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Abstract. The extraction of the magnetic signal induced by
the oceanic M2 tide is typically based solely on the tempo-
ral periodicity of the signal. Here, we propose a system of
tailored trial functions that additionally takes the spatial con-
straint into account that the sources of the signal are localized
within the oceans. This construction requires knowledge of
the underlying conductivity model but not of the inducing
tidal current velocity. Approximations of existing tidal mag-
netic field models with these trial functions and comparisons
with approximations based on other localized and nonlocal-
ized trial functions are illustrated.

1 Introduction

Conductive seawater moving through the ambient Earth’s
main magnetic field Bmain induces a secondary magnetic
field Boc. Due to their periodic nature, magnetic signals gen-
erated by ocean tides are particularly easy to detect and have
been studied in observatory data as early as, e.g., Malin
(1970). However, the extraction of global models for mag-
netic fields induced by the dominating M2 tide from satellite
data has only recently become possible (e.g., Sabaka et al.,
2015, 2016; Tyler et al., 2003). Although the extraction pro-
cedures used are solely based on the temporal periodicity of
the tidal signal (and not on further information on the spatial
localization of the sources), they seem, by visual inspection,
to coincide very well with results obtained by forward mod-
els such as in Kuvshinov and Olsen (2005). A more exten-
sive comparison of forward models of electromagnetic ocean
tidal signals based on different ocean tide models has re-

cently been published in Saynisch et al. (2018). In that work,
it was shown that the residuals between the different mod-
els can exceed the nominal noise level of the Swarm satel-
lite mission. The ability to extract M2 tidal magnetic field
signals in satellite data more precisely can therefore help
in constraining ocean tide models. In Grayver et al. (2016)
and Schnepf et al. (2015) it has been shown that an M2 tidal
magnetic field model can also be used to constrain 1-D mod-
els of the Earth’s mantle conductivity, and forward studies
in Irrgang et al. (2016) have shown that lateral variations in
the conductivity of the ocean water itself should have a de-
tectable influence on the measured magnetic field (although
the latter study was performed for general ocean circulation
and not for tidal current systems).

In this short paper, we want to illustrate the effects that
different (spatially localized) sets of trial functions can have
on the approximation of the magnetic field induced by the
M2 tide in the first place.

In particular, we describe a possible setup for the inclu-
sion of spatial localization constraints (in addition to the
constraint of temporal periodicity) for the approximation
of ocean-tide-induced magnetic fields. Clearly, the velocity
field u that is responsible for the generation of the corre-
sponding secondary magnetic field Boc vanishes over the
continents. The precise connection between u and Boc is
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given by the time-harmonic Maxwell equations:

∇ ×Boc = µ0σ(E+u×Bmain),

∇ ×E = iωBoc, (1)
∇ ·Boc = 0,

where we assume to have knowledge of Bmain, the under-
lying conductivity σ , and the frequency ω. Furthermore, E

denotes the electric field and µ0 is the vacuum permeability.
Instead of using a fixed velocity field u, we substitute it by a
set of functions {u`}`=1,...,L (e.g., vectorial Slepian functions
as in Plattner and Simons (2014, 2015) that are localized over
the oceans) to obtain a set of corresponding trial functions
{B`}`=1,...,L that each solve Eq. (1). The latter is suitable for
the approximation of Boc and reflects the spatial localization
of the sources of the induced magnetic signal in the oceans.
Thus, a magnetic field model that is based on an expansion
of the signal in terms of the function system {B`}`=1,...,L au-
tomatically reflects the spatial origin of the signal as well as
its temporal periodicity (described by the frequency ω). Ad-
ditionally, due to the linear connection between u and Boc,
an approximation of Boc directly yields an approximation of
the underlying tidal current velocity u in terms of the func-
tions {u`}`=1,...,L. However, a model of the underlying con-
ductivity σ has to be assumed for the construction of the B`.
Throughout this paper, we fix the underlying conductivity,
meaning that we do not test the influence of a variation of the
conductivity model on the approximation of Boc. The goal of
the paper is rather the illustration of the effect of the general
constraint that the (unknown) underlying u is restricted to the
oceans. In a forthcoming study, the simultaneous reconstruc-
tion of u and approximation of Boc, and a comparison with
existing models, shall be investigated more thoroughly. Since
the connection between σ and Boc is nonlinear, a simultane-
ous determination of σ and Boc (assuming a fixed velocity
field model for u) is not as straightforward. A detailed de-
scription of the trial functions is provided in Sect. 2.

In Sect. 3, we illustrate our approach with input data de-
rived from the (satellite- and observatory-data-based) CM5
model of Sabaka et al. (2015) and from data derived from a
forward model based on the X3DG solver from Kuvshinov
(2008). We approximate these input data sets separately in
terms of time-periodic vector spherical harmonics, a system
of spatially localized trial functions that contains no particu-
lar information on the underlying sources (in our case, Abel–
Poisson kernels), and the new set of trial functions indicated
in the previous paragraph, respectively. We also include an
example with artificial continental noise. The residuals with
respect to the input data show that the use of the function sys-
tem {B`}`=1,...,L can filter out undesired contributions to the
M2 tidal magnetic field over the continents, without neglect-
ing data over the continents. These residuals can reach up to
15% of the maximal signal strength and have a magnitude
that should be detectable at satellite altitude.

2 Method and function systems

Given a so-called dictionary D of trial functions, we use the
Regularized (Orthogonal) Functional Matching Pursuit (cf.
Fischer and Michel, 2013; Michel and Telschow, 2014, 2016
for details) for the approximation of Boc. Briefly speaking,
this is a greedy-type algorithm that yields an approximation

BN =

N∑
i=1

αid i

of Boc by iteratively choosing coefficients αi ∈ R and dictio-
nary elements d i ∈D via

argminα,d
(
‖Ri−1−αFd‖2RM + λ‖Bi−1+αd‖2H

)
. (2)

Ri−1 = b−FBi−1 denotes the residual between the data
b ∈ RM and the approximation after i− 1 iterations. In this
particular setup, F represents the linear operator that evalu-
ates a function at the M locations where data are provided,
and H is a suitable Hilbert space for the regularization of the
problem1. The parameter λ controls the trade-off between the
data misfit ‖Ri‖

2
RM and the regularizing term ‖Bi‖

2
H, which

imposes a certain property to Bi such as smoothness (as in
our case). The Regularized (Orthogonal) Functional Match-
ing Pursuit, in general, has the advantage that it can easily
deal with different dictionaries D (or combinations of such)
from which the approximant BN is built. However, any other
approximation method could be used as well with the pro-
posed function systems. In this paper, we use the term “dic-
tionary” simply to describe a set of arbitrary functions that
we consider suitable for our purposes. These functions do
not necessarily have to satisfy particular mathematical prop-
erties such as orthogonality or completeness. Therefore, we
call such functions “trial functions” rather than, e.g., “basis
functions”.

In the following, we briefly introduce some function sys-
tems that can be used for the constitution of D. In particular,
Sect. 2.4 describes in more detail the aforementioned trial
functions {B`}`=1,...,L that contain temporal and spatial con-
straints tailored for ocean-tide-induced magnetic fields.

2.1 Vector spherical harmonics

We briefly recapitulate the notion of classical vector spheri-
cal harmonics in a form that we need at a few occasions later
on. By Sr = {x ∈ R3

: |x| = r}, we denote the sphere of ra-
dius r , while S= S1 stands for the unit sphere. Every unit
vector ξ = ξ(t,ϕ) ∈ S can be expressed in spherical coordi-
nates with longitude ϕ and polar distance t = cos(ϑ), where
ϑ is the corresponding co-latitude. By Yn,k , we denote fully

1In our case, we use the norm ‖f ‖2H =
∑
n,k(n+

1
2 )

4f̂(n,k), but
other norms can be used as well depending on the property one
wants to impose on f . By f̂(n,k) we denote the Fourier coefficients
of f as indicated in Eq. (3).
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Figure 1. The kernel K(r·,aη1) for ar = 0.91 (a) and a
r = 0.67 (b). The fixed nodal point η1 ∈ S is marked by a white cross.

Figure 2. Absolute value of the vectorial Slepian function g
(3)
50 with 50th best localization over the oceans (a) and g

(3)
1630 with the 50th worst

localization over the oceans (b), for bandlimit N = 40.

normalized spherical harmonics of degree n and order k: for
every n ∈ N0 and k =−n, . . .,n,

Yn,k(ξ)=

√
2n+ 1

4π
(n− |k|)!

(n+ |k|)!
P |k|n (t)


√

2cos(kϕ), k < 0,
1, k = 0,
√

2sin(kϕ), k > 0.

The involved associated Legendre functions are, for t ∈
[−1,1], defined as

P kn (t)=
(−1)k

2nn!

(
1− t2

)k/2( d
dt

)n+k
(t2− 1)n.

If f is a scalar-valued square-integrable function on S, then,
for every degree n ∈ N0 and order k =−n, . . .,n, the values

f̂(n,k) =

∫
S

f (η)Yn,k(η)dS(η) (3)

are called the Fourier coefficients of the function f .
Going over to the vectorial setting, it is well known that

every square-integrable vector field f on the unit sphere can
be uniquely decomposed into its radial and two tangential
components such that

f = erf1+∇Sf2+LSf3,

with scalar-valued functions f1,f2,f3 and the radial unit

vector er =
(√

1− t2 cos(ϕ),
√

1− t2 sin(ϕ), t
)T

. By the
surface gradient ∇S, we denote the tangential component of
the usual Euclidean gradient ∇, i.e.,

∇S = eϕ
1

√
1− t2

∂

∂ϕ
+ et

√
1− t2

∂

∂t
,

with unit vectors et =
(
−t cos(ϕ),−t sin(ϕ),

√
1− t2

)T
and

eϕ = (−sin(ϕ),cos(ϕ),0)T . Moreover, the surface curl gra-
dient LS is defined by LSf (ξ)= ξ×∇Sf (ξ), where× is the
usual cross product in R3. In other words,

LS =−eϕ

√
1− t2

∂

∂t
+ et

1
√

1− t2
∂

∂ϕ
.

Hence, we define three types of vector spherical harmonics:
the radial

y
(1)
n,k = er Yn,k,

for degrees n≥ 0 and orders k =−n, . . .,n, as well as the
tangential

y
(2)
n,k =

√
1

n(n+ 1)
∇SYn,k, (4)

y
(3)
n,k =

√
1

n(n+ 1)
LSYn,k, (5)

for degrees n≥ 1 and orders k =−n, . . .,n. Note that,
for convenience, we set y

(2)
0,0 = y

(3)
0,0 = 0. It should further

be noted that the vector spherical harmonics in Eq. (4)
are surface-curl-free while those in Eq. (5) are surface-
divergence-free. In analogy to Eq. (3), we can now define
the Fourier coefficients

f̂
(i)
(n,k) =

∫
S

f (η) · y
(i)
n,k(η)dS(η)
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of square-integrable vector fields f on the unit sphere.
The vector spherical harmonics from above are defined

solely on the unit sphere and can, therefore, only be used for
the expansion of vector-valued functions on S. However, for
the approximation of satellite potential field data it is neces-
sary to have related functions that are also defined in the ex-
terior of a sphere. For that purpose, we define the following
gradients of harmonic extensions of (scalar) spherical har-
monics:

hn,k(x)=
1
r2

(a
r

)n (
∇SYn,k(ξ)− ξ(n+ 1)Yn,k(ξ)

)
, (6)

for r = |x|> a and ξ = x
|x|
∈ S, where a is the radius of a

reference sphere, e.g., Earth’s mean radius.

2.2 Vectorial Abel–Poisson kernel

While the set of functions {hn,k}n∈N0,k=−n,...,n from Eq. (6)
is suitable for the global approximation of potential field
data, we are also interested in localized functions. One pos-
sible choice is the Abel–Poisson kernel (see, e.g., Freeden
and Gerhards, 2012; Freeden et al., 1998). For x,y ∈ R3,
|x|> |y|, it is defined by

K(x,y)=
1

4π
|x|2− |y|2

|x− y|3
.

That is, with unit vectors ξ,η ∈ S and radii r > a > 0, we
have

K(rξ,aη)=
1

4π
r2
− a2(

a2+ r2− 2ar(ξ · η)
)3/2 ,

which shows that K only depends on the spherical distance
between ξ and η, since |ξ −η|2 = 2(1−ξ ·η). Therefore, the
kernel is radially symmetric if we keep one of the variables
fixed (we strictly keep the second argument fixed, here aη).
The degree of localization is determined by the ratio a

r
. The

closer it is to 1, i.e., the smaller the difference between the
radii a and r , the better the spatial localization of K(r·,aη)
around η. In our case, we choose a to be the Earth’s mean
radius, and r is the radius of the sphere at which we evaluate
the kernel. An illustration of the kernel is provided in Fig. 1.

The corresponding vectorial Abel–Poisson kernel is sim-
ply defined by

k(x,y)=∇xK(x,y)=
1

4π

∞∑
n=0

n∑
k=−n

Yn,k

(
y

|y|

)
hn,k(x).

Further calculations show

k(x,y)=
1

4π

(
2

|x− y|3
x − 3

|x|2− |y|2

|x− y|5
(x− y)

)
. (7)

A spatially localized alternative to {hn,k}n∈N0,k=−n,...,n could
then be defined by the set of functions {k(·,aηi)}i=1,...,M ,
where η1, . . .,ηM ∈ S is a fixed set of adequately distributed
nodal points.

2.3 Spherical Slepian functions

While the localization of Abel–Poisson kernels is of radi-
ally symmetric nature, one is often interested in regions of
more complex geometry, e.g., continents or oceans. Spheri-
cal Slepian functions, for instance, provide an orthonormal
system of functions that can reflect localization in such gen-
eral predefined regions 0 ⊂ S (see, e.g., Plattner and Simons,
2015, 2017a; Simons et al., 2006; Simons and Plattner, 2015
for details).

Specifically, the function f showing the best localization
in 0, is the one that maximizes the energy ratio

λ0(f )=

∫
0
|f (η)|2dS(η)∫

S|f (η)|
2dS(η)

, (8)

i.e., the one with an energy ratio closest to 1. Let us now
assume that g(i) is a bandlimited vectorial function of type i
with bandlimit N ; i.e., it can be expanded as

g(i) =

N∑
n=0

n∑
k=−n

ĝ
(i)
(n,k)y

(i)
n,k .

Further, the matrix P= (P(n,k),(m,j)) ∈ R(N+1)2×(N+1)2 con-
tains (properly sorted2) all of the appearing inner products

P(n,k),(m,j) =
∫
0

y
(i)
n,k(η) · y

(i)
m,j (η)dS(η)

and ĝ = (ĝ
(i)
(n,k))

T
∈ R(N+1)2 , with n= 0, . . .,N and k =

−n, . . .,n. If we now restrict ourselves to normalized func-
tions g(i) (i.e.,

∫
S|g

(i)(η)|2dS(η)= ĝTĝ = 1), one obtains
the simple expression λ0(g

(i))= ĝTPĝ. Eventually, the
maximization of the energy ratio Eq. (8) leads to the eigen-
value problem

Pĝ = λĝ .

The eigenvalues λ` are the possible energy ratios and the
corresponding eigenvectors ĝ` contain the Fourier coeffi-
cients of bandlimited functions g

(i)
` attaining the energy ratio

λ` = λ0

(
g
(i)
`

)
. The set of functions {g(i)` }`=1,...,(N+1)2 is or-

dered such that 1≥ λ1 ≥ λ2 ≥ . . .≥ λ(N+1)2 ≥ 0.
In typical scenarios, it turns out that the eigenvalues are

clustered close to 1 and close to zero. Those eigenval-
ues λ1, . . .,λL which are closer to 1 determine the subset
{g
(i)
` }`=1,...,L of well-localized Slepian functions that should

be used for approximation in 0. The code for the genera-
tion of vectorial Slepian functions has been kindly supplied
in Plattner and Simons (2017b). For our situation, where 0
denotes the region of (a spherical) Earth which is covered by
oceans, an illustration is provided in Fig. 2.

2Typically, the order is (0,0), (1,−1), (1,0), (1,1), (2,−2), . . .
such that the pair (n,k) is at position n2

+ n+ k+ 1 in a row or
column.
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Figure 3. Absolute value of the trial function Bre
50 corresponding to u= g

(3)
50 at time t = 0 (a) and the trial function Bre

1630 corresponding to

u= g
(3)
1630 at time t = 0 (b). Models of surface shell conductance on Sa and absolute value of Bmain on Sa used for the generation of the

trial functions (c, d).

Figure 4. Accumulated energy for {u`}`=1,...,L (a) and {Bre
`
,Bim

`
}`=1,...,L (b), with L= 1200.

2.4 Physics-based trial functions

We start with the time-harmonic Maxwell equations as al-
ready indicated in Eq. (1). For simplicity, we assume a 1-D
(only radially varying) conductivity model for σ within the
ball Ba , and at the surface Sa we allow a laterally varying
conductivity (cf. the bottom left image in Fig. 3 for an illus-
tration). Further, the magnetic field Bmain is taken from the
CHAOS-5 model (see Finlay et al., 2015) and u is supposed
to denote a depth-integrated velocity field that is restricted
to Sa (in fact, within the numerical framework of the X3DG
solver, we assume a constant ocean depth of 1km, with u be-
ing tangential to the sphere and independent of the depth).
Since we are mainly interested in tidal velocity fields, it is a
reasonable assumption that u is surface-divergence-free for
most parts of the oceans. The latter means that u can be ex-
panded in terms of vector spherical harmonics or vectorial
Slepian functions of type 3, i.e., y

(3)
n,k or g

(3)
` , respectively.

For the generation of the tailored trial functions
{B`}`=1,...,L, we therefore substitute u by a set of surface-
divergence-free functions {u`}`=1,...,L that reflect spatial lo-

calization within the oceans. More precisely, we choose

u` = g
(3)
` ,

where g
(3)
` is the `th best localized vectorial Slepian function

of type 3. The corresponding solution Boc of Eq. (1) within
this setup then provides an auxiliary function B̃`. It should be
noted that in order to obtain Maxwell’s equation in the time-
harmonic form Eq. (1), one has to apply a Fourier transform
in time. Therefore, for the actual trial function B`, we have
to invert the Fourier transform and get

B`(x, t)= e
−iωt B̃`(x), x ∈ R3, t ∈ R.

For technical reasons, we choose to work in a real-valued
framework, so that the real and imaginary part of B` each
yield a trial function

Bre
` (x, t)= cos(ωt) B̃re

` (x)+ sin(ωt) B̃ im
` (x), (9)

B im
` (x, t)= sin(ωt) B̃re

` (x)− cos(ωt) B̃ im
` (x). (10)

Thus, each choice of u` yields two functions Bre
` and B im

`

that reflect the temporal periodicity of the tidal magnetic field
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Figure 5. Absolute value of the radial part of the tidal model BCM5
oc as well as the forward model BX3DG

oc at an altitude of 300 km above the
Earth’s surface.

Figure 6. Absolute value of the radial part of approximations of BCM5
oc based on dictionary D1 (a), dictionary D2 (b), and dictionary

D3 (c), as well as the corresponding residuals with respect to BCM5
oc (d, e, f). Note the different scales in the bottom row which are chosen in

order to emphasize the spatial distribution of the residuals.

as well as the spatial localization of the sources within the
oceans. An illustration for the M2 tide with ω = 2π

12.42h can
be found in Fig. 3. For the computation of the B̃` as solutions
of Eq. (1), we have used the X3DG solver from Kuvshinov
(2008).

Figure 4 shows the accumulated energy
∑L
`=1|u`(ξ)|

2, for
ξ ∈ S, of the underlying functions u` that describe the ve-
locity field and the accumulated energy

∑L
`=1|B

re
` (x, t)|

2
+

|B im
` (x, t)|

2, for x ∈ Sr with r = a+ 300 km and time t = 0,
of the corresponding trial functions. In both cases, one can
clearly see the spatial localization over the oceans. However,
the accumulated energy of the trial functions additionally re-
flects the influence of the conductivity σ and the main/core
magnetic field Bmain indicated in Fig. 3.

3 Examples

For our experiments we rely on the CM5 geomagnetic field
model (cf. Sabaka et al., 2015) and a forward model based
on the M2 depth-integrated tidal velocity field from TPXO8-

ATLAS (cf. Egbert and Erofeeva, 2002) that has also been
used in Kuvshinov (2008). The contribution of CM5 that
is due to the oceanic M2 tide is given as an expansion in
terms of spherical harmonics up to degree 18; we denote
it as BCM5

oc for the remainder of this section and sample it
at M = 250000 points which are taken from actual Swarm
satellite tracks. The forward model has been computed via
the X3DG solver based on the surface conductance and the
main/core magnetic field model indicated in the bottom row
of Fig. 3 and a depth-integrated M2 tidal velocity field from
TPXO8-ATLAS. We denote it by BX3DG

oc and evaluate it on
the same point grid as before. These samples are used as
input data b ∈ RM for the Regularized (Orthogonal) Func-
tional Matching Pursuit, which works iteratively as indicated
in Eq. (2). In the following, we want to illustrate the influence
of the choice of different function systems (i.e., the choice of
different dictionaries D) on the approximation of BCM5

oc and
BX3DG

oc . For that purpose, we choose three different dictio-
naries: the spherical-harmonic-based

D1 = {cos(ωt)hn,k(x),sin(ωt)hn,k(x)}n=0,...,20, k=−n,...,n,

Ann. Geophys., 36, 1393–1402, 2018 www.ann-geophys.net/36/1393/2018/
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Figure 7. Absolute value of the radial part of approximations of BX3DG
oc based on dictionary D1 (a), dictionary D2 (b), and dictionary D3

(c), as well as the corresponding residuals with respect to BX3DG
oc (d, e, f).

Figure 8. Absolute value of the radial part of BX3DG
oc (a) and model of continental “noise” e (b), as well as superposition Be

oc of both of
these (c).

with ω = 2π
12.42h and the functions hn,k from Eq. (6); the

Abel–Poisson-kernel-based

D2 = {cos(ωt)k(x,aηi),sin(ωt)k(x,aηi)}i=1,...,Mp ,

where a = 6371.2 km, {ηi}i=1,...,Mp is a Reuter grid on S
with Mp = 6201 nearly equally distributed points (see, e.g.,
Michel (2013), p. 137), and k given as in Eq. (7); and

D3 = {B
re
` (x, t),B

im
` (x, t)}`=1,...,1200,

with Bre
` and B im

` , the physics-based trial functions from
Eqs. (9) and (10).

The actual signals that we want to approximate are indi-
cated in Fig. 5. The approximations BN of BCM5

oc together
with the residuals |BN −BCM5

oc | for each of the three dic-
tionaries above are shown in Fig. 6, whereas the respec-
tive approximations of BX3DG

oc and corresponding residuals
|BN −BX3DG

oc | are displayed in Fig. 7.
In the case of BCM5

oc as the underlying signal, it can be seen
in Fig. 6 that the dictionaryD1 yields the overall best approx-
imation, which, however, is not surprising since we try to fit a
spherical-harmonic-based model with a spherical-harmonic-
based dictionary. The result for dictionary D2 shows a more

localized pattern in the residual, as is expected for the use of
Abel–Poisson kernels. However, the maxima in the residual
are not correlated to specific continental or oceanic structures
but they mainly coincide with the maxima of the original sig-
nal BCM5

oc . The situation for dictionary D3 of physics-based
trial functions is different. The agreement of the approxima-
tion with BCM5

oc is good over the oceans but significant devia-
tions exist over the continents. The latter could be an indica-
tion that the original model BCM5

oc contains contributions over
the continents whose physical origin is not due to induction
by oceanic tides. Some smaller deviations over oceanic areas
exist around southern Africa and the east of Australia. Since
we are dealing with the approximation of a low-degree (up to
degree 18) spherical-harmonic-based M2 tidal magnetic field
model by localized trial functions, one cannot reliably say
if the latter deviations are artifacts from the approximation
procedure or if they have a physical origin. However, those
are areas with a shallower ocean topography, so the assump-
tion of surface-divergence-free depth-integrated tidal veloci-
ties (which we made for our choice of the underlying u`) and
the assumption of a constant ocean depth (we chose a depth
of 1 km for the generation of the B̃` via the X3DG solver)
might not be accurate in these areas. Nonetheless, the resid-

www.ann-geophys.net/36/1393/2018/ Ann. Geophys., 36, 1393–1402, 2018
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Figure 9. Absolute value of the radial part of approximations of superposition Be
oc based on dictionary D1 (a), dictionary D2 (b), and

dictionary D3 (c), as well as the corresponding residuals with respect to original BX3DG
oc without the continental “noise” e (d, e, f).

Figure 10. The difference between the approximations BN of the undisturbed BX3DG
oc (as shown in Fig. 7a, b, and c) and the approximations

B
e
N of the noisy Be

oc (as shown in Fig. 9a, b, and c).

uals over the continents show that the use of the adapted trial
functions might eventually deliver improved tidal magnetic
field models that correct unrealistic continental contributions
without disregarding continental areas entirely.

The residuals of the approximations of the forward model
BX3DG

oc in Fig. 7, on the other hand, indicate that the qual-
ity of the approximations does not vary too much (at least
on scales that are relevant for satellite data approximation)
among the three tested function systems. This is mainly due
to the fact that the input model BX3DG

oc already reflects certain
spatial localization properties over the oceans. In such a sce-
nario (if additionally solely interested in the approximation
of the signal and not the underlying velocity fields) it would,
therefore, not be necessary to use the adapted trial functions
that we have introduced. The crucial point, however, is that
satellite data typically contain undesired contributions over
the continents that are not due to ocean-tide-generated mag-
netic fields. In order to illustrate this behavior, we use the
following additional example. We take randomly distributed
Fourier coefficients to construct a “noise” function e with a

bandlimit of degree 40, i.e.,

e =

40∑
n=1

n∑
k=−n

ê(n,k)y
(3)
n,k,

where the Fourier coefficients ê(n,k) are normally distributed
with zero mean and a variance such that the amplitude of e

is in the range of the oceanic signal BX3DG
oc . This function e

is then restricted to the continents and eventually superposed
with the forward model (cf. Fig. 8). For the sake of clarity,
we denote the approximations of the noisy data

Be
oc = BX3DG

oc + e

by B
e

N instead of BN . The latter still represents the approxi-
mation of BX3DG

oc without extra continental noise e.
In Fig. 9 one can directly see the influence which the conti-

nental noise has on the approximation depending on the var-
ious dictionaries (Fig. 7 shows the same quantities for the
approximations in the undisturbed setup). In the case of dic-
tionary D1, the spherical harmonics also approximate a part
of the continental data which in turn also has some impact
on the approximation in oceanic areas. Due to the localiza-
tion of the kernels contained in dictionaryD2, the (undesired)
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Table 1. Root mean square errors (RMSEs) corresponding to the approximations of the undisturbed forward model BX3DG
oc as well as the

noisy model Be
oc = BX3DG

oc +e compared to the “ground truth” BX3DG
oc with the three different dictionaries. Left-hand columns show errors

for the approximation of BX3DG
oc (compare Fig. 7), while center columns show errors for the approximation of Be

oc (compare Fig. 9). The
right-hand columns display the RMSEs of the difference between the respective approximations (as shown in Fig. 10).∣∣∣BN −BX3DG

oc

∣∣∣ ∣∣∣Be
N −BX3DG

oc

∣∣∣ ∣∣∣BN −B
e
N

∣∣∣
RMSE D1 D2 D3 D1 D2 D3 D1 D2 D3

Overall 0.060533 0.029952 0.064133 0.107972 0.128185 0.086386 0.089407 0.126170 0.057929
Continents 0.045495 0.021553 0.055487 0.160529 0.237245 0.085791 0.153771 0.236059 0.067152
Oceans 0.064366 0.032047 0.086563 0.086145 0.066827 0.086563 0.057396 0.062991 0.054858

reconstruction of the continental noise is even more accurate,
while the reconstruction over the oceans only changes very
slightly. With the proposed physics-based functions in dic-
tionary D3, however, the influence of the continental noise
is much less apparent. The maxima occur very close to the
coastline, which is most likely due to numerical issues stem-
ming from discontinuities of the data Be

oc in coastal areas. A
closer look at the differences |BN−B

e

N | between the approx-
imations of noisy and undisturbed data is given in Fig. 10.
This shows again that the inclusion of continental noise has
a smaller effect on the approximation via physics-based trial
functions than on the approximations via the other tested trial
functions. Moreover, the corresponding root mean square er-
rors of the approximations BN and B

e

N , respectively, can be
found in Table 1. In both cases, we compared the approxima-
tions to the undisturbed data BX3DG

oc in order to emphasize
the impact of continental noise on the overall approximation.
The errors over continental and oceanic regions are provided
separately.

4 Conclusions

The main goal of this paper is to study the errors that are
made by the approximation of tidal magnetic fields by use of
different sets of trial functions. While, e.g., Saynisch et al.
(2018) compared forward models for the M2 tidal magnetic
field based on different tidal models, we aim at illustrating
the effect of the involved trial functions on the possible ex-
traction of the tidal magnetic field from satellite data in the
first place. The indicated residuals for the synthetic exam-
ples show that the use of the presented adapted physics-based
trial functions could have a detectable effect for the extrac-
tion of such signals in satellite data. These trial functions
reflect the underlying physics in the sense that they satisfy
the time-harmonic Maxwell equations and that they include
knowledge of the ambient core magnetic field and the Earth’s
conductivity, but they are not designed to rely on detailed
oceanographic models. The latter can be advantageous since
the extracted magnetic field induced by ocean tides might
eventually be used to make inferences on such models.
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