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Abstract. The methodology used in wind resource assess-
ments often relies on modeling the wind-speed statistics us-
ing a Weibull distribution. In spite of its common use, this
distribution has been shown to not always accurately model
real wind-speed distributions. Very few studies have exam-
ined the arising errors in power outputs, using either ob-
served power productions or theoretical power curves. This
article focuses on France, using surface wind measurements
at 89 locations covering all regions of the country. It inves-
tigates how statistical modeling using a Weibull distribution
impacts the prediction of the wind energy content and of the
power output in the context of an annual energy production
assessment. For this purpose it uses a plausible power curve
adapted to each location. Three common methods for fitting
the Weibull distribution are tested (maximum likelihood, first
and third moments, and the Wind Atlas Analysis and Ap-
plication Program (WAsP) method). The first two methods
generate large errors in the production (mean absolute error
around 5 %), especially in the southern areas where the good-
ness of fit of the Weibull distribution is poorer. The produc-
tion is mainly overestimated except at some locations with
bimodal wind distributions. With the third method, the er-
rors are much lower at most locations (mean absolute error
around 2 %). Another distribution, a mixed Rayleigh–Rice
distribution, is also tested and shows better skill at assessing
the wind energy yield.

Keywords. Meteorology and atmospheric dynamics
(mesoscale meteorology)

1 Introduction

France has one of the largest wind energy potentials in Eu-
rope (EEA, 2009), but only the fourth largest installed ca-
pacity behind Germany, Spain and the UK. Despite the gov-
ernmental targets of 19 GW onshore and 6 GW offshore in-
stalled capacity by 2020, the total installed capacity was
only 9.1 GW at the beginning of 2015. The windiest parts of
France, where most of the present wind farms are located, are
the northwestern and southeastern regions. The northwestern
region, along the coastlines of the English Channel, is located
in the storm track so that there are often strong winds com-
ing from the Atlantic Ocean. The southeastern region is lo-
cated near the Mediterranean Sea and the valleys of this very
mountainous region channel the wind flows so that there are
often strong and persistent winds. Today, more wind farms
are installed in other, less windy areas in the northeastern
and central parts of France. In these regions the mean capac-
ity factor was below 20 % in 2014 whereas it was on average
between 25 and 29 % in the windiest regions (RTE et al.,
2015).

As the wind industry developed, it was observed that wind
farms often produced less than expected, thus jeopardizing
the projects’ profitability and undermining the whole indus-
try. This led to concerns about the overprediction of energy
production. Aside from the errors coming from turbine per-
formance or availability, and from the natural variability in
wind, questions were raised about the methodology used to
evaluate the wind energy yield. One point of the method-
ology, questioned in this study, is the common use of the
Weibull distribution to model wind-speed statistics instead
of directly using the wind-speed series measured at the in-
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vestigated location. The Weibull distribution has become a
widely used standard in wind energy application due to its
simplicity. It depends on two easily estimated parameters and
there are simple analytic expressions for the moments. It is
a reference used in wind energy softwares such as the Wind
Atlas Analysis and Application Program (WAsP), and it is
included in regulations such as the IEC 61400-12 on wind
turbine power performance testing. Many other aspects of the
resource assessment methodology can lead to bad estimates,
such as the wind measurement accuracy, the vertical extrap-
olation of wind measurements, their temporal extrapolation
with measure–correlate–predict techniques, the wind flow
and wake modeling or the use of inaccurate power curves.
Each issue is complex enough to be the subject of many ded-
icated research articles, but this paper is aimed at evaluating
the impact of the very step of wind-speed statistic modeling
that uses a Weibull distribution.

Very few studies compared the production of real wind
farms to the estimated production using either the series of
wind measurements (called the chronological method) or the
wind statistics from a Weibull distribution fit to that series
(probabilistic method). Despite the widespread use of the
Weibull distribution, it has been shown to not accurately
model all kinds of observed distributions (see, e.g., Drobin-
ski et al., 2015) and many other distributions have been pro-
posed to model the wind-speed statistics, especially mixed
distributions. For a review, see, e.g., Carta et al. (2009) and
references therein. However, in most references, the influ-
ence of modeling the wind-speed statistics using a Weibull
or another distribution is assessed only for the wind energy
content (i.e., the cubed wind speed). Conversely, it has rarely
been addressed in terms of power output, whereas the results
are expected to be drastically different due to the nonlinearity
of the power curve. To the authors’ knowledge, the quantifi-
cation of errors in the power output was addressed in only
five articles described hereafter (Celik, 2003; Jaramillo and
Borja, 2004; Chang and Tu, 2007; García-Bustamante et al.,
2008; Morgan et al., 2011) and always for a very limited
number of locations (five, one, five and one, respectively) ex-
cept for the last one (178 buoys).

García-Bustamante et al. (2008) studied five wind farms
in northeastern Spain (in the Pyrenees Mountains). They
compared the real and estimated monthly energy production
(MEP). They find slight underestimations from the chrono-
logical approach and more underestimation from the prob-
abilistic approach. The errors due to the use of the Weibull
distribution are important at two stations where, from what
appears in the wind histograms at least, some of the distri-
butions are bimodal. When the Weibull distribution does not
introduce too many errors, the authors underline that it does
not come from a good Weibull fit but from cancelations of
under- and overestimation of the production from the lower,
intermediate and upper parts of the wind distribution. A sim-
ilar but less complete study is that of Chang and Tu (2007)
over 48 months at one site in Taiwan. They find underpre-

diction using the chronological method, except in the low
wind months, and 5 % more underestimation from the proba-
bilistic method with the Weibull distribution. However, there
are no indications of the shape of the wind-speed statistics.
There are also some theoretical studies, using wind measure-
ments and theoretical power curves, without any real produc-
tion data. Celik (2003) studied five locations and found errors
ranging from −9 to +7 % in the monthly production using
the Weibull distribution. He notes that there are mostly un-
derestimations at the two locations with the lowest wind lev-
els. Jaramillo and Borja (2004) studied one site in Mexico, in
a mountainous area where the wind distribution is bimodal.
They found that the Weibull distribution underpredicted the
energy production by 14 % and used instead a mixture of
two Weibull distributions to better represent the wind statis-
tics. Carta et al. (2008) studied several statistical distributions
with data from 16 locations in the Canary Islands. There are
no specific results for the Weibull distribution but the inter-
esting result is that the relative errors in power production
decreased as the goodness of fit between the distributions
and the observations improved. Morgan et al. (2011) studied
178 buoys located around North America, where the wind
speeds were measured at either 5 or 10 m above sea level.
They tested the two-parameter Weibull distribution as well
as 13 other distributions. The error in power output was esti-
mated using the theoretical power curve of a Vestas V47/660
wind turbine. For the Weibull distribution, the relative errors
ranged from −10 to 7 %, while more complex distributions
(four-parameter Kappa, five-parameter Wakeby) gave much
better results. This is an interesting result even if the power
curve is not really suited: indeed, this turbine is supposed
to have a hub height of at least 40 m, whereas the measure-
ments are made at less than 10 m. Therefore, it probably puts
too much weight on the high wind speeds.

The present study investigates the errors made in eval-
uating the annual energy production when assuming that
the wind-speed statistics follow a Weibull distribution. It
compares different ways of fitting the Weibull distribution,
which is essential because we show how the different fit-
ting methods lead to very different results. There are many
articles comparing different fitting methods for the Weibull
distribution but none of them quantify the arising errors in
the power output. Moreover, we include the WAsP fitting
method, which is by far the most used in the industry but al-
most never studied in articles. To our knowledge, this method
is only referred to in Pryor et al. (2004) and for a com-
pletely different subject of application. As a comparison to
the Weibull, we also consider a more complex mixed distri-
bution, the Rayleigh–Rice distribution suggested in Drobin-
ski et al. (2015). It has been chosen instead of a mixture of
Weibull distributions (e.g., Carta et al., 2009), as Baïle et al.
(2011) report a better description of the tails of the distribu-
tions by the Rice-like distribution.

A limit of most of the studies evaluating the Weibull and
other distributions for wind energy applications is that they

Ann. Geophys., 35, 691–700, 2017 www.ann-geophys.net/35/691/2017/



B. Jourdier and P. Drobinski: Errors in wind resource and energy yield assessments 693

stop at the computation of energy or use inappropriate power
curves. Since the relation between the available energy in the
wind and the actual production of a wind turbine is not at
all linear, a good fit for the energy does not guarantee a good
estimation of production. To address this issue, this paper de-
velops a methodology to compute the production at any lo-
cation using a realistic power curve even when using surface
measurements.

Another limit of most of the studies cited above is that
they study very small numbers of locations. To address this
issue, the present study is based on a large wind dataset of
89 weather stations, covering different sub-climatic regions
of France. This enables the discovery of some systematic be-
haviors: systematic over- or underestimations depending on
the wind characteristics at the location and the fitting method.
It enables emphasis on the link between the goodness of fit
of the distribution and the production estimate errors (thus
completing the work of Carta et al., 2008).

Section 2 presents the data and the methodology used to fit
the distributions and evaluate the errors in energy content and
production arising from the statistical modeling. Section 3
presents the resulting errors at all stations and Sect. 4 dis-
cusses these results. Finally, Sect. 5 concludes the study.

2 Material and methods

2.1 Wind-speed data

In this article we use wind surface measurements (10 m a.g.l)
from the global NOAA ISD Lite database (Smith et al.,
2011), already used in Drobinski et al. (2015) and Vautard
et al. (2010). This compilation of observations from opera-
tional weather stations is the best publicly available dataset
over the considered region.

We use 4 years of measurements made between 1 Jan-
uary 2010 and 31 December 2013. The 10 min averaged wind
speeds are recorded every hour. We select the stations located
in France that present a data availability greater than 97 %
over the 4 years, with a minimum of 85 % for each month to
ensure a good representation of the seasonal cycle. We also
keep only the stations with the best precision in the measure-
ments. We therefore keep 89 stations.

Calm winds correspond to wind speeds equal to zero in the
dataset. They represent 5.2 % of the entire dataset, with dis-
parities among the stations of course. The calm winds are re-
moved before fitting the distributions since they are not taken
into account in the Weibull distribution. The wind speeds are
binned with intervals of about 0.514 m s−1 because the data
were previously recorded with bins of 1 knot. We add a small
random noise to the wind-speed data in order to remove the
effect of this sampling. The added noise is a continuous uni-
form distribution between −0.5 and +0.5 knot (arising neg-
ative values are set to zero). We also tested a Gaussian noise

with a standard deviation of 1/3 knot, which led to the exact
same results.

Throughout the article the wind speed is noted as w and
the series of hourly observations is noted as (wi)ni=1, where
n is the number of observations, which would be 35 064 for
a complete set over the years 2010 to 2013, but is fewer due
to the missing values and removed calms. In the following,
the results are given for the 4 years of data but remain similar
when limiting the data to 1 year.

2.2 Wind-speed statistic models

We use two distributions for the wind speed: the commonly
used Weibull distribution and the Rayleigh–Rice distribution,
defined in Drobinski et al. (2015). We note f their probabil-
ity density functions (PDF) and F their cumulative distri-
bution function (CDF). We explain here the different fitting
methods for each distribution.

2.2.1 Weibull distribution

The Weibull distribution depends on the scale parameter
A> 0 and the shape parameter k > 0. Its PDF and CDF ex-
pressions are

fwbl(w;A,k)=
k

A

(w
A

)k−1
exp

[
−

(w
A

)k]
(1)

Fwbl(w;A,k)= 1− exp
[
−

(w
A

)k]
. (2)

The Weibull distribution has simple expressions for its mo-
ments, such as the average wind w and the energy content
w3:

w = A 0

(
1+

1
k

)
(3)

w3 = A30

(
1+

3
k

)
, (4)

where 0 is the gamma distribution defined by

0(x)=

∫
∞

0
e−t tx−1 dt .

There are many ways of fitting the Weibull distribution to
a set of observations; see for example Chang (2011) or Pryor
et al. (2004) for extensive comparison of some of the meth-
ods. In this article we compare the three methods that are
expected to be the most used in the wind industry:

– the maximum likelihood estimation (MLE), which max-
imizes the log likelihood function (Cohen, 1965);

– the method of moments using the first and third mo-
ments (M1 & M3), which solves the set of Eqs. (3) and
(4);

– the method used in WAsP (Mortensen et al., 1993) using
the third moment and the probability of winds above
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the empirical mean wind speed (Pryor et al., 2004). In
WAsP, the data are divided into several direction sectors
and one distribution is fit for each sector. This is not
the case here; there is no division according to the wind
direction.

In each case, the first step is to iteratively solve a nonlinear
equation for k (the shape parameter) and, once k is known, to
compute the value for A (the shape parameter) from a sim-
ple relation. Table 1 gives those equations, with the following
notations for the observed mean, ŵ = 1

n

∑n
i=1wi ; observed

energy content (third moment), ˆw3
=

1
n

∑n
i=1w

3
i ; observed

raw moment of order k, ˆwk = 1
n

∑n
i=1w

k
i ; observed proba-

bility of winds above the mean, p̂ = 1
n

∑n
i=11{wi > ŵ}.

2.2.2 Rayleigh–Rice distribution

The Rayleigh–Rice distribution is a mixture of a Rayleigh
distribution (parameter σ 2

1 ) and a Rice distribution (parame-
ters µ≥ 0 and σ 2

2 ) weighted by a parameter α (0≤ α ≤ 1).
Its PDF expression is

frr(w;α,σ
2
1 ,µ,σ

2
2 )= α

w

σ 2
2

exp

(
−
w2
+µ2

2σ 2
2

)

I0

(
wµ

σ 2
2

)
+ (1−α)

w

σ 2
1

exp

(
−
w2

2σ 2
1

)
, (5)

where I0 is the modified Bessel function of the first kind
and zero order. There is no simple analytic expression for
the CDF; therefore, Frr is computed by numerical integration
of frr for a given set of parameters.

The Rayleigh–Rice distribution is fitted as in Drobinski
et al. (2015) by minimizing the right-tail Anderson–Darling
statistics (R2

n) (defined in Sinclair et al., 1990; Luceño,
2006), calculated by

R2
n =

n

2
+ 2

n∑
i=1

zi −
1
n

n∑
i=1
(2i− 1) ln(1− zn+1−i), (6)

where we note zi = F(wi) for the series of observations
(wi)

n
i=1 sorted so that w1 ≤ . . .≤ wn.

The minimization of R2
n is solved by a Nelder–Mead al-

gorithm to find the best parameters. It is a little difficult to
converge because there are four parameters, among which
the α parameter has a nonlinear effect. To overcome this, we
first fit the distribution for only three parameters and a fixed
value of α, repeat this for a series of different α values and
choose the best of all fits. This best fit is then used as a first
estimate to fit with four parameters and it converges rapidly.

2.3 Energy estimation

We study the available energy content E, i.e., the cube of
the wind speed, and the production P , i.e., the energy yield
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Figure 1. Example of the power curves used to compute the power
production P . In red (P1) the power curve of a Vestas V90/2000
wind turbine normalized by its rated power (2 MW) is shown. In
dashed blue (P1.35) the power curve adapted from the previous one
by a linear transformation of factor a = 1.35 is shown.

from a wind turbine. E and P are computed for each dis-
tribution using their density function (probabilistic method)
and compared to the reference value based on the series of
observations without any statistical modeling (chronological
method).

Power curve

In order to compute the power production, we use a power
curve derived from a Vestas V90/2000 wind turbine, which
has a 90 m diameter rotor and 2 MW nominal power. This
model is one of the most common turbines in France as well
as the rest of the world. The problem is that the hub height
of such a wind turbine is typically 100 m whereas we use
wind measurements at 10 m. Moreover, using a single power
curve for all the stations is not possible because the stations
have very different average winds; this would lead to an un-
realistically large production at some stations and almost no
production at others.

Therefore, we use a flexible power curvePa(w) depending
on a parameter a to adapt to the wind characteristics at each
station. The initial power curve is transformed linearly so that
it is equivalent to multiplying the wind speeds by the value
of a. This can be seen as a vertical extrapolation of the sur-
face wind. For example, a value a = 1.35 corresponds to the
coefficient that would be used in an extrapolation of the 10
m wind speeds to the altitude of 85 m using the one-seventh
power law. As we normalize the power curve, it could also be
seen as using a smaller wind turbine adapted to lower winds.

The initial V90/2000 power curve is drawn in Fig. 1 (in
red) as well as a modified one with parameter a = 1.35 (in
dashed blue). At each station, the a parameter is adjusted so
that the capacity factor of the turbine reaches 30 %. The real
production would be a little lower since we removed the calm
winds, and because we use an ideal power curve and do not
account for any losses in the production process.
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Table 1. Sets of equations used to fit the Weibull distribution for each method (see text for notations).

Method Nonlinear equation to solve for k Equation for A

MLE
∑n
i=1w

k
i ln(wi )
ˆwk

−
∑n
i=1 ln(wi)− n

k
= 0 A=

(
ˆ
wk
)1/k

M1 & M3
(
ŵ
)3
0
(

1+ 3
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)
−

(
ˆ
w3
)
03
(
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)
= 0 A=

(
ˆw3

0
(

1+ 3
k

))1/3

WAsP ln
(
− ln

(
p̂
))
− k

[
ln(ŵ)− 1

3 ln( ˆw3)+ 1
30
(

1+ 3
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)]
= 0

(a) Weibull MLE : ∆E (b) Rayleigh–Rice: ∆E
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Figure 2. Maps of 1E, i.e., the relative errors in wind energy content due to the statistical modeling, at the 89 stations for either the Weibull
distribution fit by maximum likelihood (a) or the Rayleigh–Rice distribution (b).

Energy

The reference energy computed from the series of observa-
tions (wi)ni=1 is

Eref =
1
n

n∑
i=0

w3
i . (7)

The energy computed from f , the PDF of a distribution
fitted to the observations, is

E =

∞∫
0

f (w)w3 dw. (8)

The error in energy of the probabilistic method (Eq. 8) rel-
ative to the chronological method (Eq. 7) is

1E =
E−E ref

E ref
. (9)

Production

Based on the power curve Pa , the reference production is

Pref =
1
n

n∑
i=0

Pa(wi). (10)

This is the mean power output in watts but since we nor-
malized Pa by its nominal power, Eq. (10) actually gives the
mean capacity factor. The a parameter of the power curve is
adjusted so that the capacity factor reaches 30 %. This value
of a is then used to compute P from the four distributions.

The average power computed from the probabilistic
method from the PDF f is

P =

∞∫
0

f (w)Pa(w)dw. (11)

The error in production of the probabilistic method relative
to the chronological method is

1P =
P −P ref

Pref
. (12)

3 Results

The errors in the energy assessment are computed for four
distributions: the Weibull distribution fitted by the three dif-
ferent methods and the Rayleigh–Rice distribution.

3.1 Energy

In terms of energy content E, both the method of moments
and the WAsP method for fitting the Weibull distribution

www.ann-geophys.net/35/691/2017/ Ann. Geophys., 35, 691–700, 2017



696 B. Jourdier and P. Drobinski: Errors in wind resource and energy yield assessments

(a) Weibull MLE : ∆P (b) Weibull M1 & M3 : ∆P

(c) Weibull WAsP : ∆P (d) Rayleigh–Rice: ∆P
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Figure 3. Maps of 1P , i.e., the relative errors in wind power production due to the statistical modeling, at the 89 stations for either the
Weibull distribution fit by the maximum likelihood method (a), the first and third moments method (b), and the WAsP method (c), or the
Rayleigh–Rice distribution (d).

make no error since the energy content is the third moment
w3 and it is fixed to the observed energy content when solv-
ing Eq. (4) to find the A and k parameters. For the other dis-
tributions, the results are shown in Fig. 2. With the Weibull
distribution fitted by maximum likelihood (Fig. 2a), the er-
rors are low in the northeastern region but much larger in
the southern region. The absolute errors are above 5 % at
32 stations and above 10 % at 10 stations (the maximum be-
ing 29 %). The energy is almost always underestimated, ex-
cept in some places in the valleys of the southeastern region.
With the Rayleigh–Rice distribution (Fig. 2b), the errors are
in general very low, with some exceptions. The absolute er-
rors are below 3 % at 80 % of the stations; only 10 stations
are above 5 % (including 2 above 10 %).

3.2 Production

When it comes to the power output P , errors arise for all
four cases, even when there was no error in the energy con-
tent. Indeed, the fact that1E = 0 does not mean that the ob-
served distribution is well fitted by the Weibull distribution.

There may be positive and negative errors balancing one an-
other when integrating over the whole distribution. Since the
power curve is not a linear function ofw3, these errors do not
balance anymore in the power calculations and this may lead
to large values of 1P .

For the Weibull distribution fitted by maximum likelihood
(Fig. 3a),1P is of the same order of magnitude but of oppo-
site sign as 1E (Fig. 2a). The mean absolute error (MAE) is
5.2 %, two-thirds of the stations have an absolute error above
3 % and the maximum error is 32 %. With the method of mo-
ments (Fig. 3b), the errors are similar to those for MLE; the
spatial pattern is the same, the values are just slightly lower
(MAE of 4.3 %, maximum error of 17 %). Conversely, with
the WAsP method the errors are small, the MAE is 1.7 %,
only 13 stations have an absolute error above 3 % and the
maximum error is 9 %. Finally, with the Rayleigh–Rice dis-
tribution, we find small errors everywhere, with a slight bias
towards overestimation: the errors range from 0.2 to 3.1 %,
with an average of 1.4 %.
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Figure 4. Representation of the energy and production calculations at Melun station (2010–2013). (a) Histogram of the observed wind-speed
series and probability density function f (w) of the fitted distributions (Weibull fit by MLE, moments, or WAsP methods and Rayleigh–Rice
fit). (b) Wind energy content as a function of wind speedw (i.e., f (w)w3) for each distribution and associated histogram for the observations.
(c) Power curve Pa adapted to the station in order to have a capacity factor of 30 %. (d) Wind power output as a function of wind speed (i.e.,
f (w)Pa(w)) for each distribution and associated histogram for the observations.

3.3 Sensitivity of the results

The figures above are given for the whole dataset (years 2010
to 2013). The results are similar when limiting the wind se-
ries to only 1 year, with only small differences due to the
interannual wind variability. For the computation of the pro-
duction, the power curve has an important role. We tested
other shapes, among which were simpler power curves with
a ramp between cut-in and rated wind speed as a linear func-
tion of either w or w3. They all led to similar results. Choos-
ing a different capacity factor, such as 25 or 35 %, to adjust
the a parameter of the power curve has also a small impact.
The errors tend to be smaller when using a larger capacity
factor, except in the case of the MLE method where the er-
rors tend to increase. When the capacity factors are much
lower, the errors of the Weibull MLE switch to negative val-
ues. This could represent what happens in seasons with low
wind. This is consistent with the findings of Celik (2003),
where underprediction of the production mainly appears in
the least windy locations and months.

We also tested the sensitivity of the results to the sampling
of the wind data. We added a small random noise to the wind
data because the speeds were binned with a 1-knot interval.
When fitting the distributions to the raw sampled data instead
of the smoothed data, the results are very similar except for
the WAsP method. In that case, fitting the Weibull to the raw

data leads to large negative or positive errors (MAE around
5 %), without any spatial coherence. It is unclear why.

4 Discussion

4.1 Examples at two stations

To better understand these results, we first focus on two ex-
ample stations: Melun, which is located in northern central
France, near Paris (48.6◦ N, 2.7◦ E), and Orange, which is
located in the Rhône River valley between the Alps and the
Massif Central Mountains, close to the Mediterranean Sea
(44.1◦ N, 4.8◦ E). The wind-speed histograms at these two
stations are shown in Figs. 4a and 5a, respectively, as well
as the PDF of the Weibull distributions (fitted by the three
different methods) and of the Rayleigh–Rice distribution.
At Melun the histogram is more peaked than can be mod-
eled by a Weibull distribution. This is a common behavior
at most stations, which is very pronounced at some locations
in southern France. At Orange, the distribution is bimodal;
there are two peaks and this cannot be modeled accurately
by the unimodal Weibull distribution, but can be modeled
by the more flexible Rayleigh–Rice distribution. This type
of bimodal distribution is found at several locations in the
southern valleys of France.
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Figure 5. Representation of the energy and production calculations at Orange, representative of a bimodal case. Same description as Fig. 4.

The computation of energy is very sensitive to the adjust-
ment of the right tail of the distribution since the very high
winds, once cubed, have an important weight despite their
low frequency. The Weibull distribution, especially the max-
imum likelihood fit, tends to underestimate the frequency of
these very high winds and therefore underestimate E. This
phenomenon is visible in Fig. 4b for Melun in the range 9–
15 m s−1. Most stations, especially in the southern part of
France, present such an underestimation of the very high
winds by the Weibull distribution, with different magnitudes.

At some other locations, such as at Orange, the wind-
speed distribution has two peaks. In that case, the Weibull
distribution, which cannot model two peaks, passes through
both: it underestimates the wind frequency at the two peaks
but overestimates the winds in between the two peaks and
the very high winds beyond the second peak. At Orange,
we can see that the Weibull distribution, whatever the fit-
ting method, overestimates the probability of winds above
15 m s−1 (Fig. 5a) and therefore their contribution to the en-
ergy (Fig. 5b). With the moments and WAsP methods, this
overestimation is smaller and balanced by the underestima-
tion in the range 8–15 m s−1 (corresponding to the second
peak). In the case of the MLE method, it is not completely
balanced and it leads to an overestimation of the energy by
more than 10 %.

When it comes to the estimation of the energy yield
from a wind turbine, the very high winds are not so impor-
tant since the power output is constant between the rated
wind speed and the cutout wind speed of the wind turbine.

The power curves used at Melun and Orange are drawn in
Figs. 4c and 5c, respectively, and the power output is shown
in Figs. 4d and 5d. Nevertheless, an underestimation of
the very high winds is associated with an overestimation of
winds around the rated wind speed, which have the largest
contribution to the production. This is why we get opposite
errors in E and P with the Weibull fit by MLE. With the
WAsP method, the Weibull fit is better adjusted to the high
winds: we can see clearly in Fig. 4b that there is less underes-
timation for the winds above 8 m s−1 and less overestimation
for the winds below 8 m s−1 than with the two other methods.
Therefore, the errors in P are much reduced in most cases.

In the bimodal cases, the overestimation of the very high
winds is associated with an underestimation of middle-high
winds and therefore an underestimation of the energy yield.
This is particularly critical at Orange, where the winds with
the largest weight in the production are exactly around the
second peak, largely underestimated by the Weibull distribu-
tion. Finding an underestimation of the production in a bi-
modal case is consistent with the literature, such as the Mex-
ican case of Jaramillo and Borja (2004), and at least some
of the largest underestimations found in García-Bustamante
et al. (2008) (the wind histograms are only shown for some
cases).

4.2 Importance of the goodness of fit between the
observed and theoretical distributions

The fact that modeling the wind-speed statistics using the
Weibull distribution introduces errors in the energy estimate
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Figure 6. Relative error in the wind power production, 1P (in ab-
solute value) as a function of the right-tail Anderson–Darling score,
R2
n, used as a goodness-of-fit estimate for the Weibull distribution.

The distribution is fit by the maximum likelihood (squares), mo-
ments (circles) and WAsP (diamonds) methods at each station. Log-
arithmic scales.

can be related to the poor fit of this distribution to the tail of
the observations, i.e., the high wind speeds, which contribute
a lot to the energy. It was shown in Drobinski et al. (2015)
that the Weibull distribution does not fit the tail well. Con-
versely, the Rayleigh–Rice distribution was shown to have
good agreements on the tail. Indeed, here the few locations
where we find large errors 1E with the Rayleigh–Rice dis-
tribution (see Fig. 2b) are the stations where the very high
winds are not well fitted by the Rayleigh–Rice.

The errors in the production are also related to the
goodness of fit between the distributions and the observa-
tions, which can be measured for example by the right-tail
Anderson–Darling statistics (R2

n, Eq. 6). Figure 6 shows 1P
(in absolute value) as a function of R2

n. With the Weibull dis-
tribution fitted by maximum likelihood (squares) and by the
method of moments (circles), |1P | values are highly corre-
lated with R2

n (Pearson correlation coefficient of 0.9). This
can be linked with Carta et al. (2008), who find that the er-
ror in the production decreases when the quality of fit of the
distributions increases.

With the WAsP method (diamonds), the relation is weaker
(correlation of 0.36) because this method does not necessar-
ily give a very good fit to the whole distribution (thus R2

n

values may be higher than for the MLE method) but favors
a better fit to the range of winds that are important for the
energy production (thus 1P values are lowered).

5 Conclusions

In this article we investigated the errors in the wind resource
assessment that could result from the use of a statistical
model, especially with the commonly used Weibull distri-
bution. We showed the importance of evaluating the errors
in the production instead of the energy (i.e., the cubed wind

speed), as it is mostly done in the literature. Indeed, a perfect
fit to the energy does not guarantee that the distribution really
fits the observed data. It may come from the cancellation of
opposite errors and may lead to large errors in the production
due to the nonlinear effect of the power curve. Furthermore,
the energy content is not a good indicator of the goodness
of fit of a distribution because it puts too much weight on
the tail of the wind-speed distribution, which actually con-
tributes very little or not at all to the energy production due
to the shape of the power curves.

We found large errors in the production (MAE around
4 or 5 %) when modeling the wind-speed statistics using a
Weibull distribution fit with either maximum likelihood es-
timation or the first and third moments method. We found
lower errors with the WAsP method, which is reassuring for
the wind industry since WAsP is among the most commonly
used software programs in wind resource assessment. Still,
even this method may lead to important errors at some lo-
cations so we advise against the use of the Weibull distribu-
tion. Apart from the WAsP method, the Weibull fits lead to an
overestimation of the production at most locations in France.
This bias could have contributed to the observed overesti-
mation of the production. We also found more errors in the
areas closer to high topography, where the Weibull distribu-
tion is less adapted, and also a tendency towards more errors
when the capacity factors are lower. As these two conditions
correspond to the new areas targeted by the wind industry in
France, these are more reasons not to use the Weibull distri-
bution in the future.

The Rayleigh–Rice distribution shows very good skill at
predicting the energy production at all locations. The fit is
always very close to the observations over the whole dis-
tribution. Therefore, the errors are always very small for
whichever part of the wind distribution is used for the pro-
duction. There is a slight overestimation, but it is not prob-
lematic since this bias is systematic and could be anticipated.
However, even with such a good distribution, the very use
of a statistical model is questionable. The Weibull distri-
bution was very useful in the early age of the wind indus-
try because it simplified the computations considerably. To-
day computers can handle very long wind series without any
problem, limiting the need for any modeling when there are
actual measurements. Indeed, the measurements are much
more precise and contain much more information than any
two- or four-parameter model.

This study benefits from the use of a large dataset, cover-
ing all regions of France. The drawback of this dataset is that
they are surface measurements, often located in areas not ac-
tually adapted to wind project development. The results ap-
ply to all the studies using surface measurements, and could
be followed by more precise studies at precise locations, us-
ing real wind project measurements at higher levels above
ground. A question is whether or not the wind distribution
varies a lot with the altitude and whether the shapes are closer
to the Weibull distribution higher up.
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