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Abstract. Minimum variance projection is widely used in
geophysical and space plasma measurements to identify the
wave propagation direction and the wavenumber of the wave
fields. The advantage of the minimum variance projection
is its ability to estimate the energy spectra directly in the
wavenumber domain using only a limited number of spa-
tial samplings. While the minimum variance projection is
constructed for discrete signals in the data, we find that the
minimum variance projection can reasonably reproduce the
spectral slope of the power-law spectrum if the data represent
continuous power-law signals. The spectral slope study using
the minimum variance projection is tested against synthetic
random data with a power-law spectrum. The method is ap-
plicable even for a small number of spatial samplings. Con-
versely, the spatial aliasing causes a flattening of the spec-
trum.

Keywords. Space plasma physics (turbulence)

1 Introduction

Minimum variance estimator proposed by Capon (1969)
(also referred to as the maximum likelihood method) offers a
powerful tool for computing the wave energy directly in the
wavevector domain using sensor array measurements and has
been successfully applied to geophysical and space measure-
ments. Examples are laboratory wave experiments for ocean

wave breaking (Babanin et al., 2011), tidal interval waves
(Dushaw and Worcester, 1998), oceanic Rossby waves (Zang
and Wunsch, 1999), atmospheric layer imaging (Chen et al.,
2014), seismic waves (Huang and Wu, 2006; Menon et al.,
2014), and low-frequency waves in near-Earth space (magne-
tosheath) (Motschmann et al., 1996; Glassmeier et al., 2001).

The wave energy in Capon’s method is evaluated
from the covariance matrix of the measured data and
the fluctuation model (referred to as the steering vec-
tor) as Emv(k)=

1
h†Rh

. The covariance matrix is con-
structed from the measurement as R= sst, where s =

[s1, s2, . . ., sn]t denotes the state vector of the n-point mea-
surement. The superscript t indicates the vector transpo-
sition. In wave studies, the steering vector is constructed
as h=

[
exp(ik · r1),exp(ik · r2), . . .,exp(ik · rn)

]
using the

scan wavevector k and the sensor coordinates r i (i =
1,2, . . .,n). The estimator is derived by minimizing the fluc-
tuation variance projected onto the model geometry under a
constraint of the unit gain for the signals (distortionless prop-
erty), making use of the Lagrangian multiplier method. In
other words, Capon’s method is designed to detect the dis-
crete signals in the measurement by enhancing the signal-to-
noise ratio upon projection onto the model geometry.

Here we study the applicability of Capon’s minimum vari-
ance projection in turbulence data analysis. Turbulence oc-
curs in many geophysical flows and space plasmas, and the
inertial range fluctuations are characterized by power-law
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spectra. There are many signals in turbulence in the form of
waves or eddies, and the number of sensors is by far smaller
than that of signals. Our approach is numerical; we generate
synthetic turbulence data, sample using a sensor array, and
find the wave energy using Capon’s method. We then com-
pare Capon’s minimum variance estimator spectra with that
used in the synthetic data.

Taylor’s frozen inflow hypothesis (Taylor, 1938) is not
strictly valid even in the solar wind; thus, it is mislead-
ing to simply apply Taylor’s hypothesis and to relabel the
frequencies onto the stream-wise wavenumbers in interpret-
ing the energy spectra from single-point measurements. The
reason for this is the fact that the frequency broadening
around the Doppler shift has substantial contributions, and
the broadening can originate from not only the large-scale
flow variations but also the existence of large-scale counter-
propagating Alfvén waves (Narita, 2017). The spectral in-
dex can be the same between the frequency domain and the
stream-wise wavenumber domain if the frequency slice of
the spectrum at a given value of the wavenumber is Gaussian
(Wilczek and Narita, 2012). In reality, however, there is no
guarantee that the spectral index in the frequency domain is
the same as that in the wavenumber domain since turbulent
fluctuations can be non-Gaussian (coherent or intermittent)
due to the growth or the decay of waves, the coherent struc-
ture formation, and the excitation of sideband waves. For this
reason, there is a need to construct a method to determine the
spectral indices directly in the wavenumber domain.

2 Numerical setup

The synthetic data are generated in the following steps. We
set a mesh of one-dimensional spatial coordinates zn as

zn = n1z (n= 0,1, . . .,N − 1). (1)

The number of mesh points is N = 212
= 4096 for the pur-

pose of covering 3 orders of magnitude on the length scales
or in the wavenumbers. The units of the spatial coordinate
z are arbitrary. We set 1z= 1 km for a future application to
in situ measurements in near-Earth space. The wavenumber
mesh is constructed from the spatial coordinate mesh using
the grid distance 1k = 2π

zN−1
.

kn = n1k =
2πn
zN−1

(n= 0,1, . . .,N − 1) (2)

A power-law spectrum is defined at the mesh points of the
wavenumbers as

Etrue(kn)= C k
α
n . (3)

The spectral index α is a free parameter and is chosen in
the range of typical values of turbulence energy spectra:
α = {−1.0,−1.2,−1.4, . . .,−3.0}. The coefficient C is nor-
malized to the variance of the fluctuations σ 2 through the

relation

σ 2
=

kmax∫
kmin

E(k)dk, (4)

where kmin =1k and kmax = (N − 1)1k. That is,

C =
(α+ 1)σ 2

kα+1
max − k

α+1
min

(α 6= 1) (5)

or

C =
σ 2

log
(
kmax
kmin

) (α = 1). (6)

We set the mean field as constant;B0 = 1 nT and the standard
deviation a σ = 0.1 nT (10 % fluctuation level).

The spectral amplitudes are computed in the wavenumber
domain (n= 1,2, . . ., N2 − 1) as∣∣̃b(kn)∣∣=√Etrue(kn)1k. (7)

The wave phase φ(k) is chosen as uniformly and randomly
distributed in the range 0< φ ≤ 2π . The reality condition is
used in the second half of the spectral data by taking the com-
plex conjugate (denoted by the dagger †):

b̃(kin= b̃
†(kN−1− n)

(
n=

N

2
, . . .,N − 1

)
. (8)

The fluctuations are obtained in the spatial coordinates us-
ing the inverse fast Fourier transform (FFT):

b(zn)=

N−1∑
m=0

b̃(km)e
ikmzn . (9)

The fluctuations in the spatial coordinates are displayed
in the left panels of Fig. 1 for spectral indices of α =
{−1.0,−1.2, . . .,−2.0} (from top to bottom).

To double check the computation, the forward Fourier
transform is applied to the spatial fluctuation data,

b̃(kn)=
1
N

N−1∑
m=0

b̃(zm)e
−ikmzn , (10)

and the energy spectra, which agree with the generating spec-
tra, are obtained in the wavenumber domain (right panels in
Fig. 1). The fluctuation data are defined in the spatial coordi-
nates and do not contain temporal evolution.

3 Minimum variance spectra

The synthetic data are sampled at the positions of the sensor
array, and the energy spectra are evaluated from the sampled
data as follows. An array of four sensors is set with a sensor

Ann. Geophys., 35, 639–644, 2017 www.ann-geophys.net/35/639/2017/



Y. Narita et al.: Minimum variance spectrum 641

Figure 1. Synthetic data (left panels) and the energy spectra used to
generate the synthetic data (right panels).

distance of `=1z= 1 km. The sensors are located on the
linear mesh points. The fluctuation data are retrieved at the
four sensor positions, and the energy spectrum is computed
using the minimum variance estimator:

Emv(k)=
c

1k

1

h†(zs,k)R−1(zs,k)h(zs,k)
. (11)

The mean field B0 = 1.0 nT is subtracted upon the minimum
variance estimator. Isotropic level ε = 10−8 nT2 is added to
the covariance matrix R to guarantee the matrix inversion.
The added isotropic level is well below the nominal sensor
noise level of the fluxgate magnetometers. The energy spec-
tra are averaged over 1000 realizations of the field measure-
ments by shifting the sensor array in the positive z direction
by a size of the sensor array, spanning from the first sensor
to the last one (4 km).

The dimension of the averaged energy spectrum is con-
verted from square amplitudes (nT2) into an energy density
in the spectral domain (nT2 km rad−1) by dividing the square
amplitude by the wavenumber interval for the sensor size,
1k = 2π

L
(where L= 4`). The minimum variance estimator

is designed to return a correct value of the spectral energy
for a discrete signal in incoherent data. For multiple signals
like turbulence, the spectral energy obtained by the minimum
variance estimator is substantially diminished, and a correc-
tion factor is needed to normalize such that the integration of
the spectrum over the wavenumbers is the same as the vari-
ance of the fluctuations.

The minimum variance estimator is tested under different
spatial samplings: n= {2,3,4,5,10,20,50,100} for a spec-
tral slope of α = 2. The results are displayed in Fig. 2. The
spectral energies are shifted by a factor of 10−2 from one to

Figure 2. Minimum variance spectra for different numbers of spa-
tial samplings for a spectral slope of −2. The spectra are shifted
from one to another for the visualization purpose.

another. The estimated spectral curves are smooth and de-
viated from the power law for a smaller number of spatial
samplings (samplings of five points or fewer). The spectral
curves exhibit fine structures and a well-established power
law extending to lower and higher wavenumbers.

Spectral slopes

The major discovery from the numerical test for the min-
imum variance estimator is that the power-law indices or
spectral slopes can reasonably be reproduced in a limited
range of wavenumbers if the true spectrum follows a power
law. Moreover, this ability to detect the true spectral slope is
not lost, even using only a few spatial sampling points.

For comparison, we present two case studies for 4-point
measurements (Fig. 3) and 20-point measurements (Fig. 4).
The true spectra follow a power law with an index varying
from −1 to −4. There is no spatial aliasing (see below), i.e.,
there is no signal with a wavelength below the sensor sep-
aration distance. The spectra are estimated using the min-
imum variance projection up to the Nyquist wavenumber
kny ' 3.1 rad km−1. The true spectral slopes are reproduced
at wavenumbers around 1 rad km−1.

For the four-point measurements (Fig. 3), the lower limit
of the useful wavenumber range for the power-law study de-
pends on the true spectral curves: 0.8 rad km−1 for slopes−1
to −2, and 0.2 rad km−1 for a slope of −4. The upper limit
of the useful wavenumber range is either up to the Nyquist
wavenumber for slopes of −1 and −2 or about half of the
Nyquist wavenumber for slopes of −3 and −4.

For the 20-point measurements (Fig. 4), the estimated
spectra show well-established power-law curves and the
spectral slopes agree with the true values. The range of
useful wavenumbers extend to the Nyquist wavenumber in
all the tested spectral slopes. The lower limit of the useful
wavenumber range still depends on the true spectral slopes
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Figure 3. Minimum variance spectra for different slopes using four
sampling points. Gray lines indicate the true spectral slope.

and varies from 0.8 rad km−1 for slopes of −1 and −2 to
0.2 rad km−1 for a slope of −4.

Aliasing problem

Since the spatial samplings are made at discrete points, the
measurement of the wavenumber spectra is influenced by the
spatial aliasing. That is, signals or fluctuations with a shorter
wavelength than the sensor separation can affect the spectral
measurements. In the case of the power-law spectra, the spa-
tial aliasing affects the measurement through a flattening of
the spectrum around the Nyquist wavenumber, kny = π/d,
where d represents a mean sensor separation distance in
the array. Technically speaking, the minimum variance pro-
jection itself can compute the spectral energy beyond the
Nyquist wavenumber limit, but the estimated spectra show
either spikes due to the resonance for regularly spaced array
sensors (we refer to it as regular aliasing) or a flat spectrum
for irregularly spaced array sensor (we refer to it as irregular
aliasing).

Examples of the regular and irregular aliasing-affected
spectra are displayed in Figs. 5 and 6, respectively.

In Fig. 5, the case of regular aliasing, the signals are spa-
tially down-sampled at the same distance of 10 km from one
sensor to another, while the data are generated for the true
power-law spectra up to a wavelength of 1 km with spectral
slopes of −1, −2, −3, and −4. The Nyquist wavenumber
is d ' 0.31 rad km−1. Below the Nyquist wavenumber, the
estimated spectra reproduce the true spectral slopes in a lim-
ited range of wavenumbers between 0.01 and 0.1 rad km−1.
Around the Nyquist wavenumber, the estimated spectra be-
come flatter and increase toward the second-order harmonic
of the Nyquist wavenumber at 2kny. Beyond the Nyquist
wavenumber, there is a series of spectral peaks at the higher-
order harmonics of the Nyquist wavenumber, 2kny, . . .,6kny.
The alias spikes at the harmonics of the Nyquist wavenum-

Figure 4. Minimum variance spectra for different slopes using 20
sampling points. Gray lines indicate the true spectral slope.

ber can be seen both in the 4-sensor measurements (curves in
black) and in the 20-sensor measurements (curves in gray).

In Fig. 6, the case of irregular aliasing, the signals are spa-
tially down-sampled at a mean sensor separation distance of
10 km with a deviation of 30 % from the mean distance. The
signals and the true spectra are the same as those used in the
regular aliasing case. Again, the true spectral slopes can be
reproduced in a relatively narrow range of the wavenumbers
between 0.01 and 0.1 rad km−1 and the spectra show a flat-
tening toward the Nyquist wavenumber. Beyond the Nyquist
wavenumber, however, the alias spikes no longer appear and
the spectral curves are nearly flat with a moderate fluctuation
of the spectral energy.

4 Discussion and conclusions

It is encouraging that the minimum variance estimator is ca-
pable of not only identifying the wavenumbers in the dis-
crete wave signals but also evaluating the spectral slope of
the power-law spectrum in the continuous turbulence sig-
nals. The capability of the power-law estimation is still valid
even using a small number of spatial samplings (typically
below five spatial sampling points) at the cost of a limited
wavenumber range and a smoothed shape of the spectral
curve. Another finding from the presented numerical studies
is that the spatial aliasing contributes in different ways. For
regularly spaced (or equidistant) samplings, the minimum
variance spectra show resonance peaks in the high wavenum-
ber domain beyond the Nyquist wavenumber. For irregularly
spaced samplings, the minimum variance spectra show no
more resonance peak.

One does not need a frequency resolution since the tech-
nique is applied in the time domain. The strongest limita-
tion is the fact that one has to assume that the length scales
of the sensor array (both the separation distance and the to-
tal length) should be in the power-law spectrum range of
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Figure 5. Minimum variance spectra with aliasing for regular spa-
tial samplings (n= 4 in black and n= 20 in gray) with a distance
of 10 km.

the wavenumber domain. In the mean flow direction, one
may use the time series data and Taylor’s hypothesis to di-
agnose the existence of the power law in the corresponding
wavenumber range (even though Taylor’s hypothesis is not
strictly valid). In the directions perpendicular to the mean
flow, there is no means of diagnosing the existence of the
power-law spectrum in the wavenumber domain.

The minimum variance estimator can be extended to a vec-
torial data set such as flow velocities or magnetic fields. In
that case, the spectrum projected onto the wavevector domain
is obtained as a matrix with the elements consisting of the
covariance (represented in the wavevector domain) between
different components of the measured vectorial field.

The minimum variance projection can be used for a variety
of applications in space plasma observations. Examples are
proposed below as a conclusion:

– one-dimensional application to magnetospheric plasma
turbulence along the magnetic field line in the mag-
netotail using five THEMIS spacecraft (Angelopoulos,
2008);

– one-dimensional application to plasma turbulence in the
inner heliosphere using multi-point measurements ei-
ther along the magnetic field line or along the streamline
by finding a suitable orbit configuration for Solar Or-
biter (Müller et al., 2013), Solar Probe Plus (Fox et al.,
2016), and BepiColombo cruise phase (Benkhoff et al.,
2010);

– three-dimensional applications to local structures of
plasma turbulence in space, e.g., shock-upstream and
shock-downstream turbulence of the Earth magneto-
sphere, using tetrahedral spacecraft configuration of the
Cluster mission (Escoubet et al., 2001) down to 100 km
separation (corresponding to the spatial scale of ion gy-
roradius) and the Magnetospheric Multiscale (MMS)

Figure 6. Minimum variance spectra with aliasing for irregular spa-
tial samplings (n= 4 in black and n= 20 in gray) with an irregular
distance with a mean 10 km with 30 % deviation.

mission (Burch et al., 2016) down to 10 km separation
(corresponding to electron gyroradius).

In individual cases, of course, the calibration of the mini-
mum variance projection is needed as a pre-study because
the spectral sensitivity (or gain) and the power-law range of
wavenumbers might depend on the sensor array configura-
tion.

Data availability. No experimental data are used in this article. The
numerical data are reproducible using the algorithm presented in the
article.
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