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Abstract. The nonlinear dynamics of electrons in the vicinity
of magnetic field neutral lines during magnetic reconnection,
deep inside the “diffusion” region where the electron motion
is nonadiabatic, has been numerically analyzed. Test parti-
cle orbits are examined in that vicinity, for a prescribed pla-
nar two-dimensional magnetic field configuration and with a
prescribed uniform electric field in the neutral line direction.
On electron orbits, a strong particle acceleration occurs due
to the reconnection electric field. Local instability of orbits
in the neighborhood of the neutral line is pointed out. It com-
bines with finiteness of orbits due to particle trapping by the
magnetic field, and this should lead to the effect of mixing in
the phase space, and the appearance of dynamical chaos. The
latter may presumably be viewed as a mechanism producing
finite “conductivity” in collisionless plasma near the neutral
line. That conductivity is necessary to provide violation of
the magnetic field frozen-in condition, i.e., for magnetic re-
connection to occur in that region.
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1 Introduction

The problem of magnetic reconnection in the vicinity of the
neutral line for collisionless plasma has an extremely exten-
sive literature; see, for example, the special issue of Space
Science Reviews 2011 and the work (Hesse et al., 2011)
and references therein. According to the prevailing ideas,
the reconnection process proper occurs in the central part of
a current sheet (CS) separating the regions with oppositely
directed magnetic field, and is provided by processes on a
very small electronic scale in the direction z perpendicular
to the CS, where the role of finite conductivity in the gen-
eralized Ohm’s law assumes the effect of the nongyrotropic

component of the electron momentum flux (“pressure”) asso-
ciated with the unmagnetized electron orbits on those small
scales (Kuznetsova et al., 2001). The fields and fluxes of
ions and electrons in the greater part of the “diffusion” re-
gion, at scales z of the order of the ion inertial length di,
z∼ di = c/ωpi (c is the speed of light, ωpi =

√
4πnie2/mi

is the ion plasma frequency), but outside a very small re-
gion, where even the electrons cease to be magnetized and
the nongyrotropic component of the electron momentum flux
(“pressure”) appears, may be described in the Hall MHD
terms. The scale of the “diffusion” region in the direction
of plasma outflow (along the x direction parallel to the CS
and lying in the magnetic field plane) and, correspondingly,
the reconnection rate, are determined by the inflowing con-
vection velocity times the reconnecting (Bx) component of
the magnetic field. And those are “tied” into equations de-
scribing the system macroscopically. Such adjustment of the
processes in the vicinity of the neutral line to external condi-
tions occurs at two different levels, ionic and electronic. On
a larger scale, in most of the “diffusion” region, for z∼ di,
the fields and fluxes of ions and electrons, as has been men-
tioned, are determined by the Hall MHD equations. At the
smallest scale, in a region where the electrons are not mag-
netized and the electron pressure is nongyrotropic, the elec-
tron flux profile along the x direction is adjusted in such a
way that the nongyrotropic electron pressure component is
just sufficient to maintain the electric field that sets the re-
connection rate on the neutral line, but is determined by the
macroscopic flow.

By numerical simulation in models of different types it
was found that the behavior of the system in the larger Hall
region is quite similar for different types and intensity of dis-
sipation in the smaller inner region. Moreover, the reconnec-
tion rate itself is insensitive to the nature and intensity of the
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dissipation (Hesse et al., 2001; Liu et al., 2017). A fairly sim-
ple qualitative explanation can be given to that. It turns out
that the outflow of the electron fluid from the inner (dissipa-
tion) region has the character of a strong standing whistler
wave. The phase velocity of the whistler ω/k with which the
outflow occurs is inversely proportional to the spatial scale,
ω/k ∼ k ∼ 1/L. This means that the electron flux from the
dissipation region, which determines the magnetic reconnec-
tion rate, being the product of the velocity and thickness of
the layer ∼ L, is independent of this thickness. But it is just
this scale that is regulated by the intensity of the dissipative
effect: the resistivity η in the collisional case or the value of
the nongyrotropic electron pressure in the collisionless one.
Thus the layer structure adjusts to the magnetic reconnection
rate, but does not affect it.

Note, however, that such a situation does not mean that
the real nature of electron dynamics and corresponding fea-
tures of electron orbits, which lie at its basis, may be thought
insignificant.

Outside the diffusion region, the process of “magnetic an-
nihilation” – the transformation of electromagnetic energy
into the energy of plasma flows, meaning magnetic reconnec-
tion in the wider sense, is determined by ion motions, includ-
ing those that are substantially nonadiabatic in thin layers ad-
jacent to the diffusion region. As was pointed out in Domrin
and Kropotkin (2007a, b, c), Kropotkin and Domrin (2009),
and Kropotkin (2013), in that region the process is domi-
nated by an “anisotropic” CS, the structure of which is deter-
mined by the specific ion orbits. This leads to ion anisotropy
of a certain type, dependent on the distance from the cen-
tral plane. However, inside the diffusion region the process
of magnetic reconnection requires an “intermediary”, an ad-
ditional link. This is the abovementioned Hall MHD struc-
ture, based on specific differences between the electron and
ion orbits. And finally, deep inside this layer, in the nearest
neighborhood of the neutral line, unmagnetized electron or-
bits determine the dynamics and structure of the reconnecting
CS.

It is precisely the specific nature of such orbits, which
in previous studies has remained mostly unidentified in a
proper perspective, that this paper is devoted to. Basically,
the numerical approach applied in this paper differs only
weakly from that adopted in a number of earlier studies
(Martin, 1986; Burkhart et al., 1991, and references therein).
Moreover, the chaotic particle dynamics were then identi-
fied numerically by means of Lyapunov characteristic expo-
nent analysis. However, the insight which appeared since that
time, concerning the role of the electron zone in the “diffu-
sion region”, on the one hand, and penetration of the nonlin-
ear dynamics and dynamical chaos notions into this research
area, on the other hand, has laid the way to a number of new
results.

In this paper, the nonlinear dynamics of electrons mov-
ing in a magnetic field near its neutral line and in an electric
field corresponding to the inflow of plasma into the recon-

nection zone has been studied numerically in a wide range of
determining parameters (Sect. 2). Of course, these dynam-
ics do not obey the adiabatic theory; its important property is
a strong particle acceleration near the field neutral line. An-
other important feature of particle dynamics near the neutral
line is pointed out in Sect. 3. Analysis of an equation govern-
ing such dynamics, involving the numerical results of Sect. 2,
indicates an exponential divergence of orbits starting closely
nearby. This feature of local instability, along with finiteness
of the orbits in the phase space, in the general theory of non-
linear dynamical systems, should result in the appearance of
stochastization, i.e., of dynamical chaos in the system. This
is discussed in Sect. 4 in terms of the phenomenon of mixing
in the phase space and formation of the collisionless energy
dissipation mechanism. In this way we obtain a corroboration
on the side of microscopic dynamics that the diffusion region
should have a dissipation property in the macroscopic sense,
i.e., provide the transformation of electromagnetic energy (a
nonzero Poynting vector in the inflow region) into energy of
accelerated particles.

2 Electron orbits: numerical simulation

We study test particle orbits in a prescribed field configu-
ration. We use a two-dimensional model of magnetic field
B(x,z) with a neutral line, B(0,0)= 0:

Bx = qbz; By = 0; Bz =
b

κ
arctg (κx) .

Here the parameter q ≥ 1 determines the opening an-
gle, i.e., the angle between the separatrices dividing
the magnetic fluxes near the neutral line, and also the
value of a finite current density in the y direction, jy =

cb
[
q −

(
1+ κ2x2)−1/2

]
/4π . The normal component Bz

goes to a constant for large values of x. In the calculations,
dimensionless variables (ξ,η,ζ,τ ) are used:

x =
mc

T eb
ξ ; y =

mc

T eb
η; z=

mc

T eb
ς; t = T τ,

e and m being the electron charge and mass, respectively.
Here T is an arbitrary timescale, which we choose based on
the requirement of the best visibility in the presentation of
results; see below. We also introduce the dimensionless pa-
rameter k = T eb

mc
κ . In what follows, for convenience, we re-

name the variables (ξ,η,ζ,τ ) back to (x,y,z, t), and k back
to κ; then in dimensionless variables we have the equations
of motion:

ẍ−
arctg (κx)

κ
ẏ = 0;

ÿ+
arctg (κx)

κ
ẋ− qzż− ε = 0;

z̈+ qzẏ = 0.

(1)

Here

ε = T 3 e
2b

m2c
E0 (2)
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is a dimensionless analog of the value e
m
E0, where E0 =

const is the intensity of the electric field directed along
y. (At small z and x (0)→ 0 the motion along y oc-
curs mainly under action of an accelerating force eE0 so
that dy/dt ∼ eE0t/m. We obtain as a result that the equa-
tion d2z

dt2 +
eb
mc
qz

dy
dt = 0 describes oscillations over z with

their frequency square given approximately by the formula
ω2
= e2bqE0t/m

2c. Therefore, requiring that in the time
interval T of the equation set integration, there should be
many oscillations, and we obtain the condition ε = ω2T 2

=

e2bqE0T
3/m2c� 1. As to the magnitude z̃ of oscillations,

we have z̃∼ vz/ω. The value of velocity vz at the begin-
ning of the oscillation regime is given by an estimate vz ∼
cE0/Bx ∼ cE0/2bz. It follows that z̃2

∼
cE0
2bω =

m2c2

2qe2b2T 2

√
ε,

and for the dimensionless magnitude we have an estimate
ς̃2
= (ebT /mc)2̃z2

=
√
ε/2q. It is seen that taking the ε

value to be quite large we can obtain a demonstrable rep-
resentation of the system dynamics at small x (0), at those
times when the particle arrives in close vicinity of the mag-
netic field neutral line.)

Equations (1) must be supplemented by initial conditions,
i.e., by setting the values x(0), y(0), z(0), ẋ(0), ẏ(0), ż(0).
In the planar geometry, without loss of generality we assume
y(0)= 0.

We have studied a set of possible orbits over a wide range
of parameters, including the values κ , q, ε and initial values
of coordinates and velocities. To illustrate the typical results
here, we have chosen the values of the magnetic field param-
eters κ = 0.002, q = 2.

In the simplest situation, it can be assumed that a flow
of plasma with cold electrons arrives at the CS. Then, if
an electron starts somewhere away from the CS, it must
be postulated that its velocity v′(0) in the local reference
frame (that moving with the plasma bulk velocity) is zero.
Thus we have two conditions: E0+ [v(0)×B(0)]/c = 0,
and (v(0)B(0))= 0. In the dimensionless variables this leads
to the following relations:

ẋ (0)=
arctg (κx (0))

κ

ε

q2z2 (0)+ arctg2 (κx (0))/κ2 ;

ẏ (0)= 0;
ż (0)=−qz(0)

ε

q2z2 (0)+ arctg2 (κx (0))/κ2 .

(3)

For this simplest situation, it can be easily seen how the di-
mensionless parameters that determine the orbit of interest
should be chosen. Since we will further investigate the de-
pendence of the orbit features on the initial value x(0) start-
ing with x(0)= 0, there is actually only a pair of such dimen-
sionless parameters, z(0) and ε. For an arbitrary timescale
T , it is to be assumed that the time a particle takes to
reach the plane z(0)= 0 must be much less than this scale:
z(0)/ cE0

bz(0) � T (here z(0) has the original meaning, with
the dimension of length). Then, taking into account Eq. (2)
and using our reverse renaming of variables, the condition
ε� z2 (0) is obtained. Accordingly, we shall first consider

the electron orbits at ε = 50000 and specifying the initial
value of the coordinate z(0)= 50.

For solution of the Equation set (1) with corresponding
initial conditions and for graphical presentation of results, the
Wolfram Mathematica package has been used. Accuracy of
the codes applied in Mathematica calculations was of course
adequately verified by the Wolfram team long ago; it is quite
sufficient for the presented graphics. In our work, in some
cases that accuracy has been tested by means of varying the
parameters used.

First of all, let us turn to the case x(0)= 0. According to
Eq. (3) we have ẋ(0)= 0, and it is clear that the orbit remains
in the plane x = 0, while in the y direction an unlimited ac-
celeration takes place. The corresponding time profile z(t) is
shown in Fig. 1a. Apparently, this is a “Speiser” orbit oscil-
lating near the neutral layer, complicated by acceleration in
the electric field Ey = E0 = const. This acceleration occurs
at an almost constant rate from the moment tc when the par-
ticle reaches the neighborhood of the neutral line, as can be
seen from Fig. 1b. Acceleration is unlimited in time.

Now consider the results of numerical calculations relat-
ing to how the electron orbits in general look and how their
character changes when the initial conditions change. From
a large number of calculations performed, here we illustrate
several characteristic series.

Consider in more detail the orbits discussed above: we set
again ε = 50000 and z(0)= 50, and let the initial displace-
ment x from the plane x = 0 be very small, x(0)= 0.01.

An initial course of the z(t) function is shown in Fig. 1c,
for the starting case x(0)= 0 (red curve) and for x(0)= 0.01
(blue curve). The initial motion to the z= 0 plane and the
first meandering “Speiser” oscillations in these two cases are
indistinguishable. But then we see a sharp departure of a par-
ticle from the “Speiser” orbit; the oscillation pattern com-
pletely changes. This may be generally viewed as manifes-
tation of local instability in the phase space, as we discuss
below, in Sect. 3.

The orbit for x(0)= 0.01 in projection onto the (x,z)
plane is shown in Fig. 2a, in projection onto the (y,z) plane
in Fig. 2b, and in projection onto the (x,y) plane in Fig. 2c.
Here we see an initial fast drift motion of a particle toward
the neighborhood of the neutral line, without shifting along
the x and y directions. Then the particle moves along the
“Speiser” section of the orbit, oscillating in the z direction
and crossing the z= 0 plane many times, and simultane-
ously shifting along the x and y directions. Having reached
nearly x ' 150, y ' 600 position, the particle again sharply
changes the motion pattern: oscillations begin along the field
lines, with a fast Larmor rotation around them, with reflec-
tion from mirror points, and with a relatively slow motion
from one field line to another, i.e., the drift in the electric
field and in the nonuniform and curved magnetic field. (This
of course is just a qualitative description in the familiar terms
of magnetic trapping in the mirror field configuration; no adi-
abaticity concept is in general applicable here.)

www.ann-geophys.net/36/731/2018/ Ann. Geophys., 36, 731–740, 2018



734 A. P. Kropotkin: “Diffusion” region of magnetic reconnection

Figure 1. (a) Oscillations over z at x(0)= 0. (b) Time dependence of the velocity ẏ (t) at x(0)= 0. (c) Comparison of the initial time
dependence z(t) for x(0)= 0 (red curve) and x(0)= 0.01 (blue curve).

Having presented in Fig. 2d a plot of time dependence for
the particle kinetic energy m

[
ẋ2 (t)+ ẏ2 (t)+ ż2 (t)

]
/2 (in

arbitrary units), we see that at first, when the particle moves
to the z= 0 plane, this energy remains small, and then the
particle is very quickly accelerated by the electric field E0
on the “Speiser” section of the orbit, and after this the energy
remains almost constant, only slightly increasing with each
new intersection of the z= 0 plane. The fast acceleration oc-
curring on the “Speiser” portion of the orbit is now limited in
time, in contrast to the case x(0)= 0.

The orbits of electrons that are “cold” at the start re-
tain a similar character up to the values x(0)∼ 1. However,
for larger x(0) values, the situation changes significantly.
We present for comparison the corresponding plots for the
x(0)= 10 case. The orbit in projection onto the (x,z) plane
is shown in Fig. 3a, in projection onto the (y,z) plane in
Fig. 3b, and in projection onto the (x,y) plane in Fig. 3c.
Figure 3d demonstrates the time dependence of the kinetic
energy. It is seen that there is no “Speiser” section here, but
the orbit remains finite over z, oscillating between the reflec-
tion points, with a gradual energy gain. At the first intersec-
tion of the z= 0 plane, a particularly fast acceleration occurs.

With an even greater initial distance from the x = 0 plane,
x(0)= 100, the orbit has again a pattern different from the
previous ones. The corresponding plots are shown in Fig. 4a–
c. Here the orbit crosses the z= 0 plane only once, and then
leaves it winding around a field line; this is accompanied by
slow drift motions in the direction transverse to that of mag-

netic field in the central plane. Acceleration occurs only at
this one-time intersection, and the kinetic energy achieved is
much less than in the previous calculations, where accelera-
tion occurs during multiple intersections of the z= 0 plane;
see the plot in Fig. 4d.

When specifying nonzero initial speeds v′ 6= 0 in the local
frame moving with the plasma bulk velocity, orbits appear
that do not intersect the z= 0 plane at all, and there is no ac-
celeration. This behavior corresponds to the familiar pattern
of electric drift in the vicinity of the neutral line, and arises
with a small oscillatory component of the particle velocity
characteristic of “cold” electrons: the electric drift forms par-
ticle orbits along hyperbolas orthogonal to the magnetic field
line hyperbolas.

So, in general, for all variations of the parameters, we ob-
serve the same effect: acceleration of electrons by the electric
field when they appear in the vicinity of the neutral line; the
picture is somewhat different for a single or multiple inter-
section of the neutral plane. At very small x (0), there is a
distinctly “Speiser” section of the orbit, on which a particu-
larly fast acceleration takes place.

3 Local instability

We return to the case of an orbit starting very close to the
x = 0 plane. Let us turn to the first equation of the set Eq. (1)
in Sect. 2. We have first set x (0)= 0 and based on the nu-

Ann. Geophys., 36, 731–740, 2018 www.ann-geophys.net/36/731/2018/



A. P. Kropotkin: “Diffusion” region of magnetic reconnection 735

Figure 2. The orbit pattern at x(0)= 0.01: (a) projected to the (x,z) plane, (b) projected to the (y,z) plane, (c) projected to the (x,y) plane.
(d) Time dependence of the kinetic energy.

Figure 3. The orbit pattern at x(0)= 10: (a) projected to the (x,z) plane, (b) projected to the (y,z) plane, (c) projected to the (x,y) plane.
(d) Time dependence of the kinetic energy.

merical result that, beginning at some t = tc, the velocity vy
increase is very close to linear; see Fig. 1b. For values of
x (0) 6= 0 that are small compared to κ−1 (the diffusion re-
gion scale in the x direction), κx (0)� 1, and returning to
the initial variables, we then have

ẍ =
e

mc
vyBz =

e2b

m2c
E0x (t − tc)=

x (t − tc)

τ 3 ,

where

τ =

(
e2b

m2c
E0

)−1/3

=

(
eb

mc

)−2/3( c
b
E0

)−1/3
.

Note that the above equation is the Airy equation. In our di-
mensionless variables it takes the form

ẍ− 45000xt = 0.

(Here the coefficient 45 000 is taken from the numerical cal-
culation of ẏ (t) according to Eq. 1.) Departure from the
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736 A. P. Kropotkin: “Diffusion” region of magnetic reconnection

Figure 4. The orbit pattern at x(0)= 100: (a) projected to the (x,z) plane, (b) projected to the (y,z) plane, (c) projected to the (x,y) plane.
(d) Time dependence of the kinetic energy.

x = 0 plane is described by the Airy function of the second
kind x(t ′)= x(0)Bi

(
10× 451/3t ′

)
(where t ′ = t − tc) with

an exponential asymptotic. This is shown in Fig. 5a, which
presents the results of calculating the above Airy function
(blue curve) and of the numerical solution of the Equation
set (1) for x(t) (red curve). (In the Figure x(0)= 0.01 is
adopted.)

Now for any small deviation ξ (t)= x1 (t)−x (t), for a pair
of orbits starting at small initial x (0) 6= 0 and x1 (0) 6= 0, we
obtain the same governing equation, and the following argu-
ment may be applied to such a deviation.

On a small time interval 1t the coefficient at x in
the equation, equal to κ = e2b

m2c
E0t = (t/τ )τ

−2 changes

by
(
e2b
m2c

E0

)
1t = (1t/τ)τ−2, and its relative variation

is 1κ/κ ∼1t/t . If the coefficient κ remained con-
stant, there would exist an exponentially increasing so-
lution ∼ exp

(
κ1/2t

)
. The exponent is equal to κ1/2t =(

e2b
m2c

E0

)1/2
t3/2 = (t/τ )3/2, and on the time interval 1t it

changes by 3
2τ
−3/2t1/21t .

So if we fix some time moment t � τ , then on the
time interval from t to t +1t the exponent changes by
3
2τ
−3/2t1/21t = 3

2 (t/τ )
1/2 (1t/τ)�1t/τ . Therefore if the

double inequality t �1t � τ holds, we obtain a very large
value of the exponential multiplier exp

(
3
2τ
−3/2t1/21t

)
� 1

along with a small variation of κ (that coefficient remains
almost constant, 1κ/κ ∼1t/t � 1), i.e., at every t � τ a
fast, exponential divergence of orbits x (t) and x1 (t) occurs.
In other words, if we take a pair of closely neighboring orbits
at a moment t , then during particle motion along them at later

times, earlier than the dynamical equation form changes con-
siderably, the particles will diverge at an exponentially large
distance.

In such a situation we may speak of the presence of a local
instability in the system, in the vicinity of the magnetic field
neutral line.

A clear confirmation of instability at x(0)= ẋ (0)= 0 is
shown in Fig. 5b, where the orbits starting at different small
|x(0)| values are shown projected onto the z= 0 plane. Here
the orbit sections from t = 0 to t = 0.2 are shown in red, from
t = 0.2 to t = 0.4 – in green, and from t = 0.4 to t = 0.45 –
in blue.

Note that the diverging orbits turn out to be limited (gen-
erally speaking, in the phase space) because of cyclotron ro-
tation.

4 Discussion and conclusions

As has been shown earlier (see, e.g., Burkhart, 1990), the
motion of an electron in the neutral line vicinity being nona-
diabatic, is described by nonlinear equations, and on the orbit
there is a “Speiser” meander section on which a fast particle
acceleration occurs, in the electric field corresponding to the
inflow of plasma into the reconnection area. This should re-
sult in a strong conversion of energy of the electromagnetic
field into energy of the electron flows.

We point out here that this effect is accompanied by an-
other one which is very important from the point of view of
a general theory of nonlinear dynamical systems.
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Figure 5. (a) Time dependence x (t) at small x (0) 6= 0. (b) Orbits
starting at various small values of x(0), projected to the plane z= 0.

It is well known that even in the case of a relatively simple
system of low dimension, there may exist such domains in
its phase space, where the orbits are stochastic. We point out
that an electron in our model field, in the neutral line vicinity
is just such a system.

Consider a pair of orbits in theX phase space (with dimen-
sion n) starting at closely located points X (0) and X1 (0) so
that ξ (0)=X1 (0)−X (0)→ 0. We then can linearize the
equation set of the dynamical system and obtain a set of lin-
ear equations for the small increment ξ (t). Let A be the ma-
trix of coefficients of that equation set. The general solution
of the equation set may be presented as a superposition of n

fundamental particular solutions
{
ξ j (t)

}
:

ξ (t)=
∑
j

Cj ξ j (t) ,

where the Cj constants are determined from the projection
of the initial increment ξ (0) onto the

{
ξ j (0)

}
vector ba-

sis. In the simplest case when the matrix of coefficients A
is independent of time, all the vector components ξ j (t) are
exponential in time, ξ j (t)∼ exp

(
λj t
)
. The parameters λj

are Lyapunov’s exponents of the system. Generally, the time
dependence of the fundamental particular solutions

{
ξj (t)

}
is more complicated than exponential. However, keeping in
mind that the A(t) matrix does not unlimitedly grow with
time, for large times we can write

∣∣ξ j (t)∣∣=8j (t)exp
(
λj t
)
,

where the 8j (t) function has a slower growth rate than ex-
ponential.

Turning back to our case, we have seen in Sect. 3 that
in the neutral line vicinity there is an area in the phase
space where local instability acts. It means that the dis-
tance ξ between neighboring orbits in the x direction in-
creases exponentially: on a time interval 1t it increases so
that ξ (t +1t)/ξ (t)= exp

(
3
2τ
−3/2t1/21t

)
� 1. We con-

clude that a maximum positive Lyapunov’s exponent should
exist, λ(m) ≥ 3

2τ
−3/2t1/2.

Note that the existence of local instability, in the terms of a
positive Lyapunov characteristic exponent, was first pointed
out for this problem in Martin (1986).

As has been noted earlier, the local instability of orbits
takes place along with finiteness of motion in the phase space
due to the particle trapping by the magnetic field. From the
general theory of nonlinear dynamical systems (see, e.g., Ta-
bor, 1989; Ott, 2002; Usikov et al., 1988) it then follows that
the system possesses the corresponding Kolmogorov–Synai
entropy of the order of the maximum positive Lyapunov ex-
ponent, h∼ λ(m). This means that correlation decay occurs
on the timescale

τ(corr) ≤
2
3
τ 3/2t−1/2

∼

(mc
eb

)( b

cE0

)1/2

t−1/2.

This leads to the effect of mixing in the phase space, and to
the appearance of dynamical chaos on some particular sites
in the phase space.

In the case of a somewhat similar situation, a one-
dimensional current sheet with a 2B0 change of the tan-
gential magnetic field component across the sheet and a
nonzero constant normal component Bn = const (and with-
out an electric field), the feature of orbit stochastization was
demonstrated long ago in Chen and Palmadesso (1986). In
that model, there are “slow” nonlinear oscillations on “cu-
cumber” orbits, coexisting with “fast” oscillations contain-
ing both spiral and meander regions (Büchner and Zelenyi,
1986). If the defining parameter κ = (Bn/B0)(L/ρ0)

1/2 (L
is the transverse scale of the current sheet, ρ0 is the Larmor
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738 A. P. Kropotkin: “Diffusion” region of magnetic reconnection

Figure 6. (a) Oscillations over z on the “cucumber” orbit. (b) The “cucumber” orbit projected to the z= 0 plane. (c) Oscillations over z on
the “ring” orbit. (d) The “ring” orbit projected to the z= 0 plane.

radius in the field B0) is small, then there is a stochastiza-
tion mechanism associated with the intersection of the sepa-
ratrix between two different types of fast oscillations, spiral
and meander (Büchner and Zelenyi, 1986; Timofeev, 1978;
Neishtadt, 1987). And with the increase of the parameter κ ,
according to Malova and Sitnov (1989), stochastization addi-
tionally occurs due to overlapping resonances of the fast and
slow oscillations.

If in the model we are considering, with a nonuniform Bn
field, with a neutral line of the magnetic field, we set the elec-
tric field E0 equal to zero, then the nature of orbits described
in these previous works is basically preserved (see Fig. 6a–
d), supplemented only by the particle displacement over y
due to the drift in the Bn field, nonuniform over x. There-
fore, the same mechanisms of stochasticity must operate.

However, in the model considered here, in the presence of
a reconnection electric field, those effects, as we have seen,
are supplemented by the local instability effect near the neu-
tral line. A qualitative explanation may be given following
the notions of, for example, Usikov et al. (1988) concern-
ing the role in the effect of stochasticity generation which is
played by a separatrix existing in the phase space of a non-
linear system. “Slow” oscillations over x occur within cer-
tain limits from xmin up to xmax. If xmin corresponds to the

position of the neutral line of the magnetic field, a separatrix
arises on which the period of “slow” oscillations tends to in-
finity. Accordingly, a “phase space fluid drop” of this “slow”
variable is stretched in phase (and compressed in action), and
phase mixing occurs (e.g., Usikov et al., 1988). Combined
with the finiteness of the orbits, this provides a mechanism
of stochastization.

According to modern knowledge (see, for example, Gas-
pard, 1998) macroscopic transport processes in multiparticle
systems may be viewed as being based on microscopic parti-
cle dynamics, which demonstrates the properties of dynam-
ical chaos. Accordingly, the above argument seems to indi-
cate the presence of collisionless “dissipation” of the Landau
damping type (Mouhot and Villani, 2011). As this mathe-
matical research shows, the phenomenon of damping can be
interpreted in terms of the transfer of regularity from kinetic
variables to spatial ones, and not as a transformation of en-
ergy; phase mixing is the clue mechanism.

Thus we obtain an indication of the fundamental dynami-
cal basis of the collisionless magnetic reconnection process,
which at the macroscopic level, considering the thin “diffu-
sion” region near the neutral line, looks like a process involv-
ing a finite “conductivity” in collisionless plasma.
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Now we note an analysis somewhat similar to ours was
recently carried out in Zenitani and Nagai (2016). A set of
electron orbits passing in the vicinity of the magnetic field
neutral line has been identified there under conditions when
this field itself, as well as the electric field and the plasma
characteristics, is determined in numerical simulation of the
entire three-dimensional plasma system. Modeling was car-
ried out by means of a particle-in-cell code applied to a
time-dependent spontaneous magnetic reconnection process
in which an electric field arises in a self-consistent manner
as a result of development of an initially small perturbation,
rather than being arbitrarily given, as is done here.

Electron orbits are grouped in this work according to
some of their basic characteristics. There are classes of or-
bits qualitatively corresponding to those obtained by us, with
“Speiser” sections and fast acceleration in the vicinity of the
neutral line. Along with them, orbits of a substantially dif-
ferent type, named “Speiser orbits without intersection of the
central plane”, were obtained. Those orbits appear due to the
fact that in the model (Zenitani and Nagai, 2016) there are
such electric fields that are absent here: the polarization field
Ez and the parallel field E‖. Such fields actually arise dur-
ing magnetic reconnection, due to the Hall plasma dynamics
indicated in Sect. 1.

However, the approach used in Zenitani and Nagai (2016)
does not allow the systematic tracing of how the orbit nature
and the acceleration gained by an electron depend on the dis-
tance to the neutral line, as we have done here. This depen-
dence could not be traced down to very small x (0) values
where the local instability appears. So the local instability
of orbits in the vicinity of the neutral line was not identi-
fied; this has been done here for the first time. As indicated
above, combined with the finiteness of motion in the phase
space due to the particle trapping by the magnetic field, this
instability serves as the basis for the effect of the phase space
mixing and the appearance of dynamical chaos.

One more important point, which has a wider relation to
particle-in-cell (PIC) codes, is that the formation of a small-
scale (fractal) stochastic structure in the phase space cannot
be reproduced in numerical simulation by means of a large
particle-in-cell code. But namely such a structure is appar-
ently responsible for the dissipative behavior of the system in
the vicinity of the magnetic field neutral line, in a thin elec-
tronic “diffusion layer”. True, this flaw of PIC codes may
be partly overcome if the particle number per cell becomes
sufficiently large, since as this number increases the size of
super-particles in the PIC method decreases.

An additional comment should be made here, in particular
in relation to self-consistent models of magnetic reconnec-
tion. In fact it is just assumed that any electron orbit under
study is located deep inside the small electron diffusion re-
gion. There is no attempt to relate the adopted dimensionless
parameters to physical scales characteristic for that domain.
True, this is an ambiguous task since those scales depend in
particular on the (numerical) model adopted for such a com-

parison. In any case it is reasonable to postulate that such
a small electron diffusion region exists. Note, however, that
if the current carried by unmagnetized electrons themselves
were large, then the magnetic field configuration would be
more complicated: it would have a spatial scale of the same
order as the electron oscillations about the neutral plane of
the CS. Then a study based on test particle orbits in a pre-
scribed field would be inapplicable. So another assumption,
implicitly made, is that the currents forming the magnetic
field configuration, are carried mainly by ions, and not by
unmagnetized electrons; correspondingly, the field configu-
ration spatial scales are sufficiently large. This actually is
the case for the existing self-consistent models of magnetic
reconnection (e.g., Hesse et al., 2011; Bessho et al., 2014;
Liu et al., 2017). This may also eliminate the problem with
those electric fields mentioned above which appear in self-
consistent models, the polarization field Ez and the parallel
field E‖. Those fields vary on a large ionic scale; in particu-
lar, the polarization field is associated with the Hall electric
current (Hoshino, 2005). Also, in the numerical simulation
(Egedal et al., 2012) it was found out that the parallel fields
operate in spatial regions that exceed the regular electron dif-
fusion region scale by orders of magnitude. And then, since
unlike the reconnection field E0, those fields must go to zero
at z→ 0, they might be neglected in the small electron diffu-
sion region.

Magnetic reconnection in collisionless plasma may be
considered as a complex of two main problems. The first
problem is fast energy conversion. As has been shown in
earlier studies and has been pointed out in the Introduction,
this may be understood as a result of “magnetic field anni-
hilation” dominated by an “anisotropic” thin current sheet,
the structure of which is determined by the specific ion or-
bits. The second problem is that of a nonzero electric field
E 6= 0 on the magnetic field neutral lineB = 0. This is shown
here to be directly connected with specific features of elec-
tron motion. Electrons are accelerated by the electric field,
d
∣∣vy∣∣/dt > 0 in the “electron diffusion region” where they

are “demagnetized”. The resulting
∣∣vy∣∣ produces a repulsing

Lorentz force acting in the x direction, and a local instability
appears. Combined with finite dimensions of the electron or-
bit in the phase space (due to magnetic trapping) this leads to
orbit stochastization. The latter may presumably be viewed
as a mechanism producing finite “conductivity” in collision-
less plasma near the neutral line.
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