of radio scintillations
from distant stars, originally applied (Lee and Jokipii,
1975, 1976; Cordes et al., 1991; Armstrong et al., 1995)
to the interstellar medium (ISM; for early reviews, e.g.
Coles, 1978; Armstrong et al., 1981) and used for extra-
heliospheric plasma diagnosis (cf., Haverkorn and Spangler,
2013), also provided information about the solar wind den-
sity turbulence (Coles and Harmon, 1989; Armstrong et al.,
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1990; Spangler and Sakurai, 1995; Harmon and Coles, 2005)
mostly at solar radial distances < 60R� ≈ 0.25 AU in the in-
nermost very low solar wind (0.1< βi < 1; e.g. the model of
McKenzie et al., 1995) region, which is of particular interest
because it is the presumable source region of the solar wind,
being accessible only remotely. Solar wind turbulence gener-
ated here seems to freeze1 and is transported radially outward
afterwards by the flow. Radio-phase scintillation of space-
craft signals from Viking, Helios, and Pioneer have been used
early on (Woo and Armstrong, 1979) to determine solar wind
density-power spectra in the radial interval ≤ 1 AU, report-
ing mean spectral Kolmogorov slopes ∼−5/3 with a strong
flattening of the spectrum near the Sun at distances < 30R�
where the slope flattens down to ∼−7/6=−1.1, a finding
which suggests evolution of the density turbulence with solar
distance. In the ISM radio scintillation, observations covered
a huge range of decades, from wavelength scales λ≈ 15 AU
down to close to the Debye length λD ≈ 50 m, suggesting an
approximate Kolmogorov spectrum over 7 decades. From re-
cent in situ Voyager 1 observations of ISM electron densities
(Gurnett et al., 2013) a Kolmogorov spectrum has been in-
ferred down to wavelengths of λ∼ 106 m that is followed by
an adjacent spectral intensity excess on the assumed kinetic
scales for wavelengths λ&λD (Lee and Lee, 2019).

Density fluctuations δN are generally inherent to pres-
sure fluctuations δP . From fundamental physical principles,
it follows that density turbulence does not evolve by itself.
Through the continuity equation, it is related to velocity tur-
bulence, which in its course requires the presence of free en-
ergy, being driven by external forces. It is primary, while tur-
bulence in density, temperature, and the magnetic field is sec-
ondary (for a different claim, see Howes and Nielson, 2013;
Nielson et al., 2013). Density turbulence may signal the pres-
ence of a population of compressive (magneto-acoustic-like)
fluctuations in addition to the usually assumed (e.g. Biskamp,
2003; Howes, 2015) alfvénic turbulence, the dominant fluid–
magnetic fluctuation family dealing with the mutually related
alfvénic velocity and magnetic fields made use of in magne-
tohydrodynamic (MHD) theory based on Elsasser variables
(Elsasser, 1950).

Inertial-range velocity turbulence is subject to Kol-
mogorov (Kolmogorov, 1941a, b, 1962) or Iroshnikov–
Kraichnan (Iroshnikov, 1964; Kraichnan, 1965, 1966,
1967) turbulence spectra. (Regarding their generalisation to
anisotropy with respect to any mean magnetic field, see Gol-

1We do not touch on the subtle question of whether any frozen
turbulence on MHD-scales above the ion-cyclotron radius in a low-
beta or strong-field plasma can evolve. According to inferred spatial
anisotropies, it seems that close to the Sun, turbulence in the den-
sity is almost field-aligned. On the other hand, ion-inertial-range
turbulence at shorter scales will be much less affected. It can be
considered to be isotropic. Near 1 AU, where most in situ obser-
vations take place, one has β&1. One may expect that turbulence
here also contains contributions which are generated locally, if only
some free energy would become available.

dreich and Sridhar, 1995.) In the solar wind, Kolmogorov
inertial-range spectra reaching down into the presumable dis-
sipation range have been confirmed by a wealth of in situ
observations (e.g. Goldstein et al., 1995; Tu and Marsch,
1995; Zhou et al., 2004; Alexandrova et al., 2009; Boldyrev
et al., 2011; Matthaeus et al., 2016; Lugones et al., 2016;
Podesta, 2011; Podesta et al., 2006, 2007; Sahraoui et al.,
2009, and others). Since the mean fieldsB0,T0,N0,U0 them-
selves obey pressure balance, one has the following for pres-
sure balance among the turbulent fluctuations:

〈|δB|2〉

B2
0
=

√
〈|δN |2〉

N0
+

√
〈|δT |2〉

T0
. (1)

The angular brackets 〈. . .〉 indicate averaging over the spatial
scales of the turbulence with respect to turbulent fluctuations.
Alfvénic fluctuations (e.g. Howes, 2015, for a recent theoreti-
cal account of their importance in MHD turbulence) compen-
sate separately due to their magnetic and velocity fluctuations
being related; they do not contribute to extra compression.
In order to infer the contribution of density fluctuations, one
compares their spectral densities with those of the tempera-
ture δT or magnetic field δB. This requires normalisation to
the means. Solar wind densities at 1 AU are of the order of
N0 ∼ 10 cm−3, while ion thermal speeds are of the order of
vi ∼ 30 km s−1. Moreover, mean plasma betas are of the or-
der of βi ∼ 1 here. For checking pressure balance, measured
density fluctuations can be compared with those two.

An example is shown in Fig. 1 based on solar wind mea-
surements on 6 July 2012 (Šafránková et al., 2015, 2016).
There is not much freedom left in choosing the mean densi-
ties and temperatures in Fig. 1. Densities at 1 AU barely ex-
ceed 10 cm−3. Electron temperatures are insensitive to those
low-frequency density fluctuations. High mobility makes
electron reaction isothermal.

The data in Fig. 1 show the relative dominance of density
fluctuations over ion temperature fluctuations under mod-
erately low-speed solar wind conditions at all frequencies
larger than the lowest accessible MHD frequencies. This is
not surprising because one would not expect large temper-
ature effects. Ion heating is a slow process which does not
react to any fast pressure fluctuations caused by density or
magnetic turbulence. It just shows that the turbulent thermal
pressure is mainly due to density fluctuations over most of
the frequency range. In the low-frequency MHD range the
kinetic pressure of large-scale turbulent eddies dominates.

Inertial-range power spectra of turbulent density fluctua-
tions are power laws. Occasionally they exhibit pronounced
spectral excursions from their monotonic course prior to
dropping into the dissipative range. Whenever this happens,
the spectrum flattens or, in a narrow range of scales, even
turns to positive slopes, sometimes dubbed spectral “bumps”.
The reason for such spectral excesses still remains unclear.
Similar bumps have also been seen in electric field spectra
(e.g. Chen et al., 2012), where they have tentatively been
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Figure 1. Normalised solar wind power spectra of turbulent temper-
ature and density fluctuations. The curves are based on data from
Šafránková et al. (2016) obtained on 6 July 2012 from the Bright
Monitor of the Solar Wind (BMSW) instrument aboard the Spektr-
R spacecraft. The solar wind conditions of these observations have
been tabulated (Chen et al., 2014a). They indicate rather slow com-
pared to medium conditions. The data have been rescaled and nor-
malised to the main densityN0 and temperature T0 in order to show
their relative contributions to an assumed solar wind pressure bal-
ance. The interesting result is that in the lowest MHD frequency
range density fluctuations are irrelevant with respect to pressure bal-
ance. At higher frequencies, however, the density fluctuations dom-
inate the temperature fluctuations.

suggested to indicate the presence of kinetic Alfvén waves
which may be excited in the Hall-MHD (e.g. Huba, 2003)
range as eigenmodes of the plasma. Models including Alfvén
ion-cyclotron waves (Harmon and Coles, 2005) or kinetic
Alfvén waves (Chandran et al., 2009) have been proposed
to cause spectral flattening. Kinetic Alfvén waves may also
lead to bumps if only βi� 1. In fact, kinetic Alfvén waves
possess a large perpendicular wave number k⊥λi ∼ 1 of the
order of the inverse ion-inertial length (e.g. Baumjohann and
Treumann, 1996), the scale on which ions demagnetise. If
sufficient free energy is available, they can thus be excited
and propagate in this regime (e.g. Gary, 1993; Treumann
and Baumjohann, 1997). Recently Wu et al. (2019) provided
kinetic-theoretical arguments for kinetic Alfvén waves con-
tributing to turbulent dissipation in the ion-inertial scale re-
gion. Causing bumps, the waves should develop large am-
plitudes on the background of general turbulence, i.e. caus-
ing intermittency. This requires the presence of a substan-
tial amount of unidentified free energy, for instance in the
form of intense plasma beams, which are very well known
in relation to collisionless shocks both upstream and down-
stream (e.g. Balogh and Treumann, 2013). If kinetic Alfvén
waves are unambiguously confirmed (see, e.g. Salem et al.,
2012), the inner solar wind at .0.6 AU could be subject to
the continuous presence of small-scale collisionless shocks,
a assumption that is not unreasonable and which would be

supported by observation of sporadic nonthermal coronal ra-
dio emissions (type I through type IV solar radio bursts).

In the present note we take a completely different model-
independent point of view, avoiding reference to any super-
imposed plasma instabilities or intermittency (e.g. Chen et
al., 2014b). We do not develop any “new theory” of turbu-
lence. Instead, we remain in the realm of turbulent fluctu-
ations, asking for the effect of ion inertia, with respect to
ion demagnetisation in the ion-inertial Hall-MHD range, on
the shape of the inertial-range power spectral density which
will be illustrated referring to a few selected observations.
To demonstrate pressure balance we refer to related mag-
netic power spectra, both measured in situ aboard spacecraft,
which require a rather sophisticated instrumentation. Those
measurements were anticipated by indirectly inferred den-
sity spectra in the solar wind (Woo, 1981; Coles and Fil-
ice, 1985; Bourgeois et al., 1985) and the interstellar plasma
(Coles, 1978; Armstrong et al., 1981, 1990) from detection
of ground-based radio scintillations.

In the next section we discuss the response of demagne-
tised ions to the presence of turbulence on scales between the
ion and electron inertial lengths. We interpret this response
as the consequence of electric field fluctuations in relation to
the turbulent velocity field. The requirement of charge neu-
trality maps them to the density field via Poisson’s equa-
tion. The additional contribution of the Hall effect can be
separated. We then refer to turbulence theory, assuming that
the mechanical inertial-range velocity–turbulence spectrum
is either Kolmogorov (K) or Iroshnikov–Kraichnan (IK) and,
in a fast-streaming solar wind under relatively weak condi-
tions (Treumann et al., 2019), maps from wave number k

into a stationary observer’s frequency ωs space via Taylor’s
hypothesis (Taylor, 1938).

In order to be more general, we split the mean flow veloc-
ity into bulk V 0 and large-eddy U0 velocities, the latter being
known (Tennekes, 1975) to cause Doppler broadening of the
local velocity spectrum at a fixed wave number (reviewed
and backed by numerical simulations by Fung et al., 1992;
Kaneda, 1993). Imposing the theoretical K or IK inertial-
range spectra, we then find the deformed power density spec-
tra of density turbulence versus spacecraft frequency. We ap-
ply these to some observed spectral density bumps which we
check on a measured magnetic power spectrum for pressure
balance. The results are tabulated. Since bumpy spectra are
rather rare, we also consider two more “normal” bumpless
spectra. Such deformed density-power spectra which exhibit
some typical spectral flattening were obtained under differ-
ent solar wind conditions. The paper concludes with a brief
discussion of the results.

2 Inertial-range ion response

Our main question concerns the cause of the occasionally
observed scale-limited bumps in the turbulent density-power
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spectra, in particular their deviation from the expected mono-
tonic inertial-range power law decay towards high wave
numbers prior to entering the presumable dissipation range.

The philosophy of our approach is the following. Turbu-
lence is always mechanical, i.e. in the velocity. It obeys a
turbulent spectrum which extends over all scales of the turbu-
lence. In a plasma, containing charged particles of different
mass, these scales for the particles divide into magnetised,
inertial, unmagnetised, and dissipative groups. On each of
these intervals, the particles behave differently, reacting to
the turbulence in the velocity. In the inertial range, the par-
ticles lose their magnetic property. They do not react to the
magnetic field. They, however, are sensitive to the presence
of electric fields, independent of their origin. Turbulence in
velocity in a conducting medium in the presence of exter-
nal magnetic fields is always accompanied by turbulence in
the electric field due to gauge invariance, namely the Lorentz
force. This electric field affects the unmagnetised component
of the plasma, the ions in our case, which to maintain quasi-
neutrality tend to compensate it. Below we deal with this ef-
fect and its consequences for the density-power spectrum.

2.1 Electric field fluctuations in the ion-inertial range

The steep decay of the normalised fluctuations in ion tem-
perature above frequencies > 10−1 Hz is certainly due to
the drop in ion dynamics at frequencies close to and ex-
ceeding the ion-cyclotron frequency, which at 1 AU distance
from the Sun is of the order of fci = ωci/2π ∼ 1 Hz for a
nominal magnetic field of ∼ 10 nT. In this range we en-
ter the (dissipationless) ion-inertial or Hall (electron-MHD)
domain where ions demagnetise, currents are carried by
magnetised electrons, both species decouple magnetically,
and Hall currents arise. At those frequencies, far below the
electron fe = ωe/2π ∼ 35 kHz and (assuming protons) ion
fi = ωi/2π ∼ 0.8 kHz plasma frequencies, ions and elec-
trons couple mainly through the condition of quasi-neutrality,
i.e. via the turbulent induction–electric field which becomes2

δE =−δV ⊥×B0− (V 0+U0)× δB−

−
1
eN0

B0× δJ+

+

〈
δV × δB +

1
eN0

δJ ×
(δN
N0

B0− δB
)〉
. (2)

For later use, we split the main velocity field 〈V 〉 = V 0+U0
into the bulk flow (convection) V 0 and an advection veloc-

2This equation is easily obtained by standard methods when
splitting the fields in the ideal (collisionless) Hall-MHD Ohm’s law:
E =−V ×B + (1/eN)J ×B, with E,B,V ,J electric, magnetic,
and current fields, into mean (index 0) and fluctuating fields accord-
ing to E =E0+δE etc.; averaging over the fluctuation scales, with
〈. . .〉 indicating the averaging procedure, yields the mean-field elec-
tric field equation. Subtracting it from the original equation pro-
duces the wanted expression of the turbulent electric fluctuations
δE through the mean and fluctuating velocity and magnetic fields.

ity U0. The latter is the mean velocity of a small number of
large eddies which carry the main energy of the turbulence.
Even for stationary turbulence, they advect the bulk of small-
scale eddies around at speed U0 (Tennekes, 1975; Fung et al.,
1992).

The last three averaged nonlinear terms within the angu-
lar brackets 〈. . .〉 on the right are the nonlinear contributions
of the fluctuations to the mean fields yielding an electromo-
tive force which contributes to mean-field processes like con-
vection, dynamo action, and turbulent diffusion. They vary
only on the large mean-field scale. On the fluctuation scale
they are constant and can be dropped, unless the turbulence
is bounded, in which case boundary effects must be taken
into account at the large scales of the system. Generally, in
the solar wind this is not the case. The remaining three linear
terms distinguish between directions parallel and perpendic-
ular to the main magnetic field B0. The third linear term is
the genuine perpendicular Hall contribution. From Ampere’s
law for the current fluctuation µ0δJ =∇ × δB we have the
following for the perpendicular and parallel components of
the turbulent electric field:

δE⊥ = B0×
[
δV ⊥−

U0‖

B0
δB⊥−

−
1

eµ0N0

(
∇ × δB

)
⊥

]
−U0⊥× δB‖

δE‖ =− U0⊥× δB⊥ ==H⇒ 0. (3)

The second of these equations is of no interest, because
the low-frequency parallel electric field its right-hand side
produces is readily compensated by electron displacements
along B0.

This leaves us with the fluctuating perpendicular induc-
tion field in the first Eq. (3). Here, any parallel advec-
tion U0‖ attributes to the perpendicular velocity fluctuations
from perpendicular magnetic fluctuations δB⊥. On the other
hand, any present parallel compressive magnetic fluctuations
δB‖ = B0(δB‖/B0) contribute through perpendicular advec-
tion U0⊥. In their absence, when the magnetic field is non-
compressive, the last term disappears.

The complete Hall contribution to the electric field, viz.
the last term in the brackets in Eq. (3), can be written as

δEH
⊥
=−

B0

eµ0N0

(
∇⊥δB‖−∇‖δB⊥

)
. (4)

Even for U0‖ = 0, it contributes through the turbulent fluc-
tuations in the magnetic field. As both these contributions
depend only on δB, we can isolate them for separate consid-
eration. One observes that, in the absence of any compressive
magnetic components δB‖ and homogeneity along the mean-
field ∇‖ = 0, there is no contribution of the turbulent Hall
term to the electric induction field. In that case only veloc-
ity turbulence contributes. Below we consider this important
case.
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2.2 Relation to density fluctuations: Poisson’s equation

Let us assume that advection by large-scale energy-carrying
eddies is perpendicular U0 = U0⊥, and there are no com-
pressive magnetic fluctuations δB‖ = 0. In Eq. (2) this re-
duces to considering only the first term containing the ve-
locity fluctuations. We ask for its effect on the density fluc-
tuations in the ion-inertial domain on scales where the ions
demagnetise.

On scales in the ion-inertial range shorter than either
the ion thermal gyroradius ρi = vi/ωci or – depending on
the direction to the mean magnetic field B0 and the value
of plasma beta β = 2µ0N0T0/B

2
0 , with ωci = eB0/mi ion-

cyclotron and ωi = e
√
N0/ε0mi ion plasma frequency, re-

spectively – inertial length λi = c/ωi, the ions demagnetise.
Being non-magnetic, they do not distinguish between poten-
tial and induction–electric fields. They experience the induc-
tion field caused by the spectrum of velocity fluctuations as
an external electric field which, in an electron-proton plasma,
causes a charge density fluctuation eδNi = eδNe and thus a
density fluctuation δN . Poisson’s equation implies that

∇ · δE =
e

ε0
δN ==H⇒ ik · δEk =

e

ε0
δNk. (5)

The right expression is its Fourier transform. For complete-
ness we note that the Hall contribution to the Poisson equa-
tion in Fourier space reads

ik⊥ ·δE
H
⊥k =

B0

eµ0N0

(
k2
⊥
δB‖k−k‖k⊥ ·δB⊥k

)
=
e

ε0
δNH

k . (6)

Again it becomes obvious that absence of parallel (compres-
sive) magnetic turbulence eliminates the first term in this
expression, while purely perpendicular propagation elimi-
nates the second term. Alfvénic turbulence, for instance, with
δB‖ = 0 and k⊥ = 0, has no Hall effect on the modulation
of the density spectrum, a fact which is well known. On
the other hand, for perpendicular wave numbers k = k⊥ only
compressive Hall-magnetic fluctuations δB‖k⊥ contribute to
the Hall fluctuations in the density δNH

k⊥
.

2.3 Relation between density and velocity power
spectra

We are interested in the power spectrum of the turbulent den-
sity fluctuations in the proper frame of the turbulence.

Multiplication of the only remaining first term in the elec-
tric induction field Eq. (3) with wave number k selects
wave numbers k⊥ perpendicular to B0. The combination of
Eq. (2) and the Poisson equation then yields an expression
for the power spectrum of the turbulent density fluctuations3

in wave-number space

〈|δN |2〉k⊥ =
(ε0B0

e

)2
k2
⊥
〈|δV |2〉k⊥ , (7)

3The procedure of obtaining the power spectrum is standard, so
we skip the formal steps which lead to this expression.

where we from now on drop the index ⊥ on the velocity
δV ⊥. Angular brackets again symbolise spatial averaging
over the fluctuation scale. The functional dependence on the
wave number is indicated by the index k⊥. It is obvious that
the power spectrum of density fluctuations in the ion-inertial
Hall-MHD domain is completely determined by the power
spectrum of the turbulent velocity4. This can be written as

〈|δN |2〉k⊥

N2
0

=

(VA

c

)2(k⊥
ωi

)2
〈|δV |2〉k⊥

=
〈|δV |2〉k⊥

c2

(VA

c

)2(
k⊥λi

)2
, (8)

where V 2
A = B

2
0/µ0miN0 is the squared Alfvén speed, and

ω2
i = e

2N0/ε0mi is the squared proton plasma frequency. As
expected, in order to contribute to density fluctuations, per-
pendicular scales λ⊥ < λi smaller than the ion-inertial length
λi = c/ωi are required, while in the long-wavelength range
k⊥λi < 1, there is no effect on the spectrum. This is in agree-
ment with the assumption that any spectral modification is
expected only in the ion-inertial range.

The last equation is the main formal result. It is the wanted
relation between the power spectra of density and velocity
fluctuations. It contains the response of the unmagnetised
ions to the mechanical turbulence.

2.4 Affected scale range

The density response demands that the ions are unmag-
netised. This implies that k⊥ρi < 1, where ρi = vi/ωci =

λivi/VA is the ion gyroradius, with vi as the thermal speed.
Thus we have two conditions which must simultaneously be
satisfied:

k⊥λi > 1 and k⊥λi >
VA

vi
≡ β
−

1
2

i . (9)

For VA < vi the second condition is trivial. This is, however,
a rare case, so the more realistic restriction is the opposite
small ion-beta case when VA > vi and hence βi < 1. It must,
however, be combined with another condition which requires
that the wave numbers be smaller than the inverse electron
gyroradius ρe = ve/ωce. The relation between ρe and ρi is
ρ2

e /ρ
2
i =meTe/miTi. Moreover we have ρi/λi = vi/VA, and

in addition, βi = v
2
i /V

2
A = (Ti/Te)βe. Using all these rela-

tions, we obtain finally that

1< k2
⊥
λ2

i βi <
mi

me

Ti

Te
for βi < 1. (10)

4One may object that, at smaller wave numbers outside the ion-
inertial range, this would also be the case, which is true. There,
reference to the continuity equation, for advection speeds U0 6= 0,
yields 〈|δN |2〉k =N2

0 〈|k·δV |
2
〉k/(k·U0)

2, which is obtained with-
out reference to Poisson’s equation. However, its dependence on the
wave number is different, and, in addition, it is undefined for van-
ishing advection. In the absence of advection the density spectrum
is determined from the equation of motion by simple pressure bal-
ance.
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Figure 2. The range of permitted values of k⊥λi as function of βe
for different ratios Te/Ti. Only the range above the lines is relevant.
In the solar wind, usually Te > Ti, implying that βe > βi (Newbury
et al., 1998; Wilson III et al., 2018) unless the electrons become
cooled by some process like emitting radiation, electron hole for-
mation, or charge exchange.

This expression defines the marginal condition for the exis-
tence of a range in wave numbers where the ions respond to
the spectrum of the turbulent electric field δE:

Ti

Te
&
me

mi
∼ 0.001. (11)

Because of the smallness of the right-hand side, this is a weak
restriction. As expected, any effect on the density-power
spectrum will disappear at wave numbers k⊥ρe where the
electrons demagnetise. On the other hand, the lower wave-
number limit is a sensitive function of the external condi-
tions. This becomes clear when writing it in the form

Te/Tiβe < k
2
⊥
λ2

i . (12)

The electron plasma beta in the solar wind is of the order of
βe&O(1). However, the temperature ratio Te/Ti is variable
and usually large, varying between a few and a few tens. Thus
usually βi < 1. Figure 2 shows a graph of this dependence.

2.5 Application to K and IK inertial-range models of
turbulence

The power spectrum of the Poisson-modified ion-inertial-
range density turbulence can be inferred once the power
spectral density of the velocity is given. This spectrum must
either be known a priori or requires reference to some model
of turbulence.

We do not develop any model of turbulence here. In appli-
cation to the solar wind we just make us, in the following, of
the Kolmogorov (K) spectrum (or its anisotropic extension
by Goldreich and Sridhar, 1995, abbreviated KGS) but will

also refer to the IK spectrum, which both have previously
been found to be of relevance in solar wind turbulence.

We shall make use of those spectra in two forms: the
original ones which just assume stationarity and absence of
any bulk flows and their modified advected extensions. The
latter account for a distinction between a small number of
large energy-carrying eddies with mean eddy vortex speed
U0 and bulk turbulence consisting of large numbers of small
energy-poor eddies which are frozen to the large eddies. The
large eddies stir the small-scale turbulence, forcing it into
advective motion (Tennekes, 1975). This causes a Doppler
broadening of the wave-number spectrum at fixed k and has
been confirmed by numerical simulations (Fung et al., 1992;
Kaneda, 1993). Below, it will be found that this advection
cannot be resolved in bulk convective flow which buries the
subtle effect of Doppler broadening. A probable counterex-
ample is shown in Fig. 5.

The stationary velocity spectrum of turbulent eddies at en-
ergy injection rate ε exhibits a broad inertial power law range
in k (Kolmogorov, 1941a, b, 1962; Obukhov, 1941) which,
between injection kin and dissipation at kd wave numbers,
obeys the famous isotropic Kolmogorov power spectral den-
sity law in wave-number space:〈∣∣δV ∣∣2〉

k
≡ EK(k)= CKε

2
3 k−

5
3 for kin < k < kd, (13)

with CK ≈ 1.65 as Kolmogorov’s constant of proportional-
ity (as determined by Gotoh and Fukayama, 2001, using nu-
merical simulations). Clearly, in a fast-streaming solar wind,
when straightforwardly mapping this K spectrum by the Tay-
lor hypothesis (Taylor, 1938) into the stationary spacecraft
frame, the spectral index is unchanged, and one trivially re-

covers the ω
−

5
3

s Kolmogorov slope in frequency space.
This changes drastically when referring to an advected K

spectrum of velocity turbulence (Fung et al., 1992; Kaneda,
1993) which yields the above-mentioned spectral Doppler
broadening at fixed k,

Ead
kωk
=

1
2

EK(k)
√

2πkU0

∑
±

exp
[
−

1
2

ω2
±

(kU0)2

]
,

ω± = ωk ± `Kk
2
3 , (14)

which is due to decorrelation of the small eddies in advec-
tive transport, with `K ∼O(1) being some constant. The
k

2
3 dependence in the argument of the exponential results

from advection k · δV of neighbouring eddies at velocity
of δV ∝ k−

1
3 (Tennekes, 1975; Fung et al., 1992). The fre-

quency ωk stands for the internal dependence of the turbu-
lent frequency on the turbulent wave number k. It can be un-
derstood as an internal “turbulent dispersion relation”, which
is neglected in turbulence theory.5 Then the advected power

5The notion of a turbulent dispersion relation is alien to tur-
bulence theory, which refers to stationary turbulence, conveniently
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Figure 3. Solar wind power spectra of turbulent density fluctua-
tions (based on BMSW data from Šafránková et al., 2013, obtained
on 25 October 2011). Single point measurements were obtained
with six Faraday cups with time resolution of 31 ms (∼ 30 Hz) un-
der the following solar wind conditions: density N ∼ 3× 106 m−3,
mean magnetic field B0 ∼ 8 nT, bulk speed V0 ∼ 540 km s−1, ion
temperature Ti ∼ 10 nT, Alfvén Mach number MA ∼ 6, and total
β ∼ 0.3, implying dilute low β (highMA) and moderately fast flow
conditions. The local thermal ion gyroradius is ρi ∼ 2.2× 104 m.
The vertical line indicates the local ion-cyclotron frequency fci =
ωci/2π ≈ 0.15 Hz. Plasma frequency is fi = ωi/2π ≈ 400 Hz. fm
and fM are the approximate minimum and maximum frequencies
of the bumpy range, respectively. The data were averaged over
∼ 1200 s measuring time and subsequently filtered (cf. Šafránková
et al., 2016, for the description of the data reduction). The spec-
trum shown is the average spectrum with line width roughly corre-
sponding to the largest spread of the filtered data in the logarithmic
ordinate direction and applied to the whole spectrum. The power
spectrum exhibits a (so-called) bump at intermediate frequencies

of positive slopes ∼ ω
1
3 or ∼ ω

1
2 . This is in agreement with it be-

ing caused by the response of the non-magnetic ions to the elec-
tric induction field of the turbulent mechanical fluctuations in the
solar wind velocity in Kolmogorov (K; solid line) or Iroshnikov–
Kraichnan (IK; dashed line) inertial-range turbulence. The large
scatter in the data (weight of line) inhibits distinguishing between
K and IK inertial-range velocity turbulence.

collecting any temporal changes under the loosely defined term in-
termittency. However, observation of stationary turbulence shows
that eddies come and go on an internal timescale, which station-
ary theory integrates out. In Fourier representation this corresponds
to an integration of the spectral density S(ωk,k) with respect to
frequency ωk (e.g. Biskamp, 2003), which leaves only the wave-
number dependence. The spectral density S occupies a volume in
(ω,k) space. Resolved for ω = ωk(k), it yields a complex multiply

spectrum at large k is power law

Ead
kωk
∝

EK(k)

k
exp

(
−

1
2

cos2γk

)
∼ k−

8
3 , (15)

ω± ≈ k ·U0 = kU0 cos γk. (16)

In the stationary turbulence frame the power spectrum
of turbulence in the velocity decays to ∝ k−

8
3 with non-

Kolmogorov spectral index 8/3≈ 2.7.
It is of particular interest to note that solar wind turbu-

lent power spectra at high frequency repeatedly obey spectral
indices very close to this number. Boldly referring to Tay-
lor’s hypothesis where ωs ∝ k, one might conclude then that
a convective flow maps this spectral range of the advected
turbulent K spectrum into the spacecraft frame where it ap-

pears as an ω
−

8
3

s spectrum.
If this is true, then the corresponding observed spec-

tral transition (or break point) from the spectral K index
∼ 5/3 to the steeper index∼ 8/3 observed in the large-wave-
number power spectra indicates the division between large-
scale energy-carrying, energy-rich turbulent eddies and the
bulk of energy-poor small-scale eddies in the mechanical tur-
bulence. It thus provides a simple explanation of the change
in spectral index from ∼ 5/3 (K spectrum) to .3 (advected
K turbulence spectrum) without invoking any sophisticated
turbulence theory as well as having no effects of dissipation.

Inspecting the behaviour in the long-wavelength range,
one finds that the exponential dependence exp(−`2

K/U
2
0 k

2
3 )

suppresses the spectrum here. This flattens the inertial-range
spectrum towards small wave numbers kin into the large-eddy
range where it causes bending of the spectrum. The wave
number at spectral maximum is

kmin.`
3
K/16U3

0

√
2. (17)

Approaching from the Kolmogorov inertial range towards a
smaller k, one observes flattening until kmin < kin. In most
cases this point will lie outside the observation range.

In the stationary turbulence frame the frequency spec-
trum is obtained when integrated with respect to k (Biskamp,
2003). It then maps the Doppler broadened advected veloc-
ity power spectrum (Fung et al., 1992; Kaneda, 1993) to the
Kolmogorov law in the source-region frequency space:

kd∫
kin

dkEad
kωk
∼ Ead

K (ω) ∝ ω−
5
3 . (18)

connected surface, the turbulent dispersion relation, which has noth-
ing in common with a linear dispersion relation resulting from the
solution of a linear eigenmode wave equation. It contains the depen-
dence of Fourier frequency ωk on Fourier wave number k. Though
this should be common sense, we feel obliged to note this here be-
cause of the confusion caused when speaking about a “dispersion
relation” in turbulence.
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This mapping is independent of Taylor’s hypothesis. It
strictly applies only to the turbulent reference frame. When
attempting to map it into the spacecraft frame via Taylor’s
Galilei transformation, referring to solar wind flow at finite
V0 6= 0, one must return to its wave-number representation in
Eq. (14). This transformation, though straightforward, is ob-
scured by the appearance of k in the exponential through ω±.
According to Taylor the turbulence frame frequency trans-
forms as

ωk = ωs− kV0 cosα. α = 6 (k,V 0). (19)

This is Taylor’s Galilei transformation. Neglecting ωk im-
plies that ωs = kV0 cos α. The exponential reduces to

exp
[
−

1
4

(ωk + kV0 cos α± `Kk
2
3

kU0

)2]
= (20)

= exp
[
−

1

4(kλi)
2
3

(λ 1
3
i `K

U0

)2]
(21)

−→ 1−
1

4(kλi)
2
3

(λ 1
3
i `K

U0

)2
, (22)

with λ
1
3
i `/U0 ≡ U

K
` /U0 being a velocity ratio. The arrow

holds for the ion-inertial range kλi > 1 and UK
` /U0 < 1. The

exponential expression leads to an advected K spectrum as
observed by the spacecraft in frequency space:

Ead
ωs
∝ ω
−

8
3

s exp
[
−

1
4

(V0 cos α
ωsλi

) 2
3
(UK

`

U0

)2]
, (23)

which, as before for large ωs, is of the spectral index 8/3.
With decreasing spacecraft frequency ωs, the exponential
correction factor acts to suppress the spectrum. This corre-
sponds to a spectral flattening towards smaller ωs. It might
even cause a spectral dip, depending on the parameters
and velocities involved. The effect is strongest for aligned
streaming and the eddy wave number. For α ∼ 90◦ one re-
covers the index 8/3.

It is most interesting that spectral broadening, when trans-
formed into the spacecraft frame in streaming turbulence,
causes that strong of a difference between the original Kol-
mogorov and the advected Kolmogorov spectrum. This spec-
tral behaviour is still independent of the Poisson modifica-
tion, which we are going to investigate in the next section.

3 Ion-inertial-range density-power spectrum

Here we apply the Poisson-modified expressions to the the-
oretical inertial-range K and IK turbulence models. We con-
centrate on the inertial-range K spectrum and rewrite the re-
sult subsequently to the IK spectrum.

3.1 Inertial-range K and IK density-power spectrum

For the simple inertial-range K spectrum, we know from
Eqs. (7) and (13) that

〈|δN |2〉k⊥ = CK

(ε0B0

e

)2
ε

2
3 k

1
3
⊥

for k⊥in < k⊥ < k⊥d.

(24)

This is a very simple wave-number dependence of the power
spectrum of density turbulence, permitting (Treumann et
al., 2019) Taylor’s Galilei transformation into the spacecraft
frame. Setting k⊥ = ωs/V0 cos α we immediately obtain

〈|δN |2〉k⊥ ∝ ω
1
3
s , (25)

with factor of proportionality CK(ε0B0/e)
2(ε2/V0 cos α)

1
3 .

Following exactly the same reasoning when dealing with
the IK spectrum, which has power index 3/2, we obtain

〈|δN |2〉k⊥ ∝ ω
1
2
s . (26)

Hence, the effect of the Poisson response of the plasma to the
inertial-range power spectra of K and IK turbulence in the
velocity is to generate a positive slope in the density-power
spectrum when transformed by Taylor’s Galilei transforma-
tion into the spacecraft frame.

We now proceed to the investigation of the effect of advec-
tion.

3.2 Advected Poisson-modified spectrum at V0 = 0

Use of the advected power spectral density Eq. (14) of the
velocity field for V0 = 0 in the transformed Poisson equa-
tion, with k→ k⊥ being perpendicular to the mean magnetic
field B0, yields the following for the non-convected advected
turbulent ion-inertial-range Poisson-modified density-power
spectrum in the stationary large-eddy turbulence frame:

〈|δN |2〉ad
ωkk⊥
=
ε2

0B
2
0

e2 k2
⊥
〈|δV |2〉ωkk⊥

=
ε2

0B
2
0

e2 k2
⊥
Ead
k⊥ωk

∝ k
−

2
3
⊥

∑
±

exp
[
−

1
2

ω2
±

(kU0)2

]
. (27)

Integration with respect to k⊥ under the above assumption on
ω± ≈ k⊥U0 yields the following for the Eulerian (Fung et al.,
1992) density-power spectrum in frequency space ω` < ω <
ωu in the ion-inertial domain of the turbulent inertial range:

〈|δN |2〉ad
ω ∼ ω

1
3 , k

2
3
ir ε

1
3 = ω` < ω < ωu. (28)

This is the proper frequency dependence of the advected tur-
bulent density spectrum in the turbulence frame. Here kir ≈
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2πωi/c (or 2πvi/ωci) is the wave number presumably corre-
sponding to the lower end of the ion-inertial range. The up-
per bound on the frequency ωu remains undetermined. One
assumption would be that ωu is the lower-hybrid frequency
which is intermediate to the ion and electron cyclotron fre-
quencies. At this frequency electrons become capable of dis-
charging the electric induction field, thus breaking the spec-
trum to return to its Kolmogorov slope at increasing fre-
quency.

In contrast to the Kolmogorov law, the Poisson-mediated
proper advected density-power spectrum Eq. (28) increases
with frequency in the proper stationary frame of the turbu-
lence. This increase is restricted to that part of the inertial
K range which corresponds to the ion-inertial scale and fre-
quency range.

The case of an IK spectrum leads to an advected velocity
spectrum

〈|δV |2〉ωkk⊥ ∝ k
−

3
2
⊥
, (29)

which yields

〈|δN |2〉ad
ωkk⊥
∝ k
−

1
2
⊥

∑
±

exp
[
−

1
2

ω2
±

(kU0)2

]
,

ω± = ωk ± `IKk
3
4
⊥
. (30)

Integration with respect to k⊥ then gives the proper advected
frequency spectrum in the stationary frame of IK turbulence:

〈|δN |2〉ad
ω ∼ ω

1
2 . (31)

This proper IK density spectrum increases with frequency
like the root of the proper frequency.

3.3 Taylor’s Galilei-transformed Poisson-modified
advected spectra

Turning to the fast-streaming solar wind, we find that with
k⊥ = ωs/V0 cosα for the Poisson-modified advected and
convected K density spectrum,

〈|δN |2〉K,ad
ωs
∝ ω
−

2
3

s exp
[
−

1
4

(V0 cos α
ωsλi

) 2
3
(UK

`

U0

)2]
, (32)

where we again neglected the proper frequency dependence.
This Taylor’s Galilei-transformed density spectrum decays
with increasing frequency, albeit at a weak power ∼ 2/3. At
large frequency ωs the exponent is 1, and the spectrum be-

comes ∝ ω
−

2
3

s . Towards smaller ωs the spectrum flattens and
assumes its maximum at

ωK
sm =

3
8

(V0 cosα
λi

)(UK
`

U0

)3
. (33)

The same reasoning produces, for the Poisson-modified
advected IK spectrum, the Taylor’s Galilei-transformed

Figure 4. Solar wind power spectra of the turbulent magnetic field
for the same time interval as in Fig. 3 measured by the WIND space-
craft (data from Šafránková et al., 2013), which was located at the
Lagrange point L1. Line width accounts for the scatter of data. The
magnetic turbulence spectrum exhibits a deformation similar to that
in the density-power spectrum and the same frequency interval. The

positive slope ∼ ω
1
6 in the deformation confirms its origin from

pressure balance. It indicates its nature being secondary to turbu-
lence in density. The solid (dashed) line corresponds to an K (IK)
velocity spectrum. The scatter of data was again substantial, thus
inhibiting distinction between the two cases.

spacecraft frequency spectrum

〈|δN |2〉IK,ad
ωs
∝ ω
−

1
2

s exp
[
−

1
4

(V0 cos α
ωsλi

) 3
4
(U IK

`

U0

)2]
. (34)

Both advected K and IK spectra have negative slopes in
spacecraft frequency ωs. Like in the case of a K spectrum,
this spectrum approaches its steepest slope of 1/2 at large
spacecraft frequencies ωs, while in the direction of small fre-
quencies, it flattens out to assume its maximum value at

ωIK
m =

(7
8
V0 cos α
λi

) 3
2
(U IK

`

U0

)3
. (35)

In both cases of advected K and IK spectra the Taylor’s
Galilei transformation from the proper frame of turbulence
into the spacecraft frame is permitted because it applies to
the velocity and density spectra (Treumann et al., 2019). It
maps the wave-number spectrum into the spacecraft frame
frequency spectrum. However, in both cases we recover
frequency spectra which decrease with frequency though
weakly approaching the steepest slope at large frequencies.
They flatten out towards low frequencies and may assume
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maxima only if these maxima are still in the inertial range
of the advected K or IK spectrum. Only in this case does
the spacecraft frequency spectrum exhibit a bump at their
nominal maximum frequencies ωsm. When the maximum
frequency falls outside the ion-inertial range the bump will
be absent, while the spectrum will be flatter than at large
frequencies. Such flattened bumpless spectra have been ob-
served. The next subsections provide examples of observed
bumpy and bumpless spectra in the spacecraft frequency
frame.

4 Application to selected observations in the solar wind

In the following two subsections we apply the above theory
to real observations made in situ in the solar wind. We first
consider density-power spectra exhibiting well-expressed
spectral bumps of positive slope. We then show two examples
where no bump is present but where the power spectra ex-
hibit a scale-limited excess and consequently a scale-limited
spectral flattening.

4.1 Observed bumpy solar wind power spectra of
turbulent density

Figure 3 is an example of a density spectrum with respect
to spacecraft frequency which exhibits a positive slope (or
bump) on the otherwise negative slope of the main spectrum.
The data in this figure were taken from published spectra
(Šafránková et al., 2013) in the solar wind at an average bulk
velocity of V0 ≈ 534 km s−1, density N0 ≈ 3×106 m−3, and
magnetic field B0 ≈ 8 nT, yielding a super-alfvénic Alfvén
Mach number MA ≈ 6, ion temperature Ti.3 eV, and total
plasma β ≈ 0.3, i.e. low-beta conditions. The straight solid
and broken lines drawn across this slope correspond to the
predicted ∼ ω

1
3 K and ∼ ω

1
2 IK slopes under convection-

dominated conditions. Both these lines fit the shape very well
though it cannot be decided which of the inertial-range tur-
bulence models provides a better fit, as the large scatter of
the data mimicked by the line width inhibits any distinction.
It is however obvious from Table 1 that advection plays no
role in this case.

In order to check pressure balance between the density and
magnetic field fluctuations, we refer to turbulent magnetic
power spectra obtained at the WIND spacecraft Šafránková
et al. (2013). WIND was located in the L1 Lagrange point.
Magnetic field fluctuations were related in time to the Bright
Monitor of the Solar Wind (BMSW) observations by the so-
lar wind flow. In spite of their scatter, the data were suf-
ficiently stationary for comparison to the density measure-
ments.

Figure 4 shows the WIND magnetic power spectral den-
sities. For transformation of the point cloud into a continu-
ous line, we applied the same technique (Šafránková et al.,
2016) as that for the density spectrum. The spectrum ex-

Table 1. K and IK ion-inertial-range spectral indices k−a , k−(a−2),
ωbs , and EBs ∼ ω

b/2
s without and with advection.

〈|δV |2〉 a a− 2 b b/2

EK
5
3 −

1
3

1
3

1
6

Ead
K

8
3

2
3 −

2
3 −

1
3

EIK
3
2 −

1
2

1
2

1
4

Ead
IK

5
2

1
2 −

1
2 −

1
4

hibits the expected positive slope in the BMSW frequency
interval. The straight solid and broken lines along the posi-
tive slope correspond (within the uncertainty of the observa-
tions) to the root slopes of K and IK density inertial-range

spectra 〈|δB|2〉ωs ∼ ω
1
6
s and ∼ ω

1
4
s , respectively. The mag-

netic spectrum is the consequence of the K or IK density

spectrum ∼ ω
1
3
s and ∼ ω

1
2
s , respectively. Fluctuations in tem-

perature do not, within experimental uncertainty, play any
susceptible role. Comparing absolute powers is inhibited by
the ungauged differences in instrumentation. (One may note
that power spectral densities are positive definite quantities.
Measuring their slopes is sufficient indication of pressure
balance. Detailed pressure balance can only be seen when
checking the phases of the fluctuations. Density and mag-
netic field would then be found in the antiphase.)

4.2 The normal case: flattened density-power spectra
without bump

The majority of observed density-power spectra in the so-
lar wind do not exhibit positive slopes. Such spectra are of
monotonic negative slope. In this sense they are normal. They
frequently possess break points in an intermediate range
where the slopes flatten. Two typical examples are shown
in Fig. 5, combined from unrelated BMSW and WIND data
(Šafránková et al., 2013; Podesta and Borovsky, 2010).

Their flattened spectral intervals each extend roughly over
1 decade in frequency. The BMSW spectrum is shifted by
1 order of magnitude in frequency to higher frequencies than
the WIND spectrum. Its low-frequency part below the ion-
cyclotron frequency f < fci has slope ∼ ω−

7
4 , close to a

K spectrum ∼ ω−
5
3 . The slope of the flat section is ∼ ω−1

which is about the same as the slope of the entire low-
frequency WIND spectrum before its spectral break. None
of the Poisson-modified K or IK spectral slopes fit these flat-
tened regions. At higher frequencies the BMSW spectrum
steepens and presumably enters the dissipative range.

The slope of the WIND spectrum above its break point
at frequency ∼ 10−2 Hz decreases to ∼ ω−

1
2 . This corre-

sponds perfectly to an advected Taylor’s Galilei-transformed
IK spectrum, suggesting that WIND detected such a spec-
trum in the ion-inertial range which maps to those space-
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Figure 5. Two (redrawn on same scale) cases of normal solar wind density-power spectra measured by Spektr-R-BMSW (Šafránková
et al., 2013) on 10 November 2011 and WIND (Podesta and Borovsky, 2010) on 4–8 January 1995 at different solar wind conditions.
BMSW observations of 2011 were obtained under low-speed (∼ 370 km s−1) moderately large total β = βi+βe ∼ 2.5, high Alfvénic Mach
number MA ∼ 10, and mean-field B0 ∼ 5 nT conditions. Density and temperature amounted to N0 ∼ 5×106 m−3 and Ti ∼ 10 eV, with ion-
cyclotron fci ∼ 0.08 Hz and plasma fi ∼ 500 Hz frequencies. WIND observations in L1 were obtained under high speed (∼ 640 km s−1),
βi.1, B0 ∼ 6 nT, N0 ∼ 3.5× 106 m−3, Ti ∼ 20 eV, and MA ∼ 9 conditions with similar cyclotron and plasma frequencies. In contrast to
Fig. 3 these spectra do not exhibit regions of positive slope. Their spectral slope is interrupted by a flattened region. They share a range
of spectral index ∼−1, though in different frequency intervals, while the WIND spectrum exhibits a higher-frequency range of flat slope
∼−1/2 which is absent in the BMSW spectrum.

craft frequencies. The pronounced ω−1 spectrum at lower
frequencies remains, however, unexplained for both space-
craft.

When crossing the cyclotron frequency fci, the WIND
spectrum steepens. We also note that the normalised power
spectral densities of WIND at 〈|δN |2〉/N2

0 > 0.3 and BMSW
at 0.005< 〈|δN |2〉/N2

0 < 0.05 in the common slope ∼ ω−1

interval are roughly 2 orders of magnitude apart. This can
hardly be traced back to the radial difference of 0.01 AU be-
tween L1 and 1 AU.

The obvious difference between the two plasma states
is not in the Mach numbers but rather in β and V0. The
BMSW observed, under moderately high-β low-V0 condi-
tions, WIND under moderately low-β high-V0 conditions at
similar densities and Mach numbers. Because of the Galilean
relation k = ωs/V0 cosα, the high speed in the case of WIND
seems responsible for the spectral shift in the ω−1

s spec-
tral range to lower than BMSW frequencies. This, however,
comes up merely for a factor 2 which does not cover the fre-
quency shift of more than 1 order of magnitude. Rather it is
the angle between mean speed and the wave-number spec-
trum which displaces the spectra in frequency. If this is the

case, then the WIND spectrum was about parallel to the solar
wind velocity with WIND angle α ≈ 0◦, while the BMSW
spectrum was close to being perpendicular with angle α ≈
90◦, and it is the BMSW spectrum which has been shifted by
Taylor’s Galilei transformation into the high-frequency do-
main, while the WIND spectrum is about original. This may
also be the reason why BMSW does not see the narrow, flat-
tened spectral part while compressing the ω−1

s part into just
1 order of magnitude in frequency. The near-perpendicular
angle α will also be confirmed below in the bumpy BMSW
spectral case.

5 Discussion

In this communication we dealt with the power spectra of
density in low-frequency plasma turbulence. We did not de-
velop any new theory of turbulence. We showed that, in the
ion-inertial scale range of non-magnetised ions, the electric
response of the ion population to a given theoretical tur-
bulent K or IK spectrum of velocity may contribute to a
scale-limited excess in the density fluctuation spectrum with
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a positive or flattened slope. We demonstrated that the ob-
tained inertial-range spectral slopes within experimental un-
certainty are not in disagreement with observations in the so-
lar wind, but we could not decide between the models of tur-
bulence. This may be considered a minor contribution only;
it shows, however, that correct inclusion of the electrody-
namic transformation property is important and suffices for
reproducing an observational fact without any need to invoke
higher-order interactions, any instability, or nonlinear theory.
We also inferred the limitations and scale ranges for the re-
sponse to cause an effect. However, a substantial number of
unsolved problems remain. Below we discuss some of them.

5.1 Reconciling the spectral range

The main problem concerns the agreement with observa-
tions. Determination and confirmation of spectral slopes is a
necessary condition. However, how should the observed fre-
quency range be adjusted?

Inspecting Fig. 3, where we included the local ion-
cyclotron frequency fci = ωci/2π , we find the scale-limited
positive slope (bump) of the density-power spectrum at
spacecraft frequencies fm ∼ ωm < ωci ∼ 0.22 Hz. Accord-
ing to Taylor, we have

ωm = kmV0 cosαm, and also kmλi > 1, (36)

where αm is the angle between km and velocity V 0, and λi =

c/ωi. The first expression yields Taylor’s Galilei-transformed
wave number km ∼ 2.3× 10−6/cos αm m−1. From the sec-
ond, we have, with the observed ion plasma frequency, km ∼

2π × 10−6 m−1. Hence we find that cos αm < 0.37 or αm >

69◦. The turbulent eddies are at highly oblique angles with
respect to the flow velocity.

With angles of this kind the positive slope spectral range
can be explained. The lower frequencies then correspond to
eddies which propagate nearly perpendicular. Since our the-
ory is generally restricted to wave numbers perpendicular to
the ambient magnetic field, the eddies which contribute to
the bumps are perpendicular to B0 and highly oblique with
respect to the flow. Similar arguments apply to the high-
frequency excess in the WIND observations of Fig. 5. Refer-
ring to Table 1 this excess is explained as survival of the ad-
vected spectrum when Taylor’s Galilei transformed into the
spacecraft frame.

5.2 Radially convected spectra: effect of inhomogeneity

The assumption of Taylor’s Galilei transformation in the way
we used it (and is generally applied to turbulent solar wind
power spectra) is valid only in stationary homogeneous tur-
bulent flows of spatially constant plasma and field parame-
ters6, which in the solar wind is not the case. It also assumes

6For general restrictions on its applicability already in homoge-
neous MHD, see Treumann et al. (2019).

that wave numbers k are conserved by the flow7. Thus the
above conclusion is correct only if the turbulence is gener-
ated locally and is transported over a distance where the ra-
dial variation of the solar wind is negligible. If it is assumed
that the turbulence is generated in the innermost heliosphere
at a fraction of 1 AU (e.g. McKenzie et al., 1995), any simple
application of Taylor’s Galilei transformation and thus the
above interpretation break down.

Under the fast flow conditions of Fig. 3 it is reasonable to
assume that the solar wind expands isentropically, denoting
the turbulent source and spacecraft locations by indices q and
s, respectively. The turbulent inertial range is assumed to be
collisionless, dissipationless, and in ideal gas conditions. For
simplicity assume that the expansion is stationary and purely
radial. Under Taylor’s assumption each eddy maintains its
identity, which implies that the number of eddies is constant,
and the eddy flux Fs(rs)/Fq(rq)= r2

q/r
2
s , i.e. the turbulent

power, decreases as the square of the radius. For the plasma
we have the isentropic condition (e.g. Kittel and Kroemer,
1980, p. 174)

Ts(rs)

Tq(rq)
=

[Ns(rs)
Nq(rq)

]γ−1
, γ =

5
3
, (37)

which gives Ns(rs)/Nq(rq)=
(
rq/rs

)3, and thus

Ts(rs)/Tq(rq)=
(
rq/rs

)2. One requires that kq > λ−1
iq =

ωiq(rq)/c. By the same reasoning as that in the homogeneous
case, one finds that

fm

fis
=
kmV0

ωis
cos αm

= kqλiq
V0

c

( rq
rs

) 3
2 cos αm

&
V0

c

( rq
rs

) 3
2 cos αm, (38)

inserting for the left-hand side and V0, we find, with rs =
1 AU, that

rq <
0.1(

cos αm
) 2

3
AU. (39)

We conclude that under the assumption of isentropic expan-
sion of the solar wind and Taylor’s Galilei transport of tur-
bulent eddies from the source region to the observation site
at 1 AU, the generation region of the turbulent eddies which
contribute to the bump in the K or IK density-power spec-
trum must be located close to the Sun. The marginally per-
mitted angle αm between wave number and mean flow is ob-
tained by using rq = 1 AU, yielding αm > 47◦, meaning that

7This is a strong assumption. In the absence of dissipation, indi-
vidual frequencies are conserved. They correspond to energy. Wave
numbers correspond to momenta which do not obey a separate con-
servation law.
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the flow must be oblique for the effect to develop, a con-
clusion already found above for homogeneous flow. These
numbers are obtained under the unproven assumption that
Taylor’s Galilei transport conserves turbulent wave numbers
in the inhomogeneous solar wind.

5.3 Ion gyroradius effect

So far we have referred to the inertial length as limiting the
frequency range. We now ask, for the more stringent con-
dition kρic > 1, that the responsible length be the ion gy-
roradius ρic = vi/ωci. In this case reference to the adiabatic
conditions becomes necessary. We also need a model of the
radial variation of the solar wind magnetic field. The field in-
side rs = 1 AU is about radial. Magnetic flux conservation
yields the Parker model Bs(rs)= Bq(rq)(rq/rs)2. A more
modern empirical model instead proposes a weaker radial
decay of the power 5/3 (for a review, e.g. Khabarova, 2013).
With these dependences, we have

kρs(rs)= kρq(rq)
Bq(rq)

Bs(rs)

√
Tis(rs)

Tiq(rq)
(40)

= kρq(rq)
( rs
rq

) 2
3
>
( rs
rq

) 2
3
, (41)

where the necessary condition kρq > 1 has been used. Refer-
ring again to the observed minimum frequency fm yields

fm

fic,s
=
kmV0

ωic,s
cos αm (42)

= kρq
V0

vi

( rs
rq

) 2
3 cos αm&

V0

vi

( rs
rq

) 2
3 cos αm. (43)

Inserting for the frequency ratio fm/fic,s ∼ 0.1 and the ratio
of mean to thermal velocities V0/vi ≈ 18, and setting rs =
1 AU, we obtain, for the source radius lying inside 1 AU,

1 AU> rqm > 300
(

cos αm
) 3

2 , (44)

which gives the result αm&89◦ for the propagation angle ob-
tained above. According to both these estimates eddy propa-
gation is required to be quasi-perpendicular to the flow. This
holds under the strong condition that the wave number is con-
served during outward propagation.

5.4 Radial variation of wave number in expanding
solar wind

The wave number k ∼ λ−1 is an inverse wavelength. Let us
assume that λ∼ r stretches linearly when the volume ex-
pands, thereby reducing k hyperbolically. The eddies, which
are frozen to the volume, also stretch linearly. In this case the
ratio rs/rq in Eq. (43) is raised to the power 1/3, and we find
instead that

rqm.
(cos αm

18

)3
< 1 AU. (45)

This gives αm&87◦ which is not too different from the above
case. Thus the angle between mean speed and the turbulent
wave number is close to perpendicular in order to reconcile
the lower observed limit in spacecraft frequency with the
wave number in the source region.

5.5 High-frequency limit for fM ∼ fce,s

A similar reasoning can be applied to the upper frequency
bound ωM. Following the discussion in the Introduction, this
bound is caused by the truncation of the ion-inertial range at
large wave numbers when the scale approaches the electron
scale, electron inertia takes over, and electrons demagnetise.
The condition in this case is that kρe < 1, which defines the
maximum frequency ωM.

We then have the following relation for the maximum
wave number:

kρMe(rs)= kρMe(rq)
Bq(rq)

Bs(rs)

√
Tes(rs)

Teq(rs)
<
( rs
rq

) 2
3
. (46)

From the maximum observed frequency, we find that, with
fM.fce,s ,

fM

fce,s
=
kMV0

ωce,s
cos αM

= kρq
V0

ve

( rs
rq

) 2
3 cos αM.

V0

ve

( rs
rq

) 2
3
.1, (47)

which, when inserting kρq.1, adopting the main plasma pa-
rameters, and with maximum frequency fM/fce,s ∼ 1 and
rs ∼ 1 AU, yields

rqM >
(V0

ve

) 3
2 AU∼ 0.05 AU. (48)

Taking the two results for this case together, the observations
map to an angle of propagation αm > 49◦ and places the tur-
bulent source close to the Sun but outside 11 R�.rq.1 AU.
It occurs only if the turbulence contains a dominant popu-
lation of eddies obeying wave-number vectors k which are
oblique to the mean flow velocity V 0. This is in agreement
with our given estimate above on the theoretical limits and
explains the relative rarity of its observation. Unfortunately,
based on the observations, the desired location of the tur-
bulent source region in space cannot be localised more pre-
cisely.

5.6 The observed case: fm ∼ 0.1fM� fce,s

Reconciling the observed range of the bump poses a tanta-
lising problem. Our theoretical approach would suggest that
the bump develops between the two cyclotron frequencies of
ions and electrons in the spacecraft frame. This would corre-
spond to a range of the order of the mass ratio mi/me which
would be 3 orders of magnitude. The actually observed range
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fm.fs.fM is much narrower, being just 1 order of magni-
tude. Given the uncertainties of measurement and instrumen-
tation this can be extended at most to the root of the mass
ratio, which in a proton-electron plasma amounts to a fac-
tor of fM/fs ∼ 43 only. In addition, unfortunately, the ob-
served local maximum frequency in Fig. 3 is far less than the
local electron cyclotron frequency fM� fce,s . The affected
wave number and frequency ranges are very narrow and at
the wrong place. Thus in the given version, the reasoning
above does not apply. Already in the source region, the ef-
fect must be bound to a narrow domain in wave number. The
mass ratio might suggest coincidence with the lower-hybrid
frequency of a low-β proton-electron plasma which, when
raised to the power 3/2, yields

rqM&0.6AU, (49)

putting the source region substantially farther out to &45R�.
The latter estimate is, however, quite speculative. Thus the

narrowness of the observed bump in frequency poses a se-
rious problem. Its solution is not obvious. The most honest
conclusion is that little can be said about the observed upper
frequency termination of the bump in Fig. 3 unless an addi-
tional assumption is made.

One may, however, argue that in a high-βi plasma the gy-
roradius of the ions is large. The ions are non-magnetic, but
the effect can arise only when the wavelength becomes less
than the inertial length λm < λi = c/ωi. Similarly the effect
will disappear when the wavelength crosses the electron in-
ertial length λM < λe = c/ωe. The ratio of these two limits
is λM/λm = fM/fm =

√
mi/me ≈ 43. This agrees approxi-

mately with the observation. This interpretation then iden-
tifies the range of the effect in spacecraft frequency and
source wave number with the range between electron and
ion-inertial lengths. Since both evolve radially with the ra-
tio of the root of densities, the relative spectral width should
not change from source to spacecraft.

In order to get an idea of the distance between source and
spacecraft, we assume that in the interval between the mini-
mum and maximum frequencies, the ion-cyclotron frequency
is crossed. Hence the corresponding wave number is con-
tained in the spectrum though it is invisible. This fact, how-
ever, enables us to refer to the difference in the ion-inertial
length scale and the ion gyroradius. The total difference in
frequency amounts to roughly 1 order of magnitude. The ra-
tio of both lengths is ρi/λi =

√
βi, with βi being the ion β. In

isentropic expansion, the evolution of βi, assuming a Parker
model, is( ρis

ρiq

λiq

λis

)2
=
βis

βiq
∝

( rq
rs

) 5
3
. (50)

From observations we have a total β > 1. We expect ρi&λi
and assume that βi&1. Figure 3 suggests a frequency ra-
tio fm/fM ∼ βis ∼ 0.7 larger than

√
me/mi ≈ 0.025. The af-

fected frequency and wave-number ranges are limited from

above when the scale approaches the electron gyroradius. In
that case, the upper bound is not determined by the mass ra-
tio alone. With the measured frequency ratio, the location of
the source should then be outside a shortest distance of

rq&0.24 βiq AU. (51)

This value corresponds to > 50βiqR� from the Sun. Since
the source must lie inside rq < 1 AU, we conclude that
βiq.4.15. This number is just an upper limit. It is consis-
tent with model calculations (McKenzie et al., 1995) which
predict βiq < 1 shifting the inner boundary of the turbulent
source region further in.

5.7 Summary and outlook

In this paper, we considered the cases V0 = U0 = 0, V0 =

0, U0 6= 0, and V0 6= 0 for K and IK velocity spectra, where
V0 is the velocity of the mean solar wind stream, and U0
is the mean speed of the energy-carrying largest turbulent
MHD vortices which advect the bulk of small-scale turbu-
lence around (Tennekes, 1975). In the K and IK models of
turbulence, they, in addition, play the role of the energy in-
jectors. The resulting spectral slopes are given as b in the
fourth column of Table 1. The input spectral power densities
are EIK and Ead

IK. Each of them yields a different ion-inertial
scale range power spectrum in k space and, consequently,
also a different power law spectrum in ωs space.

Table 1 shows that the ordinary spectra acquire positive
slopes in wave number k in the frame of stationary and homo-
geneous turbulence in the turbulence frame. However, obser-
vations of this slope in frequency undermine this conclusion,
suggesting that it is the ordinary K (IK) velocity turbulence
(or if anisotropy is taken into account, the KGS) spectrum
in the ion-inertial range which, when convected by the solar
wind flow across the spacecraft, deforms the density spec-
trum. All advected spectra have, in contrast, a negative slope
in frequency which in this form disagrees with observation
of the spectral bumps.

The obtained advected slopes in the stationary turbulence
frame are also too far away from the flattest notorious and
badly understood negative slope ω−1

s for being related. Their
nominal K and IK slopes are −2/3 and −1/2, respectively.
This implies that spacecraft observations interpreted as ob-
serving the local stationary turbulence do not, in the majority
of cases, detect an advected convected spectrum in the ion-
inertial K (IK) inertial range. They are, however, well capa-
ble of explaining the high-frequency flattened spectral excur-
sion in the WIND spectrum which is shown in Fig. 5. It has
the correct advective IK spectral index−1/2 when convected
across the WIND spacecraft before the onset of spectral de-
cay.

Generally the form of a distorted power spectrum in den-
sity depends on the external solar wind conditions. The rec-
onciliation of these with the theoretical predictions and the
observation of the spectral range of the distortion is a diffi-
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cult, mostly observational task. We have attempted it in the
discussion section. In particular the proposed bending of the
power spectral density in the direction of lower frequencies
requires identification of the maximum point of the advected
spectrum in frequency and the transition to the undisturbed
K or IK inertial ranges.

We tentatively tried taking thermodynamic effects in an
expanding solar wind into account. This led to preliminary
information about the angle between flow and the turbu-
lent wave numbers which contribute to deformation of the
spectrum. Some tentative information could also be retrieved
in this case about the radial solar distance of the turbulent
source region. When thermodynamics come in, one may
raise the important question for the collisionless turbulent
ion heating

〈
δQ̇i

〉
=−

〈
δQ̇em

〉
=
〈
δJ · δE

〉
in the ion-inertial

range, the negative of the mean loss in electromagnetic en-
ergy density per time

〈
δQ̇em

〉
, proportional to the product

of current vortices δJ and the turbulent electric field δE.
Though of finite magnitude, it is second order. This is left for
future investigation. Hall currents do not contribute to any
heating.

So far we have not taken into account the contribution of
Hall spectra. These affect the shape of the density spectrum
via the Hall-magnetic field, a second-order effect indeed,
though it might contribute to additional spectral deformation.
Inclusion of the Hall effect requires a separate investigation
with reference to magnetic fluctuations. On those scales the
Hall currents should provide a free energy source internal to
the turbulence, which is not included in K and IK theory.

Hall fields are closely related to kinetic effects in the ion-
inertial range. Among them are kinetic Alfvén waves whose
perpendicular scales k⊥ ∼ λ−1

i agree with the scale of the
ion-inertial range. Possibly they can grow on the expense of
the Hall field which in this case plays the role of free energy
for them. If they can grow to sufficiently large amplitudes,
they contribute to further deforming K and IK ion-inertial-
range density spectra.

Similarly, small-scale shock waves might evolve at the
inferred high Mach numbers when turbulent eddies grow
and steepen in the small-scale range. These necessarily be-
come sources of electron beams, reflect ions, and transfer
their energy in a kinetic-turbulent way to the particle popu-
lation. Such beams act as sources of particular wave popula-
tions which contribute to turbulence, preferably at the kinetic
scales of interest.

Inclusion of all these effects is a difficult task. It still opens
up a wide field for investigation of turbulence on the ion-
inertial scale not yet entering the (Treumann and Baumjo-
hann, 2015) collisionless dissipation scale where electrons
demagnetise as well and the current filaments dissipate their
energy in the process of spontaneous collisionless reconnec-
tion as the most probable ultimate energy sink of otherwise
collisionless turbulence. The scales of this dissipation pro-
cess are still far away from any molecular scales. The result-
ing dissipation is justifiably anomalous.
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