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Abstract. We examine the physics of the magnetic mirror
mode in its final state of saturation, the thermodynamic equi-
librium, to demonstrate that the mirror mode is the ana-
logue of a superconducting effect in a classical anisotropic-
pressure space plasma. Two different spatial scales are iden-
tified which control the behaviour of its evolution. These
are the ion inertial scale λim(τ ) based on the excess den-
sity Nm(τ ) generated in the mirror mode, and the Debye
scale λD(τ ). The Debye length plays the role of the corre-
lation length in superconductivity. Their dependence on the
temperature ratio τ = T‖/T⊥ < 1 is given, with T⊥ the refer-
ence temperature at the critical magnetic field. The mirror-
mode equilibrium structure under saturation is determined
by the Landau–Ginzburg ratio κD = λim/λD , or κρ = λim/ρ,
depending on whether the Debye length or the thermal-ion
gyroradius ρ – or possibly also an undefined turbulent corre-
lation length `turb – serve as correlation lengths. Since in all
space plasmas κD � 1, plasmas with λD as the relevant cor-
relation length always behave like type II superconductors,
naturally giving rise to chains of local depletions of the mag-
netic field of the kind observed in the mirror mode. In this
way they would provide the plasma with a short-scale mag-
netic bubble texture. The problem becomes more subtle when
ρ is taken as correlation length. In this case the evolution of
mirror modes is more restricted. Their existence as chains
or trains of larger-scale mirror bubbles implies that another
threshold, VA > υ⊥th, is exceeded. Finally, in case the corre-
lation length `turb instead results from low-frequency mag-
netic/magnetohydrodynamic turbulence, the observation of
mirror bubbles and the measurement of their spatial scales
sets an upper limit on the turbulent correlation length. This
might be important in the study of magnetic turbulence in
plasmas.

1 Introduction

Under special conditions high-temperature collisionless plas-
mas may develop properties which resemble those of super-
conductors. This is the case with the mirror mode when the
anisotropic pressure gives rise to local depletions of the mag-
netic field similar to the Meissner effect in metals where it
signals the onset of superconductivity (Kittel, 1963; Fetter
and Walecka, 1971; Huang, 1987; Lifshitz and Pitaevskii,
1998), i.e. the suppression of friction between the current
and the lattice. In collisionless plasmas there is no lattice,
the plasma is frictionless, and thus it already is ideally con-
ducting which, however, does not mean that it is supercon-
ducting. To be superconducting, additional properties are re-
quired. These, as we show below, are given in the saturation
state of the mirror mode.

The mirror mode is a non-oscillatory plasma instability
(Chandrasekhar, 1961; Hasegawa, 1969; Gary, 1993; South-
wood and Kivelson, 1993; Kivelson and Southwood, 1996)
which evolves in anisotropic plasmas (for a recent review,
see Sulem, 2011, and references therein). It has been argued
that it should readily saturate by quasilinear depletion of the
temperature anisotropy (cf. e.g. Noreen et al., 2017, and ref-
erences therein). Observations do not support this conclu-
sion. In fact, we recently argued (Treumann and Baumjo-
hann, 2018a) that the large amplitudes of mirror-mode oscil-
lations observed in the Earth’s magnetosheath, magnetotail,
and elsewhere, like other planetary magnetosheaths, in the
solar wind and generally in the heliosphere (see e.g. Tsuru-
tani et al., 1982, 2011; Czaykowska et al., 1998; Constan-
tinescu et al., 2003; Zhang et al., 1998, 2008, 2009; Lucek
et al., 1999a, b; Volwerk et al., 2008, and many others), are
a sign of the impotence of quasilinear theory in limiting the
growth of the mirror instability. Instead, mirror modes should

Published by Copernicus Publications on behalf of the European Geosciences Union.



1016 R. A. Treumann and W. Baumjohann: Mirror instability

be subject to weak kinetic turbulence theory (Sagdeev and
Galeev, 1969; Davidson, 1972; Tsytovich, 1977; Yoon, 2007,
2018; Yoon and Fang, 2007), which allows them to evolve
until they become comparable in amplitude to the ambient
magnetic field long before any dissipation can set in.

This is not unreasonable, because all those plasmas where
the mirror instability evolves are ideal conductors on the
scales of the plasma flow. On the other hand, no weak
turbulence theory of the mirror mode is available yet as
it is difficult to identify the various modes which interact
to destroy quasilinear quenching. The frequent claim that
whistlers (lion roars) excited in the trapped electron compo-
nent would destroy the bulk (global) temperature anisotropy
is erroneous, because whistlers (Thorne and Tsurutani, 1981;
Baumjohann et al., 1999; Maksimovic et al., 2001; Zhang
et al., 1998) grow at the expense of a small component of
anisotropic resonant particles only (Kennel and Petschek,
1966). Depletion of the resonant anisotropy by no means af-
fects the bulk temperature anisotropy that is responsible for
the evolution of the mirror instability. On the other hand,
construction of a weak turbulence theory of the mirror mode
poses serious problems. One therefore needs to refer to other
means of description of its final saturation state.

Since measurements suggest that the observed mirror
modes are about stationary phenomena which are swept over
the spacecraft at high flow speeds (called Taylor’s hypothe-
sis, though, in principle, it just refers to the Galilei transfor-
mation), it seems reasonable to tackle them within a thermo-
dynamic approach, i.e. assuming that in the observed large-
amplitude saturation state they can be described as the sta-
tionary state of interaction between the ideally conducting
plasma and magnetic field. This can be most efficiently done
when the free energy of the plasma is known, which, unfortu-
nately, is not the case. Magnetohydrodynamics does not ap-
ply, and the formulation of a free energy in the kinetic state is
not available. For this reason we refer to some phenomeno-
logical approach which is guided by the phenomenological
theory of superconductivity. There we have the similar phe-
nomenon that the magnetic field is expelled from the medium
due to internal quantum interactions, known as the Meiss-
ner effect. This resembles the evolution of the mirror mode,
though in our case the interactions are not in the quantum do-
main. This is easily understood when considering the thermal
length λ} =

√
2π}2/meT and comparing it to the shortest

plasma scale, viz. the inter-particle distance dN ∼N−
1
3 . The

former is, for all plasma temperatures T , in the atomic range,
while the latter in space plasmas for all densities N is at least
several orders of magnitude larger. Plasmas are classical. In
their equilibrium state classical thermodynamics applies to
them.

In the following we boldly ask for the thermodynamic
equilibrium state of a mirror unstable plasma. For other non-
thermodynamical attempts at modelling the equilibrium con-
figuration of magnetic mirror modes and application to multi-

spacecraft observations, the reader may consult Constanti-
nescu (2002) and Constantinescu et al. (2003). Such an ap-
proach is rather alien to space physics. It follows the path
prescribed in solid-state physics but restricts itself to the do-
main of classical thermodynamics only.

2 Properties of the mirror instability

The mirror instability evolves whence the magnetic fieldB in
a collisionless magnetized plasma with an internal pressure–
temperature anisotropy T⊥ > T‖, where the subscripts refer
to the directions perpendicular and parallel to the ambient
magnetic field, drops below a critical value

B < Bcrit ≈
√

2µ0NTi⊥

(
2i +

√
Te⊥

Ti⊥
2e

) 1
2 ∣∣sin θ

∣∣, (1)

where 2j =
(
T⊥/T‖−1

)
j
> 0 is the temperature anisotropy

of species j = e, i (for ions and electrons) and θ is the angle
of propagation of the wave with respect to the ambient mag-
netic field (cf. e.g. Treumann and Baumjohann, 2018a). Here
any possible temperature anisotropy in the electron popula-
tion has been included, but will be dropped below as it seems
(Yoon and López, 2017) that it does not provide any further
insight into the physics of the final state of the mirror mode.

The important observation is that the existence of the mir-
ror mode depends on the temperature difference T⊥−T‖ and
the critical magnetic field. Commonly only the temperature
anisotropy is reclaimed as being responsible for the growth
of the mirror mode. Though this is true, it also implies the
above condition on the magnetic field. To some degree this
resembles the behaviour of magnetic fields under supercon-
ducting conditions. To demonstrate this, we take T⊥ as the
reference – or critical – temperature. The critical magnetic
field becomes a function of the temperature ratio τ = T‖/T⊥.
Once τ < 1 and B < Bcrit the magnetic field will be pushed
out of the plasma to give space to an accumulated plasma
density and also weak diamagnetic surface currents on the
boundaries of the (partially) field-evacuated domain.

The τ dependence of the critical magnetic field can be cast
into the form

Bcrit(T‖)

B0
crit

=

[
τ−1(1− τ)] 1

2
=

(
T⊥

T‖

) 1
2
(

1−
T‖

T⊥

) 1
2
, (2)

which indeed resembles that in the phenomenological theory
of superconductivity. Here

B0
crit =

√
2µ0NTi⊥

∣∣sin θ
∣∣ (3)

and the critical threshold vanishes for τ = 1 where the range
of possible unstable magnetic field values shrinks to zero; the
limits T‖ = 0 or T⊥ =∞ make no physical sense.

Though the effects are similar to superconductivity, the
temperature dependence is different from that of the Meiss-
ner effect in metals in their isotropic low-temperature super-
conducting phase. In contrast, in an anisotropic plasma the
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effect occurs in the high-temperature phase only while being
absent at low temperatures. Nevertheless, the condition τ < 1
indicates that the mirror mode, concerning the ratio of paral-
lel to perpendicular temperatures, is a low-temperature effect
in the high-temperature plasma phase. This may suggest that
even in metals high-temperature superconductivity might be
achieved more easily for anisotropic temperatures, a point we
will follow elsewhere (Treumann and Baumjohann, 2018b).

Since the plasma is ideally conducting, any quasi-
stationary magnetic field is subject to the penetration
depth, which is the inertial scale λim = c/ωim, with ω2

im =

e2Nm/ε0mi based on the density Nm of the plasma compo-
nent involved in the mirror effect. The mirror instability is a
slow purely growing instability with real frequencyω ≈ 0. At
these low frequencies the plasma is quasi-neutral. In metal-
lic superconductivity this length is the London penetration
depth which refers to electrons as the ions are fixed to the
lattice. Here, in the space plasma, it is rather the ion scale be-
cause the dominant mirror effect is caused by mobile ions in
the absence of any crystal lattice. Such a “magnetic lattice”
structure is ultimately provided under conditions investigated
below by the saturated state of the mirror mode, where it col-
lectively affects the trapped ion component on scales of an
internal correlation length.

3 Free energy

In the thermodynamic equilibrium state the quantity which
describes the matter in the presence of a magnetic field B is
the Landau–Gibbs free energy density

GL = FL−
1

2µ0
δB ·B, (4)

where FL is the Landau free energy density (Kittel and Kroe-
mer, 1980) which, unfortunately, is not known. In magneto-
hydrodynamics it can be formulated but becomes a messy
expression which contains all stationary, i.e. time-averaged,
nonlinear contributions of low-frequency electromagnetic
plasma waves and thermal fluctuations. The total Landau–
Gibbs free energy is the volume integral of this quantity over
all space. In thermodynamic equilibrium this is stationary,
and one has
d
dt

∫
d3x GL = 0. (5)

In order to restrict to our case we assume that FL in the above
expression, which contains the full dynamics of the plasma
matter, can be expanded with respect to the normalized den-
sity Nm < 1 of the plasma component which participates in
the mirror instability:

FL = F0+ aNm+
1
2
bN2

m+ . . ., (6)

with F0 the Helmholtz free energy density, which is inde-
pendent of Nm corresponding to the normal (or mirror sta-
ble) state. Normalization is to the ambient density N0, thus

attributing the dimension of energy density to the expansion
coefficients a and b. An expansion like this one is always
possible in the spirit of a perturbation approach as long as the
total density N/N0 = 1+Nm with

∣∣Nm
∣∣< 1. It is thus clear

that Nm is not the total ambient plasma density N0, which is
itself in pressure equilibrium with the ambient field B0 under
static conditions expressed by N0T = B

2
0/2µ0 under the as-

sumption that no static current J 0 flows in the medium. Oth-
erwise its Lorentz force J 0×B0 =−T∇N0 is compensated
for by the pressure gradient force already in the absence of
the mirror mode and includes the magnetic stresses generated
by the current. This case includes a stationary contribution of
the free energy F0 around which the mirror state has evolved.

Regarding the presence of the mirror mode, we know that
it must also be in balance between the local plasma gradi-
ent ∇Nm of the fluctuating pressure and the induced mag-
netic pressure (δB)2/2µ0. Note that all quantities are station-
ary; the prefix δ refers to deviations from “normal” thermo-
dynamic equilibrium, not to variations. Moreover, we have
Maxwell’s equations which in the stationary state reduce to

∇ × δB = µ0δJ , and δB =∇ ×A, (7)

accounting for the vanishing divergence by introducing the
fluctuating vector potential A (where we drop the δ prefix on
the vector potential). This enables us to write the kinetic part
of the free energy of the particles involved in the canonical
operator form

p2

2m
=

1
2m

∣∣∣− iα∇ − qA∣∣∣2, (8)

referring to ions of positive charge q > 0, and the constant
α naturally has the dimension of a classical action. (There is
a little problem as to what is meant by the mass m in this
expression, to which we will briefly return below.) In this
form the momentum acts on a complex dimensionless “wave
function” ψ(x) whose square∣∣ψ(x)∣∣2 = ψ∗(x)ψ(x)=Nm (9)

we below identify with the above-used normalized excess
in plasma density known to be present locally in any of the
mirror-mode bubbles.

Unlike quantum theory, ψ(x) is not a single-particle wave
function: it rather applies to a larger compound of trapped
particles (ions) in the mirror modes which behave similarly
and are bound together by some correlation length (a very
important parameter, which is to be discussed later). It en-
ters the expression for the free energy density, thus provid-
ing the units of energy density to the expansion coefficients
a,b. In the quantum case (as for instance in the theory of su-
perconductivity), we would have α = }; in the classical case
considered here, α remains undetermined until a connection
to the mirror mode is obtained. Clearly, α� } cannot be
very small because the gradient and the corresponding wave
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vector k involved in the operation ∇ are of the scale of the
inverse ion gyroradius in the mirror mode. Hence, we sus-
pect that α ∝ T/ωp, where T is a typical plasma temperature
(in energy units), and ωp is a typical frequency of collective
ion oscillations in the plasma. Any such oscillations naturally
imply the existence of correlations which bind the particles
(ions) to exert a collective motion and which give rise to the
field A and density fluctuations δN . Such frequencies can be
either plasma ωp = ωi = e

√
N/ε0m, cyclotron ωc = eB/m

frequencies, or some unknown average turbulent frequency〈
ωturb

〉
on turbulence scales shorter than the typical average

mirror-mode scale. For the ion mirror mode the choice is that
q ∝+e, and m∝mi .

Inspecting Eq. (8) we will run into difficulties when as-
suming q = e and m=mi because with a large number
of particles collectively participating, each contributing a
charge e and mass m, the ratio q2/m will be proportional
to the number of particles. In superconductivity this provides
no problem because pairing of electrons tells that mass and
charge just double, which is compensated for in Eq. (8) by
m→ 2m. Similarly, in the case of the mirror mode we have
for the normalized density excess Nm = δN /N ≡ ζ < 1,
where N is the total particle number, and δN its excess. We
thus identify an effective massm∗ ≡1mi , where1= 1+ζ .
Because of the restriction on ζ < 1 this yields for the effec-
tive mass in mirror modes the preliminary range

mi <m
∗ < 2mi, (10)

which is similar to the mass in metallic superconductivity.
However, each mirror bubble contains a different number δN
of trapped particles. Hence ζ(x) becomes a function of space
x which varies along the mirror chain, and 1(x) then be-
comes a function of space. The restriction on ζ < 1 makes
this variation weak. For an observed chain of mirror modes
one defines some mean effective mass meff by

meff ≡
〈
m∗(x)

〉
=
〈
1(x)

〉
mi . (11)

Averaging reduces 1, making the effective mass closer to
the lower bound mi , which is to be used below for m→meff
wherever the mass appears.

Retaining the quantum action and dividing by the charge
q, the factor of the Nabla operator becomes }/q =80e/2πq.
Hence, α is proportional to the number ν =8/80 of elemen-
tary flux elements in the ion-gyro cross section, which in a
plasma is a large number due to the high temperature T⊥.
This makes α� }.

With these assumptions in mind we can write for the free
energy density up to second order in Nm:

F = F0+ a
∣∣ψ∣∣2+ 1

2
b
∣∣ψ∣∣4+ 1

2m

∣∣∣(− iα∇ − qA) ψ∣∣∣2
+
δB ·B0

2µ0
. (12)

Inserted into the Gibbs free energy density, the last term is
absorbed by the Gibbs potential. Applying the Hamiltonian

prescription and varying the Gibbs free energy with respect
to A and ψ,ψ∗ yields (for arbitrary variations) an equation
for the “wave function” ψ(x):[

1
2m

(
− iα∇ − qA

)2
+ a + b

∣∣ψ∣∣2] ψ = 0, (13)

which is recognized as a nonlinear complex Schrödinger
equation. Such equations appear in plasma physics whence
waves undergo modulation instability and evolve towards the
general family of solitary structures.

It is known that the nonlinear Schrödinger equation can be
solved by inverse scattering methods and, under certain con-
ditions, yields either single solitons or trains of solitary solu-
tions. To our knowledge, the nonlinear Schrödinger equation
has not yet been derived for the mirror instability because
no slow wave is known which would modulate its amplitude.
Whether this is possible is an open question which we will
not follow up here. Hence the quantity α remains undeter-
mined for the mirror mode. Instead, we chose a phenomeno-
logical approach which is suggested by the similarity of both
the mirror-mode effect in ideally conducting plasma and the
above-obtained nonlinear Schrödinger equation to the phe-
nomenological Landau–Ginzburg theory of metallic super-
conductivity.

In the thermodynamic equilibrium state the above equa-
tion does not describe the mirror-mode amplitude itself.
Rather it describes the evolution of the “wave function” of
the compound of particles trapped in the mirror-mode mag-
netic potential A which it modulates. This differs from su-
perconductivity where we have pairing of particles and es-
cape from collisions with the lattice and superfluidity of the
paired particle population at low temperatures. In the ideally
conducting plasma we have no collisions, but, under normal
conditions, also no pairing and no superconductivity, though
in the presence of some particular plasma waves, attractive
forces between neighbouring electrons can sometimes evolve
(Treumann and Baumjohann, 2014). In superconductivity the
pairing implies that the particles become correlated, an effect
which in plasma must also happen whence the superconduct-
ing mirror-mode Meissner effect occurs, but it happens in
a completely different way by correlating large numbers of
particles, as we will exemplify further below.

The wave function ψ(x) describes only the trapped par-
ticle component which is responsible for the maintenance
of the pressure equilibrium between the magnetic field and
plasma. In a bounded region one must add boundary condi-
tions to the above equation which imply that the tangential
component of the magnetic field is continuous at the bound-
ary and the normal components of the electric currents vanish
at the boundary because the current has no divergence. The
current, normalized to N0, is then given by

δJ =
iqα

2m

(
ψ∗∇ψ −ψ∇ψ∗

)
−
q2

m

∣∣ψ∣∣2A, (14)
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which shows that the main modulated contribution to the cur-
rent is provided by the last term, the product of the mirror
particle density

∣∣ψ∣∣2 =Nm times the vector potential fluc-
tuation A, which is the mutual interaction term between the
density and magnetic fields. One may note that the vector
potential from Maxwell’s equations is directly related to the
magnetic flux8 in the wave flux tube of radius R through its
circumference A=8/2πR.

One also observes that under certain conditions in the
last expression for the current density the two gradient
terms of the ψ function partially cancel. Assuming ψ =∣∣ψ(x)∣∣e−ik·x , the current term becomes

δJ =
qα

m
k
∣∣ψ∣∣2− q2

m

∣∣ψ∣∣2A. (15)

The first term is small in the long-wavelength domain kα�
1. Assuming that this is the case for the mirror mode, which
implies that the first term is important only at the bound-
aries of the mirror bubbles where it comes up for the diamag-
netic effect of the surface currents, the current is determined
mainly by the last term, which can be written as

δJ ≈−
q2N0

m
NmA=−ε0ω

2
imA. (16)

This is to be compared to µ0δJ =−∇
2A, thus yielding the

penetration depth

λim(τ )= c/ωim(τ ), (17)

which is the ion inertial length based on the relevant tempera-
ture dependence of the particle density Nm(τ ) for the mirror
mode, where we should keep in mind that the latter is nor-
malized to N0. Thus, identifying the reference temperature
as T⊥, we recover the connection between the mirror-mode
penetration depth and its dependence on temperature ratio τ
from thermodynamic equilibrium theory in the long wave-
length limit with main density N0 constant on scales larger
than the mirror-mode wavelength.

4 Magnetic penetration scale

So far we considered only the current. Now we have to re-
late the above penetration depth to the plasma, the mirror
mode. What we need is the connection of the mirror mode
to the nonlinear Schrödinger equation. Because treating the
nonlinear Schrödinger equation is very difficult even in two
dimensions, this is done in one dimension, assuming for in-
stance that the cross section of the mirror structures is circu-
lar with the relevant dimension the radius. In the presence of
a magnetic wave fieldA 6= 0, Eq. (13) under homogeneous or
nearly homogeneous conditions, with the canonical gradient
term neglected, has the thermodynamic equilibrium solution

Nm =
∣∣ψ∣∣2 =−a

b
−
q2N0

2mb
A2 > 0, (18)

which implies that either a or b is negative. In addition there
is the trivial solution ψ = 0 which describes the initial stable
state when no instability evolves. The Helmholtz free energy
density in this state is F = F0. Equation (12) shows that the
thermodynamic equilibrium has free energy density

F = F0−
q2aN0

2mb
A2
−
a2

2b
= F0−

q2aN0

2mb
A2
−
B2

crit
2µ0

, (19)

where the last term is provided by the critical magnetic field,
which is the external magnetic field. Thus b > 0 and a < 0,
and the dependence on temperature τ can be freely attributed
to a. Comparison with Eq. (2) then yields

a(τ)=−B0
crit

√
b

µ0
τ−

1
2
(
1− τ

) 1
2 . (20)

At critical field one still hasA= 0. Hence the density at crit-
ical field is

Nm(τ )=
|a(τ)|

b
=

B0
crit
√
bµ0

τ−
1
2
(
1− τ

) 1
2 , (21)

which shows that the distortion of the density vanishes for
τ = 1, as it should be. This expression can be used in the
magnetic penetration depth to obtain its critical temperature
dependence

λim(τ )=

[
m2b

µ0q4
(
N0B

0
crit
)2 τ(

1− τ
)] 1

4
m, (22)

which suggests that the critical penetration depth vanishes
for τ = 0. However, τ = 0 is excluded by the argumenta-
tion following Eqs. (2) and (21), because it would imply infi-
nite trapped densities. In principle, τ ≥ τmin cannot become
smaller than a minimum value which must be determined by
other methods referring to measurements of the maximum
density in thermodynamic equilibrium. One should, however,
keep in mind that B0

crit(θ)∝
∣∣sinθ

∣∣ still depends on the angle
θ which enters the above expressions.

The last two expressions still contain the undetermined co-
efficient b. This can be expressed through the minimum value
of the anisotropy τmin at maximum critical density Nm.1 as

b =

(
B0

crit
)2

µ0
τ−1

min
(
1− τmin

)
. (23)

(Note that for Nm > 1 the above expansion of the free en-
ergy F becomes invalid. It is not expected, however, that the
mirror mode will allow the evolution of sharp density peaks
which locally double the density.) With this expression the
inertial length becomes

λim(τ )

λi0
=

[
τ

τmin

(
1− τmin

1− τ

)] 1
4
. (24)
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When the mirror mode saturates away from the critical
field, the magnetic fluctuation grows until it saturates as well,
and one hasA 6= 0. The increased fractional density Nm is in
perpendicular pressure equilibrium with the magnetic field
distortion δB through

NsatT⊥ =
1

2µ0N0

(
B0− δBsat

)2
−

B2
0

2µ0N0

=
1

2µ0N0

[
∇

2(A2)
−
(
∇A

)2]
sat
−
B0 · ∇ ×A

µ0N0

≈−
q2a(τsat)

2mb
A2

sat. (25)

There is also a small local contribution from the magnetic
stresses which results from the surface currents at the mirror
boundaries in which only a minor part of the trapped particles
is involved. This is indicated by the approximate sign.

The last two lines yield for the macroscopic penetration
depth the expression Eq. (22). We thus conclude that Eq. (22)
is also valid at saturation with τ = τsat. Measuring the satu-
ration wavelength λsat and saturation temperature anisotropy
τsat determines the unknown constant b through Eq. (23) with
τmin replaced with τsat. Clearly

τmin ≤ τsat < 1 (26)

as the mirror mode might saturate at temperature anisotropies
larger than the permitted lowest anisotropy. Moreover, mea-
surement of τsat at saturation, the state in which the mirror
mode is actually observed, immediately yields the normal-
ized saturation density excess Nm(τsat) from Eq. (21) which
then from pressure balance yields the magnetic decrease, i.e.
the mirror amplitude. To some extent this completes the the-
ory of the mirror mode in as far as it relates the density at sat-
uration to the saturated normalized temperature anisotropy at
given T⊥ and determines the scale λim and δB(τsat).

5 The equivalent action α

Since observations always refer to the final thermodynamic
state, when the mirror mode is saturated, the anisotropy at
saturation can be measured, and the value of the unknown
constant α in the Schrödinger equation can also be deter-
mined. Expressed through b and λim at τsat, it becomes

α =
√

2mλsat =
m

q

√
b

µ0N0
∣∣a(τsat)

∣∣ . (27)

What is interesting about this number is that it is much larger
than the quantum of action } but at the same time is suffi-
ciently small, which in retrospect justifies the neglect of the
gradient term in the former section. It represents the elemen-
tary action in a mirror unstable plasma, where the character-
istic length is given by the inertial scale α/

√
2m= λsat or

the maximum of the normalized density Nm. One may note

that α is not an elementary constant like }. It depends on the
critical reference temperature T⊥, and it depends on τ . Its
constancy is understood in a thermodynamic sense.

Our argument applies when A 6= 0. In this case Eq. (13)
reads as

−
α2

2ma
d2f (x)

dx2 − f (1− f 2)= 0,

where f (x)=
ψ(x)∣∣ψ∞∣∣ < 1 (28)

and
∣∣ψ∣∣
∞
=
√
Nmax(x∞) is given by the maximum den-

sity excess in the centre x∞ of the magnetic field decrease.
Clearly this equation defines a natural scale length which is
given by

λα = α/

√
2m
∣∣a(T⊥,τ )∣∣, (29)

which, identifying it with λsat, yields the above expression
for α. For x∞ large the equation for f can be solved asymp-
totically when df/dx = 0 for f 2

= 1 corresponding to a
maximum in Nm. It is then easy to show by multiplication
by df/dx that

df (x)√
1− f 2

=
√

2λαdx, (30)

which has the Landau–Ginzburg solution

f (x)= tanh
[

x
√

2λα

]
. (31)

This implies that the excess density assumes the shape

Nm =Nmaxtanh2
[

x
√

2λα

]
. (32)

It approaches Nmax for x→ x∞. The above condition on the
vanishing gradient of f at x∞ warrants the flat shape of the
excess density at maximum (x∞) and the equally flat shape
of the magnetic field in its minimum. At x = 0 the ampli-
tude f (x) starts increasing with finite slope f ′(0)=

√
2λα .

On the other hand, the initial slope of Nm is N ′m(0)= 0. The
normalized excess density has a turning point at xt ≈ 0.48λα
with value Nm(xt )≈ 0.11Nmax. This behaviour is schemati-
cally shown in Fig. 1. Of course, these considerations apply
strictly only to the one-dimensional case. It is, however, not
difficult to generalize them to the cylindrical problem with
radius r in place of x. The main qualitative properties are
thereby retained. In the next section we will turn to the ques-
tion of generation of chains of mirror-mode bubbles, as this
is the case which is usually observed in space plasmas.

Since the quantum of action enters the magnetic quantum
flux element 80 = 2π}/e, we may also conclude that in a
mirror-unstable plasma the relevant magnetic flux element is
given by 8m = α/q.
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Figure 1. Shape of excess density in dependence on x/
√

2λα . The
shape of the magnetic field depression can be obtained directly from
pressure balance. It mirrors the excess density.

Identification of α is an important step. With its knowl-
edge in mind the nonlinear Schrödinger equation for the hy-
pothetical saturation state of the mirror mode is (up to the
coefficient b, which, however, is defined in Eq. (23) and can
be obtained from measurement) completely determined and
thus ready for application of the inverse scattering proce-
dure which solves it under any given initial conditions for
the mirror mode. It thus opens up the possibility of further
investigating the final evolution of the mirror mode. Execut-
ing this programme should, under various conditions, pro-
vide the different forms of the mirror mode in its final ther-
modynamic equilibrium state. This is left as a formally suf-
ficiently complicated exercise which will not be treated in
the present communication. Instead, we ask for the condi-
tions under which the mirror mode evolves into a chain of
separated mirror bubbles, which requires the existence of a
microscopic though classical correlation length.

6 The problem of the correlation length

The present phenomenological theory of the final thermo-
dynamic equilibrium state of the mirror mode is modelled
after the phenomenological Landau–Ginzburg theory of su-
perconductivity as presented in the cited textbook literature.
From the existence of λim we would conclude that, under
mirror instability, the magnetic field inside the plasma vol-
ume should decay to a minimum value determined by the
achievable minimum τsat of the temperature ratio. This con-
clusion would, however, be premature and contradicts obser-
vation where chains or trains (cf. e.g. Zhang et al., 2009,
for examples) of mirror-mode fluctuations are usually ob-
served (though isolated “solitary mirror” modes have also oc-
casionally been reported; see e.g. Luehr and Kloecker, 1987;
Treumann et al., 1990, where they were dubbed “magnetic
cavities”), which presumably are in their saturated state hav-
ing had sufficient time to evolve beyond quasilinear satura-
tion times and reached saturation amplitudes much in excess
of any predicted quasilinear level. In fact, observations of
mirror modes in their growth phase have to our knowledge

τ

τ

τ

κ 
 /κ

 
ρ

ρ

κρ1.0

1.0
0.0

sat

τsat

Landau-Ginzburg parameter

= T  /T

= 0.25

||      T

sa
t

Figure 2. The Landau–Ginzburg parameter κρ/κρ,sat as a func-
tion of the anisotropy ratio τ = T‖/T⊥ < 1 for the particular choice
τsat =

1
4 . The parameter κρ refers to the thermal gyroradius as the

short-scale correlation length, as explained in the text. It maximizes
at saturation anisotropy τ = τsat and vanishes for τ = 1 when no
instability sets in. For any given ratio τ the value of κρ lies on a
curve like the one shown. There is a threshold for the mirror mode
to evolve into bubbles which it must overcome. It is given by the ra-
tio κρ,sat > 1 of the critical Alfvén speed to perpendicular thermal
velocity.

not yet been reported. On the other hand, in no case known
to us has a global reduction of the gross magnetic field in an
anisotropic plasma been identified yet.

It is clear that in any real collisionless high-temperature
plasmas neither can Nm become infinite nor can τ drop to
zero. Since it is not known how and in which way, i.e. by
which exactly known process mirror modes saturate in their
final thermodynamic equilibrium state, their growth must ul-
timately become stopped when the particle correlation length
comes into play. The nature of such a correlation length is
unknown, nor is it precisely defined. There are at least three
types of candidates for an effective correlation length, the
Debye scale λD , the ion gyroradius ρ, and some turbulent
correlation length `turb.

In a plasma the shortest natural correlation length is the
Debye length λD which under all conditions is much shorter
than the above-estimated penetration length λim. Referring to
the Debye length, the Landau–Ginzburg parameter, i.e. the
ratio of penetration to correlation lengths, in a plasma as a
function of τ becomes

κD ≡
λim(τ )

λD(τ )
≈

c

υ⊥th(τ )
� 1, (33)

a quantity that is large. Writing for the Debye length

λ2
D(τ )= λ

2
D⊥

1+ τ/2
Nm(τ )

, λ2
D⊥ =

4
3
T⊥/mi

ω2
i0

, (34)

the Landau–Ginzburg parameter can be expressed in terms
of τ , exhibiting only a weak dependence on the temperature
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ratio τ < 1:

κD(τ )=
λi0

λD⊥

√
2

1+ τ/2
� 1. (35)

Thus, κD is practically constant and about independent on
the temperature anisotropy. Its value κD0 = λi0/λD at τ = 1,
T‖ = T⊥ refers to the isotropic case when no mirror instabil-
ity evolves.

This is an important finding because it implies that in a
plasma the case that the magnetic field would be completely
expelled from the volume of the plasma cannot be realized.
Different regions of extension substantially larger than λD
are (electrostatically) uncorrelated. They therefore behave
separately, lacking knowledge about their (electrostatically)
uncorrelated neighbours separated from them at distances
substantially exceeding λD . Each of them experiences the
penetration scale and adjusts itself to it. This is in complete
analogy to Landau–Ginzburg theory. Thus, once the main
magnetic field in an anisotropic plasma drops below thresh-
old, the plasma will necessarily evolve into a chain of nearly
unrelated mirror bubbles which interact with each other be-
cause each occupies space. In superconductivity this corre-
sponds to a type II superconductor. Mirror unstable plasmas
in this sense behave like type II superconductors. They de-
cay into regions of normal magnetic field strength and em-
bedded domains of spatial-scale λm(τ ) with a reduced mag-
netic field. These regions contain an excess plasma popula-
tion which is in pressure and stress balance with the mag-
netic field. Its diamagnetism (perpendicular pressure) keeps
the magnetic field partially out and causes weak diamagnetic
currents to flow along the boundaries of each of the partially
field-evacuated domains. This trapped plasma behaves anal-
ogously to the pair plasma in metallic superconductivity, this
time however at the high plasma temperature being bound
together not by pairing potentials, but – in the case of the
Debye length playing the role of the correlation length – by
the Debye potential over the Debye correlation length.

However, the Debye length is a very short scale, in fact
the shortest collective scale in the plasma, and though it must
have an effect on the collective evolution of particles in plas-
mas, it should be doubted that, on the mirror-mode saturation
scale, it would have a substantial or even decisive effect. In-
stead, there could also be larger scales on which the particles
are correlated.

Such a scale is, for instance, the thermal-ion gyroradius
ρ(τ). For the low frequencies of the mirror mode, the mag-
netic moment µ(τ)= T⊥/B(τ)= const of the particles is
conserved in their dynamics, which implies that all particles
with the same magnetic moment µ(τ) behave about collec-
tively, at least in the sense of a gyro-kinetic theory.

However, though µ(τ) is a constant of motion, it still
is a function of the anisotropy through the dependence of
the magnetic field on τ . Expressing the thermal gyroradius

through the magnetic moment

ρ(τ)=

√
2µ(τ)
eωci(τ )

= ρ0

√
τ

1− τ
, ρ0 =

√
2mT⊥

e2
(
B0

crit
)2 , (36)

it can be taken as another kind of collective correlation scale
as on scales larger than ρ it collectively binds particles of
the same magnetic moment which, in particular, are mag-
netically trapped like those which are active in the mirror
instability. Below the gyroradius charged particles are mag-
netically free. ρ is the scale where the particles magnetize,
start feeling the magnetic field effect, and collectively enter
another phase in their dynamics. This scale is much larger
than the Debye length and may be more appropriate for de-
scribing the saturated behaviour of the mirror mode. Thus
one may argue that, as long as the penetration depth (inertial
sale) exceeds ρ, the thermal gyroradius is the relevant corre-
lation length. Only when it drops below the gyroradius does
the Debye length take over. The Landau–Ginzburg parameter
then becomes

κρ(τ )=
λim(τ )

ρ(τ )
=
λi0

ρ0

[
τsat

τ

1− τ
1− τsat

] 1
4
. (37)

This ratio depends on the temperature anisotropy τ = T‖/T⊥,
which is a measurable quantity and the important parame-
ter, while it saturates at κρ,sat = λi0/ρ0, the ratio of inertial
length to gyroradius at the critical field. This ratio is not nec-
essarily large. It can be expressed by the ratio of Alfvén ve-
locity VA to perpendicular ion-thermal velocity υ⊥th:

κρ,sat =
λi0

ρ0
=
VA
(
B0

crit
)

υ⊥th
> 1. (38)

Hence, when referring to the thermal-ion gyroradius as the
correlation length, the mirror mode would evolve and satu-
rate into a chain of mirror bubbles only, when the Alfvén
speed VA > υ⊥th exceeds the perpendicular thermal veloc-
ity of the ions. (Since B0

crit ∝
∣∣sinθ

∣∣, highly oblique angles
are favoured. The range of optimum angles has recently been
estimated in Treumann and Baumjohann, 2018a.) This is to
be multiplied by the τ dependence, of which Fig. 2 gives an
example. The value of this function is always smaller than
one. For a chain of mirror bubbles to evolve in a plasma, the
requirement κρ > 1 can then be written as

1≤
τ

τsat
<

κ4
ρ,sat

1+
(
κ4
ρ,sat− 1

)
τsat

, (39)

which is always satisfied for τsat < 1 and κρ,sat > 1, i.e. the
Alfvén speed exceeding the perpendicular thermal speed,
which indeed is the crucial condition for mirror modes to
evolve into chains and become observable, with the gyrora-
dius playing the role of a correlation length. Mirror-mode
chains in the present case are restricted to comparably cool
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anisotropic plasma conditions, a prediction which can be
checked experimentally to decide whether or not the gyro-
radius serves as a correlation length.

Otherwise, when the above condition is not satisfied and
τ < 1 is below threshold, a very small and thus probably
not susceptible reduction in the overall magnetic field is
produced in the anisotropic pressure region over distances
L� ρ, much larger than the ion gyroradius. Observation
of such domains of reduced magnetic field strengths under
anisotropic pressure/temperature conditions would indicate
the presence of a large-scale type I classical Meissner effect
in the plasma. Such a reduction of the magnetic field would
be difficult to explain otherwise and could only be under-
stood as confinement of plasma by discontinuous boundaries
of the kind of tangential discontinuities.

The relative rarity of observations of mirror-mode chains
or trains seems to support the case that the gyroradius, not
the Debye length, plays the role of the correlation length in a
magnetized plasma under conservation of the magnetic mo-
ments of the particles. From basic theory it cannot be decided
which of the two correlation lengths, the Debye length λD or
the ion gyroradius ρ, dominates the dynamics and saturation
of the mirror mode. A decision can only be established by
observations.

However, the thermal-ion gyroradius, though the statisti-
cal average of the distribution of gyroscales, is itself just a
plasma parameter which officially lacks the notion of a gen-
uine correlation length. For this reason one would rather re-
fer to the third possibility, a turbulent correlation length `turb
which evolves as the result of either high-frequency plasma
or – in the case of mirror modes probably better suited – mag-
netic turbulence in the plasma.

It is well known that, for instance, the solar wind or
the magnetosheath carries a substantial level of turbulence
which mixes plasmas of various properties and obeys a par-
ticular spectrum. In the solar wind such spectra have been
shown to exhibit approximate Kolmogorov-type properties,
at least in certain domains of frequencies or wave numbers,
and similarly in the magnetosheath, where the conditions
are more complicated because of the boundedness of the
magnetosheath and the resulting spatial confinement of the
plasma and its streaming. Such spectra imply that particles
and waves are not independent but contain some information
about their behaviour in different spatial and frequency do-
mains; in other words, they are correlated.

Unfortunately, the turbulent correlation length is impre-
cisely defined. No analytical expressions have been provided
yet which would allow us to refer to it in the above deter-
mination of the Landau–Ginzburg parameter. This inhibits
prediction of the range and parameter dependences of the
turbulent Landau–Ginzburg ratio. Nonetheless, turbulent cor-
relation scales might dominate the development of the mir-
ror mode. The observation of a spectrum of mirror modes
that is highly peaked around a certain wavelength not very
much larger than the ion gyroradius may tell something about

its nature. The above theory should open a way of relating
a turbulent correlation length to the properties of a mirror
unstable plasma. The condition is simply that the turbulent
Landau–Ginzburg parameter

κturb(τ )=

〈
λim(τ )

〉
`turb(τ )

> 1 (40)

is large, depending on the anisotropy parameter τ and the av-
erage transverse scales of the mirror bubbles. This expression
yields an upper limit for the turbulent correlation length

`turb(τ ) <
〈
λim(τ )

〉
, (41)

where
〈
λim(τ )

〉
is known as a function of τ and the plasma

parameters. Investigating this in further detail both observa-
tionally and theoretically should throw additional light on the
nature of magnetic turbulence in high-temperature plasmas
like those of the solar wind and magnetosheath. It would even
contribute to a more profound understanding of magnetic tur-
bulence in general as well as in view of its application to as-
trophysical problems.

7 Conclusions

The mirror mode is a particular zero-frequency mesoscale
plasma instability which provides some mesoscopic struc-
ture to an anisotropic plasma. It has been observed surpris-
ingly frequently under various conditions in space, in the so-
lar wind, cometary environments, near other planets and, in
particular, behind the bow shock (Czaykowska et al., 1998),
such that one also believes that they occur in shocked plas-
mas if the shock causes a temperature anisotropy τ < 1 (cf.
e.g. Balogh and Treumann, 2013, chap. 4). Since mirror
modes are long scale, they provide the plasma with a very
particular spatial texture. Mirror unstable plasmas are appar-
ently built of a large number of magnetic bottles which con-
tain a trapped particle population. This makes mirror modes
most interesting even in magnetohydrodynamic terms as a
kind of long-wavelength source of turbulence. In addition,
their boundaries are surfaces which separate the bottles and
thus have the character or tangential discontinuities or sur-
faces of diamagnetic currents which are produced by the in-
ternal interaction between the plasma and magnetic field. We
have shown above that such an interaction resembles super-
conductivity, i.e. a classical Meissner effect.

Mirror modes in the anisotropic collisionless space plasma
apparently represent a classical thermodynamic analogue to
a “superconducting” equilibrium state. One should, how-
ever, not exaggerate this analogy. This equilibrium state is
no macroscopic quantum state. It is a classical effect. The
analogy is just formal, even though it allows us to conclude
about the final mirror equilibrium. Sometimes such an ana-
logue helps in understanding the underlying physics1 like

1In a recent paper (Treumann and Baumjohann, 2018c), we have
shown that a classical Higgs mechanism is responsible for bend-
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here, where it paves the way to a global understanding of
the final saturation state of the mirror mode even though this
does not release us from understanding in which way this
final state is dynamically achieved.

In contrast to metallic superconductivity which is de-
scribed by the Landau–Ginzburg theory to which we refer
here or, on the microscopic quantum level, by BCS-pairing
theory, the problem of circumventing friction and resistance
is of no interest in ideally conducting space plasmas which
evolve towards mirror modes. High temperature plasmas are
classical systems in which no pairing occurs and BCS theory
is not applicable. Those plasmas are already ideally conduct-
ing. In contrast, there is a vital interest in the opposite prob-
lem, how a finite sufficiently large resistance can develop un-
der conditions when collisions and friction among the parti-
cles are negligible. This is the problem of generating anoma-
lous resistivity which may develop from high-frequency ki-
netic instabilities or turbulence and is believed to be urgently
needed, for instance causing dissipation in reconnection. In
the zero-frequency mirror mode it is of little importance even
asymptotically, in the long-term thermodynamic limit, where
such an anomalous resistance may contribute to decay of
the mirror-surface currents which develop and flow along the
boundaries of the mirror bubbles. The times when this hap-
pens are very long compared with the saturation time of the
mirror instability and transition to the thermodynamic quasi-
equilibrium which has been considered here.

The more interesting finding concerns the explanation
why at all, in an ideally conducting plasma, mirror bub-
bles can evolve. Fluid and simple kinetic theories demon-
strate that mirror modes occur in the presence of tempera-
ture anisotropies, thereby identifying the linear growth rate
of the instability. Trapping of large numbers of charged par-
ticles (ions, electrons) in accidentally forming magnetic bot-
tles/traps causes the mirror instability to grow. The present
theory contributes to clarification of this mechanism and its
final thermodynamic equilibrium state as a nonlinear effect
which is made possible by the available free energy which
leads to a particular nonlinear Schrödinger equation. The
perpendicular temperature in this theory plays the role of
a critical temperature. When the parallel temperature drops
below it, which means that 1> τ > τmin, mirror modes can
evolve. Interestingly the anisotropy is restricted from be-

ing the free space O-L and X-R electromagnetic modes in their
long-wavelength range away from their straight vacuum shape when
passing a plasma. The plasma in that case acts like a Higgs field
and attributes a tiny mass to the photons, making them heavy. This
is interesting because it shows that any bosons become heavy only
in permanent interaction with a Higgs field and only in a certain
energy–momentum–wavelength range. It also shows that earlier at-
tempts at measuring a permanent photon mass by observing scin-
tillations of radiation (and also by other means) have just measured
this effect. Their interpretations as upper limits for a real perma-
nent photon mass are incorrect because they missed the action of
the plasma as a classical Higgs field.

low. The parallel temperature cannot drop below a minimum
value. This value is open to determination by observations.

The observation of chains of mirror bubbles, for instance
in the magnetosheath, which provide the mirror-unstable
plasma with a particular intriguing magnetic texture, sug-
gests that the plasma, in addition to being mirror unstable,
is subject to some correlation length which determines the
spatial structure of the mirror texture in the saturated ther-
modynamic quasi-equilibrium state. This correlation length
can be either taken as the Debye scale λD , which then nat-
urally makes it plausible that many such mirror bubbles
evolve, because in all magnetized plasmas the magnetic pen-
etration depth by far exceeds the Debye length and makes
the Landau–Ginzburg parameter based on the Debye length
κD � 1. This, however, should lead to rather short-scale mir-
ror bubbles. Otherwise, the role of a correlation length could
also be played by the thermal-ion gyroradius ρ. In this case
the conditions for the evolution of the mirror mode with
the many observed bubbles become more subtle, because
then κρ&1 occurs under additional restrictions, implying that
the Alfvén speed exceeds the perpendicular thermal speed.
This prediction has to be checked and possibly verified ex-
perimentally. A particular case of the dependence of the
gyroradius-based Landau–Ginzburg parameter κρ is shown
graphically in Fig. 2.

It may be noted that the Debye length and the ion gyro-
radius are fundamental plasma scales. Correlations can of
course also be provided by other means, in particular by any
form of turbulence. In that case a turbulent correlation length
would play a similar role in the Landau–Ginzburg parameter,
whether shorter or larger than the above-identified penetra-
tion scale. Regarding mirror modes in the magnetosheath to
which we referred (Treumann and Baumjohann, 2018a), it is
well known that the magnetosheath hosts a broad turbulence
spectrum in the magnetic field as well as in the dynamics of
the plasma (fluctuations in the velocity and density).

Though this makes it highly probable that turbulence inter-
venes and affects the evolution of mirror modes, any “turbu-
lent correlation length” is, unfortunately, rather imprecisely
defined as some average quantity. To our knowledge, though
referring to multi-spacecraft missions is not impossible, it
has even not yet been precisely identified in any observa-
tions of turbulence in space plasmas. Even when identified,
its functional dependence on temperature and density is re-
quired for application in our theory. If these functional de-
pendencies are not available, it becomes difficult to include
any turbulent correlation length. In addition, one expects that
its turbulent nature would make the theory nonlocal. At-
tempts in that direction must, at this stage of the investiga-
tion, be relegated to future efforts.

Finally, it should be noted that the magnetic penetration
depth λm which lies at the centre of our investigation is
rather different from the ordinary inertial length scale of
the plasma. It is based on the excess density Nm < 1 less
than the bulk plasma density N0. It thus gives rise to an
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enhanced (excess) plasma frequency ωm = ωi
√
Nm+ 1=

ωi
√

1+ ζ.
√

2ωi , which implies that L > c/ωi > λm is
shorter than the typical scale of the volume L and (slightly)
shorter than the bulk inertial length c/ωi . This becomes clear
when recognizing that the mirror mode evolves inside the
plasma from some thermal fluctuation (cf. Yoon and López,
2017, for the calculation of low-frequency thermal magnetic
fluctuation levels in a stable isotropic plasma; similar calcu-
lations in stable anisotropic plasmas have not yet been per-
formed), which causes the magnetic field locally to drop be-
low its critical value – Eq. (2). Then λm identifies the local
perpendicular scale of a mirror bubble after it has saturated
and is in thermodynamic equilibrium. One expects that the
transverse diameter of a single mirror bubble in the ideal case
would be roughly 2λm. However, since each bubble occu-
pies real space, in a mirror-saturated plasma state the bubbles
compete for space and distort each other (cf. e.g. Treumann
and Baumjohann, 1997, for a sketch), thereby providing the
plasma with an irregular magnetic texture of some, probably
narrow, spectrum of transverse scales which peaks around
some typical transverse wavelength and resembles a strongly
distorted crystal lattice that is elongated along the ambient
magnetic field.

It also relates the measurable saturated magnetic ampli-
tudes of mirror modes to the saturated anisotropy τsat and the
Landau–Ginzburg parameter κ , transforming both into ex-
perimentally accessible quantities. These should be of use in
the development of a weak-kinetic turbulence theory of mag-
netic mirror modes as the result of which mirror modes can
grow to the observed large amplitudes which are known to far
exceed the simple quasilinear saturation limits. It also paves
the way to the determination of a (possibly turbulent) corre-
lation length in mirror unstable plasmas of which so far no
measurements have been provided.

To the space plasma physicist the present investigation
may look a bit academic. However, it provides some physical
understanding of how mirror modes do really saturate, why
they assume such large amplitudes and evolve into chains
of many bubbles or magnetic holes, and what the conditions
are when this happens. Moreover, since the mirror mode in
some sense resembles superconductivity, which also implies
that some population of particles involved behaves like a
superfluid, it would be of interest to infer whether such a
population exhibits properties of a superfluid. One sugges-
tion is that the untrapped ions and electrons which escape
from the magnetic bottles along the magnetic field resemble
such a superfluid population. This also suggests that other
high-temperature plasma effects like the formation of purely
electrostatic electron holes in beam–plasma interaction may
exhibit superfluid properties. In conclusion, the unexpected
working of the thermodynamic treatment in the special case
of the magnetic mirror mode shows once more the enormous
explanatory power of thermodynamics.
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