Supplement of

Variations of the $\mathbf{6 3 0 . 0} \mathbf{~ n m}$ airglow emission with meridional neutral wind and neutral temperature around midnight

Chih-Yu Chiang et al.

Correspondence to: Chih-Yu Chiang (johnson@phys.ncku.edu.tw)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplement

I. Chemical process

Photo-Chemical Reaction: $\frac{\partial \mathrm{n}}{\partial \mathrm{t}}+\vec{\nabla} \cdot(\mathrm{n} \stackrel{\rightharpoonup}{\mathrm{v}})=\mathrm{P}-\mathrm{L}$
n: density,
P : production rate
L: Loss rate

$$
\begin{gather*}
\mathrm{O}_{2}+\mathrm{O}^{+} \xrightarrow{\mathrm{r}} \mathrm{O}_{2}^{+}+\mathrm{O} \tag{1}\\
\mathrm{O}_{2}^{+}+\mathrm{e}^{-} \xrightarrow{\alpha^{*}} \mathrm{O}\left({ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right) \tag{2}
\end{gather*}
$$

Where r and α^{*} are rate coefficients of Reactions (1) and (2) respectively.
Consider the P and L of $\mathrm{O}_{2}^{+}: \mathrm{P}_{\mathrm{O}_{2}^{+}}=\mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right], \mathrm{L}_{\mathrm{O}_{2}^{+}}=\alpha^{*}\left[\mathrm{O}_{2}^{+}\right]\left[\mathrm{e}^{-}\right]$
Steady State: $\frac{\mathrm{d}\left[\mathrm{O}_{2}^{+}\right]}{\mathrm{dt}}=0=\mathrm{P}_{\mathrm{O}_{2}^{+}}-\mathrm{L}_{\mathrm{O}_{2}^{+}}=\mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]-\alpha^{*}\left[\mathrm{O}_{2}^{+}\right]\left[\mathrm{e}^{-}\right]$

$$
\begin{equation*}
\Rightarrow\left[\mathrm{O}_{2}^{+}\right]=\frac{\mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]}{\alpha^{*}\left[\mathrm{e}^{-}\right]} \tag{3}
\end{equation*}
$$

From (2) $\Rightarrow \mathrm{P}_{\mathrm{O}\left({ }^{1} \mathrm{D}\right)}=\mu_{\mathrm{D}} \alpha^{*}\left[\mathrm{O}_{2}^{+}\right]\left[\mathrm{e}^{-}\right]$
μ_{D} is the quantum yield

Substitute (3) into (4) $\Rightarrow \mathrm{P}_{\mathrm{O}\left({ }^{1} \mathrm{D}\right)}=\mu_{\mathrm{D}} \mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]$
Triple state but just 2 red lines because $\mathrm{J}=2$ to $\mathrm{J}=0$ is not allow (from selection rule of quantum mechanism).
$\mathrm{O}\left({ }^{1} \mathrm{D}\right) \xrightarrow{\mathrm{A}_{1 \mathrm{D}}} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{h} v_{6300}$
$\mathrm{O}\left({ }^{1} \mathrm{D}\right) \xrightarrow{\mathrm{A}_{2 \mathrm{D}}} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{h} v_{6364}$

If $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ undergoes collisions with neutral particles, it will lose energy,
named Quenching Reaction.
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{N}_{2} \xrightarrow{\mathrm{~K}_{1}} \mathrm{O}+\mathrm{N}_{2}$
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{O}_{2} \xrightarrow{\mathrm{~K}_{2}} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{O} \xrightarrow{\mathrm{K}_{3}} \mathrm{O}+\mathrm{O}$
$\Rightarrow \mathrm{L}_{\mathrm{O}\left({ }^{1} \mathrm{D}\right)}=\left\{\mathrm{K}_{1}\left[\mathrm{~N}_{2}\right]+\mathrm{K}_{2}\left[\mathrm{O}_{2}\right]+\mathrm{K}_{3}[\mathrm{O}]+\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}\right\}\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]$
Steady state: $\frac{\mathrm{d}\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]}{\mathrm{dt}}=0=\mathrm{P}_{\mathrm{O}\left({ }^{1} \mathrm{D}\right)}-\mathrm{L}_{\mathrm{O}\left({ }^{1} \mathrm{D}\right)}$
$\Rightarrow \mu_{\mathrm{D}} \mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]=\left\{\mathrm{K}_{1}\left[\mathrm{~N}_{2}\right]+\mathrm{K}_{2}\left[\mathrm{O}_{2}\right]+\mathrm{K}_{3}[\mathrm{O}]+\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}\right\}\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]$
$\Rightarrow\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]=\frac{\mu_{\mathrm{D}} \mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]}{\mathrm{K}_{1}\left[\mathrm{~N}_{2}\right]+\mathrm{K}_{2}\left[\mathrm{O}_{2}\right]+\mathrm{K}_{3}[\mathrm{O}]+\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}}$
Volume Emission Rate of 630.0nm:
$\mathrm{I}_{6300} \equiv\left[\mathrm{~h} v_{6300}\right]=\mathrm{A}_{1 \mathrm{D}}\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]$
$\mathrm{I}_{6300}=\frac{\mathrm{A}_{1 \mathrm{D}} \mu_{1 \mathrm{D}} \mathrm{r}\left[\mathrm{O}_{2}\right]\left[\mathrm{O}^{+}\right]}{\mathrm{K}_{1}\left[\mathrm{~N}_{2}\right]+\mathrm{K}_{2}\left[\mathrm{O}_{2}\right]+\mathrm{K}_{3}[\mathrm{O}]+\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}}$

