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Abstract. Knowledge of planetary magnetic fields provides
deep insights into the structure and dynamics of planets. Due
to the interaction of a planet with the solar wind plasma, a
rather complex magnetic environment is generated. The sit-
uation at planet Mercury is an example of the complexities
occurring as this planet’s field is rather weak and the magne-
tosphere rather small. New methods are presented to separate
interior and exterior magnetic field contributions which are
based on a dynamic inversion approach using a reduced mag-
netohydrodynamic (MHD) model and time-varying space-
craft observations. The methods select different data such
as bow shock location information or magnetosheath mag-
netic field data. Our investigations are carried out in prepa-
ration for the upcoming dual-spacecraft BepiColombo mis-
sion set out to precisely estimate Mercury’s intrinsic mag-
netic field. To validate our new approaches, we use THEMIS
magnetosheath observations to estimate the known terrestrial
dipole moment. The terrestrial magnetosheath provides ob-
servations from a strongly disturbed magnetic environment,
comparable to the situation at Mercury. Statistical and sys-
tematic errors are considered and their dependence on the se-
lected data sets are examined. Including time-dependent up-
stream solar wind variations rather than averaged conditions
significantly reduces the statistical error of the estimation.
Taking the entire magnetosheath data along the spacecraft’s
trajectory instead of only the bow shock location into account
further improves accuracy of the estimated dipole moment.

Keywords. Geomagnetism and paleomagnetism (general or
miscellaneous) — magnetospheric physics (magnetosheath;
solar wind—magnetosphere interactions)

1 Introduction

The interaction of a planetary magnetic field with the so-
lar wind strongly modifies the magnetic field environment
around the planet. If in situ spacecraft data are used to es-
timate the planetary magnetic field, this interaction needs to
be taken into account. This is of particular importance for the
upcoming two-spacecraft mission BepiColombo (Benkhoff
et al., 2010) to planet Mercury because the Hermean mag-
netosphere is small and very dynamic. The average magne-
topause distance at Mercury observed by the MESSENGER
(Mercury Surface, Space Environment, Geochemistry and
Ranging) mission (Solomon et al., 2001) is about 1.45 Ry
and the bow shock distance is 1.89 Ry, with Ry = 2440km
as planetary radius (Winslow et al., 2013). Consequently, the
currents of the interaction influence the magnetic field dis-
tribution along the entire orbit of a spacecraft such as the
BepiColombo planetary orbiter at Mercury. The two Bepi-
Colombo spacecraft, the Mercury Planetary Orbiter (MPO)
and the Mercury Magnetospheric Orbiter (MMO), investi-
gate Mercury’s environment on polar orbits (see http:/sci.
esa.int/). The MPO will travel close to the surface of Mer-
cury with a period of 2.3h, a periapsis of 1.2 Ry, and an
apoapsis of 1.6 Ry with respect to Mercury’s center. The
MMO will travel farther out with a period of 9.2h, a pe-
riapsis of 1.2 Ry, and an apoapsis of 5.8 Ry;. At the aphe-
lion of Mercury, the periapsides are the subsolar point, and
at perihelion, the apoapsides are the subsolar point. Thus, es-
pecially around perihelion, the MMO will spend most of the
time in the solar wind and crosses the bow shock twice on
each orbit. Note that the MPO will usually not cross the bow
shock and observes the interaction region close to the planet.
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In this kind of dynamic environment interspersed with local
electrical currents, the classic Gauss algorithm fails to sepa-
rate internal and external magnetic fields in a classical spher-
ical harmonic expansion (Gauss, 1839; Olsen et al., 2010;
Glassmeier and Tsurutani, 2014). In addition, spacecraft mis-
sions provide only incomplete spatial coverage. For exam-
ple, the MESSENGER mission only provided observations
close to the Hermean surface in the northern hemisphere.
This leads to a systematic correlation of Gauss coefficients.
Therefore, more elaborate approaches to determine the in-
ternal field must be sought often such as the methods pre-
sented here. Accurate internal field determination is crucial,
for example, for the identification of suitable dynamo models
which could explain the enigmatic Hermean planetary mag-
netic field (e. g., Heimpel et al., 2005; Stanley et al., 2005;
Christensen, 2006; Glassmeier et al., 2007; Heyner et al.,
2011; Wicht and Heyner, 2014).

We investigate various methods to estimate a planetary
magnetic field from in situ spacecraft observations. Previous
approaches consider the interaction of Mercury’s magnetic
field with the solar wind using empirical models. For exam-
ple, Korth et al. (2004) used a scaled Tsyganenko-96 model
of the Earth’s magnetosphere (Tsyganenko, 1995, 1996) to
include current systems of the interaction at Mercury. An-
other empirical model used at Mercury is the paraboloid
magnetosphere model introduced by Alexeev et al. (2010).
Such a model was also used by Johnson et al. (2012) to es-
timate Mercury’s magnetic field with data from MESSEN-
GER. Further improvement of modeling the magnetosphere
was done by Korth et al. (2015), including parametric models
of magnetopause and cross-tail currents. In general, empiri-
cal models either contain many parameters which also de-
pend on solar wind conditions or use several assumptions
such as the prescription of shape and location of interaction
currents which reduce the number of parameters to be esti-
mated from data.

Here, we consider two different approaches employing an
magnetohydrodynamic (MHD) model to compute the inter-
action depending on the varying solar wind conditions. For
an efficient calculation, we use a reduced MHD model pre-
sented by Nabert et al. (2013) which is derived from the
MHD equations using series expansion techniques. Further,
the reduced model is less sensitive to numerical errors. The
reduced models are suitable for detailed investigations of the
estimation procedure of the planetary magnetic field and the
related errors. Such a reduced model was successfully ap-
plied to reconstruct the solar wind conditions from terrestrial
magnetosheath data (Nabert et al., 2015). Spacecraft data
from the interaction region and the known planetary mag-
netic field of the Earth were used to estimate the solar wind
conditions at the subsolar point of the bow shock. Here, this
approach is reversed: the spacecraft data together with solar
wind conditions are used to estimate the planetary magnetic
field.
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We consider terrestrial THEMIS data to reconstruct the
well-known planetary magnetic field of the Earth as a test
case for the more challenging situation at Mercury in prepa-
ration for the BepiColombo mission. However, with respect
to the strongly modified magnetic field environment due to
the solar wind at Mercury, we choose THEMIS data from the
magnetosheath. In this region, the measured magnetic field
at the Earth is strongly influenced by the interaction with the
solar wind comparable to the situation at Mercury.

With the reduced MHD model, different procedures can
be applied to obtain the planetary magnetic moment and are
investigated with respect to systematic and statistical errors.
A first method, suitable also for single-spacecraft missions,
considers observations from a spacecraft crossing the bow
shock which measures the solar wind conditions on the sun-
ward side of the shock. Then, Earth’s dipole moment can be
directly calculated with analytical expressions of the shock’s
distance in the reduced MHD model. At Mercury, this ap-
proach is applicable for the BepiColombo mission using
the bow shock observations of the MMO around perihelion.
Note that, in general, the quality of solar wind data of the
MESSENGER mission at Mercury is not sufficient to ap-
ply this method presented here (Raines et al., 2011, 2013).
A second approach is to use spacecraft data from the entire
magnetosheath passage along the spacecraft’s trajectory with
time-dependent solar wind observations from another space-
craft. Here, we take magnetosheath data at Earth into account
to consider a highly disturbed environment similar to Mer-
cury. Note that, in general, this approach is not restricted to
magnetosheath data. The magnetospheric magnetic field of
the model is determined by the Biot—Savart law using the
magnetosheath current density and can be compared to mag-
netospheric observations. To improve precision of such an
extension, further current contributions can be included from
different models as well. The approach can be applied when-
ever the MPO provides solar wind data.

2 The reduced MHD model by Nabert et al. (2013)

The reduced MHD model by Nabert et al. (2013) provides
solutions of the ideal MHD equations for the mass density p,
the plasma velocity v, the gas pressure p, and the magnetic
field B assuming a quasi-stationary situation. In the magne-
tosheath, the ideal, stationary MHD equations are

0 = V-(pv), &)
0 = p(v-V)v—i—Vp—i(VxB)xB, 2)
0 = Vx(@xB), 3)
0 = V-B, “)
p o= ko', 5)

with the constant of proportionality kp of the adiabatic law
(5) and the vacuum permeability o =4 - 107 N/A2. The
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solution of the MHD equations can be expressed in vector
notation:

g ©)
A Cartesian coordinate system with the solar wind along the
x direction and perpendicular directions y and z is consid-
ered. The origin of the coordinate system is located at the
bow shock. The general idea of the approach by Nabert et al.
(2013) is to derive reduced MHD models of the interaction
with series expansions of the physical quantities. Each phys-
ical quantity u" (x, y, z), where n labels the component of the
vector u according to Eq. (6), is expanded by a Taylor series
with respect to the y and z directions:

u = (p, vy, vy, vz, p, By, By, B;)

Ns+1 Ns+1

Wy =y >l () y k. @)
=0 k=0

Here, (Ns + 1) denotes the expansion order and u;?k (x) the
coefficient functions.

To simplify the considerations, we assume a quasi-
stationary situation with a solar wind magnetic field and a
planetary dipole moment along the z direction. Then, the
dipole approximation of the Earth’s planetary magnetic field
is

3z (xg—x

BE,X=%M, ®)
3yz

B =—M, 9

Ey P ()
) 2 )2 2

By, = - S HOEZOTHYT,, (10)

7S

with distance r := ((xg — x)? + y2 42293, dipole moment
M, and the distance of the bow shock to the Earth’s center
xg along the x axis. The largest quadrupole contribution to
the magnetic field at about 10 Rg, an approximation of the
subsolar magnetopause distance at Earth, is less than 1 %,
where Rg = 6371 km. Therefore, we neglect any quadrupole
contributions. It should be noted that this is a situation very
different from that one at planet Mercury. However, it seems
a valid approximation to introduce an offset dipole to in-
clude Mercury’s quadrupole contributions (Johnson et al.,
2012). The dipole moment representation and solar wind
magnetic field perpendicular to the solar wind direction re-
quires certain symmetries of the physical quantities, which
leads to vanishing coefficient functions (Nabert et al., 2013).
A symmetric quantity u"(x,y,z) to the xy plane satisfies
u"(x,y,—z) =u"(x,y,z), an anti-symmetric quantity satis-
fies u"(x,y,—z) = —u"(x,y, z) and analogous with respect
to the xz plane. In particular, p, vy, p, and B, are symmet-
ric whereas By is anti-symmetric with respect to both planes.
Further, B, and v, are anti-symmetric to the xy plane and
symmetric to the xz plane. In contrast, vy is symmetric to the
xy plane and anti-symmetric to the xz plane.
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Similar to the physical quantities, the bow shock and mag-
netopause geometry are expanded into Taylor series with re-
spect to the y and z direction. We restrict our considerations
to the situation at Earth and choose Ns = 0. The latter as-
sumption restricts the model to the vicinity of the x axis.
The origin of the coordinate system coincides with the sub-
solar point of the bow shock. Further, bow shock and mag-
netopause can be approximated by series expansions to the
y and z direction up to the second order. Taking into account
the symmetries, the shock geometry is given by

x =cps,y > +cps. 2%, (11)

where the coefficients cgs,y and cps, ; determine curvatures
of the shock. Similarly, the magnetopause parametrization is
given by

X = xMs +emp,y ¥ +emp ;22 (12)

where xys is the distance of the magnetopause to the bow
shock along the x axis, and cmp,y and cvp,; are magne-
topause curvature parameters. The expansions of the bow
shock and the magnetopause are used to introduce a new co-
ordinate X which adjusts the coordinate system to the mag-
netosheath geometry. The new coordinate X is defined by

~ X X
X=x— (ch,y + Ac}v%) v — (CBS,Z + Acz%) 2, (13)

with Acy :=cmp,y — ¢Bs,y and Ac; :=cmp,; — ¢Bs,;. Note
that X =0 gives the bow shock parametrization (11) and
X = xMs gives the magnetopause parametrization (12). Ap-
proximative analytical expressions for the curvature pa-
rameters are determined by cmp,y =2/(5 Axmp), cmp,z =
1/(2 Axmp), cBs,y =2/(5 Axgs), and cs,; = 1/(2 Axps),
where Axgs = |xg| and Axyp denotes the distance of the
magnetopause to the Earth’s center (Nabert et al., 2013).

The coordinate x is replaced by the new coordinate X in
expansion (7). Then, the series expansion fits the magne-
tosheath geometry which leads to faster convergence of the
series expansions. For Ng =0 and taking into account the
symmetries of the situation considered as described above,
series expansion (7) simplifies to

p(x,y,2) = po(X), (14)
v(x, y,2) = (0x0(%), vy10(F) ¥, v201(X) 2) (15)
p(x,y,2) = po(x), (16)
B(x.y.2) = (B:01(X) 2, By11(¥) yz. Bo(X)" (17)

where the new coordinate X is used and terms of zeroth order
in y and z are labeled by 0 instead of 00.

Substituting this ansatz (14)—(17) into the MHD equations
(1)—(5) and equating coefficients of the lowest order, i.e., y =
z =0, a system of ordinary differential equations is obtained:

(P vx0)" + po (vy10+ vz01) =0, (18)
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(B0 vx0) + Bzovy10 =0, (19)
B9 B!, — B,o1 B
PO V10 Uy + P+ ——— o =0, (20)
Mo
po=kpf. @21
Derivatives with respect to x are marked by a prime, e.g.,
Py = 3% po.

The coefficients of the highest order, i.e., vy10, v;01, and
By01, are assumed to be constant to close the system of or-
dinary differential Eqgs. (18)—(21). The values of all coeffi-
cients directly behind the bow shock at x = 0 are related to
the solar wind by solving the Rankine—Hugoniot conditions
with respect to the shock geometry (e.g., Petrinec and Rus-
sell, 1997). The solar wind conditions are denoted by Ngw
for the density, vsw for the velocity, Bsw for the magnetic
field, and psw for the gas pressure. The expansion coeffi-
cients of the bow shock parametrization (11) and the magne-
topause parametrization (12) are determined by inner bound-
ary conditions related to the planetary magnetic field (8)-
(10). The magnetopause is considered as a rigid boundary
and the plasma flow needs to be tangential to this boundary.
Further, the magnetopause holds a modified pressure balance
according to Mead and Beard (1964). A detailed derivation
of all boundary conditions and higher-order equations can be
found in Nabert et al. (2013). System (18)—(21) with the cor-
responding boundary conditions is referred to as the reduced
MHD model of zeroth order.

This model presented is restricted to solar wind magnetic
fields along the z direction. However, a y component can
be taken approximately into account by substituting B, <«
(B;+ By)o'5 as shown in Nabert et al. (2015). Thus, the mag-
netic field within the yz plane is chosen as a new z compo-
nent of the magnetic field. Note that effects of a magnetic
field’s x component in the solar wind does not contribute to
the zeroth-order solution (Nabert et al., 2015).

Further, we briefly summarize the important relations of an
approximative solution of the zeroth-order model used in this
study presented in Nabert et al. (2013) as well. The subsolar
magnetopause distance to the Earth’s center Axyp can be
expressed by

Axmp = amp M %, (22)

where app depends on the solar wind conditions and is de-
fined by

£ °
awp = —"——) . (23)
2 1o kp pSW Vg

As shown by Mead and Beard (1964) f ~ 2.44 and accord-
ing to Kivelson and Russell (1995) kp =~ 0.89 hold for a broad
range of solar wind conditions. The thickness of the magne-
tosheath along the X direction is given by

xMs = ams amp M %, 24)
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with the solar wind dependent factor

1
ams : (25)

T (084 mps)(gv—DH—1
Here, gy denotes the ratio of the solar wind velocity to the
post-shock velocity and mpg measures the solar wind mag-
netization:

1
1+ 0y po(0) °

B%(0)

mas ‘= 1— (26)

Note that g, and mpg are determined using the Rankine—
Hugoniot conditions to obtain an analytical solution for the
situation considered (e.g., Siscoe, 1983). The expression ays
was derived as part of an analytical solution of the reduced
MHD model in Nabert et al. (2013). The factor aps describes
magnetosheath variations apart from variations in the magne-
topause distance. For example, it contains the magnetosheath
broadening due to a magnetic pile-up of solar wind magnetic
field.

Gas pressure and temperature are second-order moments
of the velocity distribution function which are difficult to
determine precisely from spacecraft data McFadden et al.
(2008). Thus, we use a cold plasma approximation for our
approaches —i.e., the limit of a vanishing solar wind gas pres-
sure is considered.

Although the assumptions of the model are usually valid at
Earth and Mercury, our approach can be generalized. Instead
of considering only a dipole moment, higher-order moments
can be included as well, modifying Eqgs. (8)—(10). Then, a
more general system of ordinary differential equations is nec-
essary which is derived using Eq. (7) instead of ansatz (14)-
an.

3 Estimating the dipole moment
3.1 Using the bow shock location

For a single-spacecraft mission such as MESSENGER, usu-
ally no solar wind data are available while the spacecraft is
crossing the interaction region. Only at the bow shock can
the solar wind conditions often be extracted from the space-
craft data directly in front of the shock. Within the scope of
ideal MHD, unperturbed solar wind reaches the bow shock
and is decelerated at the infinitesimal thin shock. This ap-
proximation is usually valid at the bow shock of Earth and
Mercury because the shock’s thickness is much smaller than
the shock’s subsolar distance. Then, the solar wind informa-
tion and bow shock location can be used to estimate plane-
tary magnetic field parameters with an MHD model of the
interaction.

We consider the subsolar bow shock distance resulting
from the analytical approximation of the reduced MHD
model of the magnetosheath solution by Nabert et al. (2013).

www.ann-geophys.net/35/465/2017/
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The subsolar bow shock distance Axgg, the sum of the mag-
netopause distance (Eq. 22) and the magnetosheath thickness
(Eq. 24), is given by

1
Axps = (1 +ams)amp M3. 27

The coefficients amp and ams are determined by the so-
lar wind conditions at the bow shock as seen in Egs. (23)
and (25) using Rankine—Hugoniot relations.

The terrestrial dipole moment is calculated with THEMIS
data of the THC spacecraft in GSM coordinates. The data
need to be transferred into the coordinate system of the
model. Therefore, the GSM coordinates are first rotated
around the z axis, and then around the y axis to align the
solar wind velocity vector with the x axis. Further, the ori-
gin is transferred from the Earth’s center to the bow shock
by x — Axps + x. Although the x axis of the transformed
GSM coordinates is aligned with the x axis of the model co-
ordinates, the z axis is not necessarily aligned with dipole
moment as in the model. Thus, the projection of the dipole
moment onto the z axis is determined. Assuming a solar wind
within the xy plane of the GSM coordinates, the strength of
the Earth’s dipole moment in the model varies in the range
of its z component and its magnitude in geographic coordi-
nates. Then, using the IGRF (Finlay et al., 2010), the dipole
moment M varies between

—774 % 10° Tm? < M < —7.63 x 10° Tm?. (28)

Thus, the accuracy of an estimation of the dipole moment
using the MHD model presented in Sect. 2 is limited to this
range.

With respect to the new transformed coordinates, the mea-
sured bow shock is located at xgc/gs in the x direction, at
yscyBs in the y direction, and at zgc/ps in the z direction. In-
stead of xsc/Bs, Which requires the subsolar bow shock posi-
tion known to be calculated from observations in GSM coor-
dinates, the distance along the x direction from the Earth’s
center Axsc/gs is introduced which can be easily deter-
mined. If the bow shock crossing occurs at a location off the
stagnation streamline that is beside the x axis, the geometry
of the shock according to Eq. (11) is taken into account to cal-
culate the subsolar bow shock distance in Eq. (27). Using the
analytical expression for the curvature parameters, the bow
shock parametrization (11) is

X = Z.
5 Axgs Y 2 Axgs

(29)

Then, the subsolar bow shock distance is related to the mea-
sured location by

AXxsc/Bs Axd 2y2 22
Axps = . +/ s4C/Bs+ SSC/BS+ Scz/BS' (30)

Solar wind conditions need to be known in addition to the
subsolar bow shock distance in order to calculate the dipole
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moment with Eq. (27). Mean values of 5 min of THC data in
front of the shock transition are used to determine the solar
wind conditions at the shock transition. The data are taken
with a 10 min time gap to the shock because MHD theory
is only approximately valid and solar wind plasma can be
affected even in front of the shock. Ten minutes correspond to
a spatial distance of about 600 km because of the spacecraft’s
velocity of about 1kms~!.

We investigate 11 bow shock transitions close to the sub-
solar point on 8 orbits of the THC spacecraft between 24 Au-
gust and 6 September 2008. During this time interval, mag-
netosheath transitions near the stagnation streamline can be
observed as discussed below. The data are presented in Ta-
ble 1. Due to solar wind variations, multiple bow shock tran-
sitions were observed on 2, 4 and 6 September 2008. Note
that sufficient solar wind data are available between two bow
shock crossings to obtain individual solar wind conditions
for each crossing. Each observed bow shock transition is
used to calculate the dipole moment M with Eq. (27). Val-
ues for multiple shock crossings on an orbit are combined to
a single mean value. The corresponding relative error AM
of each calculation is less than 19 % with respect to the true
value of the Earth’s dipole moment according to Eq. (28).
The mean value of the computed dipole moments from the 8
orbits is M = —7.9 x 10'> Tm> with a standard deviation of
0.8 x 10" Tm3. The error of the mean value differs less than
4 % from the true value of the z component and less than 2 %
from the magnitude.

During the period considered, the THC spacecraft’s dis-
tance to the x axis is less than 5 Rg, except for the transitions
on 24 and 25 August 2008. The subsolar bow shock distance
Axgs is less than 1.1 Rg away from the observed shock dis-
tance beside the x axis Axsc/ps according to Eq. (30). A
model error of the bow shock distance can assumed to be
much smaller than this correction; for example, we might
choose an error of less than 0.2 Rg. The z component of
the solar wind magnetic field is always greater than —3nT.
Our model uses the ideal MHD approximation and conse-
quently, it is not valid for strong southward solar wind mag-
netic fields, which favor reconnection and a subsequent de-
parture from an ideal MHD situation. The corresponding er-
ror can be estimated by the earthward shift of the magne-
topause due to the southward magnetic fields using the mag-
netopause model by Shue et al. (1998). For a solar wind mag-
netic field of —3nT, the magnetopause is about 0.2 Rg closer
to the Earth than computed with Eq. (22). It seems natural to
assume a similar error for the bow shock distance. A further
model error can occur due to the zeroth-order approxima-
tion by choosing Ns = 0 of the reduced model. This model
error for the analytical solution compared to a more accurate
second-order solution was estimated to be about 0.2 R, using
the data of the magnetosheath of 24 August 2008 by Nabert
et al. (2013). An error of 0.2 Rg in the determination of the
bow shock distance for typical solar wind conditions at Earth
is related to an error of less than 6 % in the calculation of the
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Table 1. Bow shock locations close to the subsolar point and the corresponding solar wind conditions observed by THC. The z component of
solar wind magnetic field is B; sw and the magnetic field magnitude in the yz plane is B; sw = (B% swt BZ2 SW)0'5. The computed dipole

moments are also presented.

Date Time Nsw vsw B;sw Birsw AxscBsS  Ysc/BS ZSc/BS M/ 101
(ddm) (@UT) (Iem™) (kms™") @) @D (RE)  (Rp)  (Rp) (Tm?)
24.8. 00:29 7.61 3104 1.11 1.74 12.59 —-5.52 —2.27 —-7.53
25.8. 22:41 6.81 267.8 0.89 1.72 13.64 —4.82 —2.41 —-7.25
27.8. 22:20 8.04 272.6 —1.41 3.58 13.41 —4.43 —-2.10 —6.94
29.8. 21:06 6.92 324.1 —-2.93 3.99 14.37 —3.56 —2.62 —-9.05
31.8. 21:49 6.98 334.3 —2.47 2.60 13.63 —3.73 -2.02 —8.48
02.9.(a) 19:48 6.96 250.1 —1.94 1.98 15.22 —2.40 —1.74 —7.92
02.9.(b) 20:58 7.43 276.7 0.93 2.32 14.17 —2.81 —2.57 —8.23
04.9.(a) 21:02 2.05 571.5 1.55 4.10 14.06 —2.33 —1.68 -7.52
04.9.(b) 21:23 2.05 562.1 1.50 4.26 13.76 —2.46 —1.62 —6.87
06.9.(a) 21:26 4.02 546.9 —-3.05 3.78 13.50 —-2.20 —1.45 —-9.42
06.9. (b) 22:30 3.93 560.1 2.92 3.15 12.47 —2.46 —1.49 —7.78

dipole moment M according to Eq. (27). Typical solar wind
conditions at the Earth are a solar wind ion particle density
of about Ngw = 7cm ™3, a velocity vsw = 430km s~1, aso-
lar wind magnetic field Bsw = 6nT, and an ion temperature
Tsw = 8 X 10°K (Slavin and Holzer, 1981).

Additionally, errors of estimating the dipole moment can
occur due to a bow shock motion caused by varying solar
wind conditions or data errors. The subsolar bow shock dis-
tance to the Earth’s center for typical solar wind conditions at
Earth is about 13 Rg. A variation in the solar wind density of
about 20 % compared to typical solar wind conditions leads
to a variation in the bow shock location of about 0.3 Rg. This
corresponds to a relative error of about 10 % for the dipole
moment M computed by Eq. (27). Further, a variation in the
solar wind velocity of about 20 % corresponds to an error of
about 20 % for the estimated dipole moment M. Errors due to
solar wind variations are usually statistical errors which can-
cel out if a mean value of a large sample size is considered
in contrast to model errors, which can be systematic. The er-
rors considered here are consistent with the estimations of M
using a single bow shock transition as presented in Table 1.
Further, the mean value of these estimations is closer to the
true value of the Earth’s dipole moment than the individual
values as expected.

The method presented takes bow shock locations into ac-
count. In contrast to magnetopause observations, the solar
wind conditions can be determined at bow shock crossings,
even for single-spacecraft missions. The method provides a
valid estimator for the planetary dipole moment, in which a
larger sample size might reduce the statistical error further.

3.2 Using magnetosheath data

The previous considerations took into account the location of
the bow shock only. From a statistical point of view, it seems
advantageous to include more data points on an orbit for the
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estimation of the dipole moment. If the solar wind conditions
during the magnetosheath crossings of THC are known, each
data point within the magnetosheath can be used to estimate
dipole moment M. However, the error of the estimation will
depend on the level of knowledge of the solar wind condi-
tions. Such an approach is very suitable for two-spacecraft
missions such as BepiColombo. One spacecraft crosses the
interaction region, while the other spacecraft observes the so-
lar wind.

A model of the interaction relates the observations within
the interaction region together with the solar wind data to
the planetary magnetic field. Here, we use the reduced MHD
model with the approximation Ng = 0 presented in Sect. 2.
Similar to Nabert et al. (2015), a cost function can be intro-
duced to quantify the misfit between model solution for any
choice of M and observations. The planetary magnetic field
parameter M in the model is modified until the cost function
is minimized. Then, the model predictions fit to the physical
quantities measured by a spacecraft within the interaction re-
gion.

On the orbit of THC across the magnetosheath, the
plasma’s mass density psc,m, the x component of the veloc-
ity vsc,m, the z component of the magnetic field Bsc ., and
the gas pressure psc,, are measured in GSM coordinates at
locations (xsc,m, Ysc,m» 2sc,m) labeled with the position in-
dex m. The corresponding solar wind conditions at the sub-
solar point for the mass density psw. ., the velocity vsw m,
the z component of the magnetic field Bsw,,, and the pres-
sure psw,, at Earth can be determined by OMNI solar wind
data (http://omniweb.gsfc.nasa.gov/; King and Papitashvili,
2005) representing measurements from a second spacecraft.
Analogously to the previous considerations using bow shock
locations, the data in GSM coordinates are transferred into
the model coordinate system with the x axis aligned to the
solar wind velocity vector.
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The physical quantities p, vy, p, and B, are constant for
X = const as seen in Egs. (14)—(17). Thus, a location beside
the x axis corresponds to a position on the x axis along the
paraboloid geometry with the same values of the physical
quantities. Consequently, a coordinate transformation can be
introduced which relates the location of a data point beside
the x axis to a location on the x axis of the model. Therefore,
the magnetosheath geometry needs to be taken into account
according to Eq. (13). Together with the analytical expres-
sions of the curvature parameters, a spacecraft’s location in
the model coordinates xsc, ysc, zsc is related to a location
Xsc on the x axis by

~ A XSC 2
Xsc =xsc + | ¢cBs,y + Cy% Ysc

3
+ (ch‘z + Aczi) 23 31)
XMS

Measured spacecraft data at the transformed spacecraft coor-
dinate Xsc,,; of the mass density psc.m, the velocity vsc m,
the magnetic field Bsc ., and the pressure psc,,, can be com-
pared to the model solution at locations X = Xsc -

The solution of the model (14)—(17) is found by solv-
ing the differential equations (18)—(21) with the correspond-
ing solar wind conditions and an assumption of the dipole
moment M. A cost function is introduced to quantify the
misfit of data and model solution. Using the method of
least-squares regression analysis, we consider a cost function
which includes the THEMIS plasma (McFadden et al., 2008)
as well as the magnetic field (Auster et al., 2008) data:

g £0 (;SC m) = PSC,m 2
k=3 ( ~ ’ ) (32)
m=1

PSC,m

_ ) ~ 2
Vyo(X —v B.o(x — B
+( 0(XsC,m) SC,m) +( 20(Xsc,m) sc,m) ,

VSC,m Bsc,m

where Mgaa denotes the number of data points in the mag-
netosheath. The gas pressure does not contribute to this cost
function because it is a second-order moment of the velocity
distribution function which is difficult to determine precisely
from spacecraft data.

The cost function depends on the model solution, which
is a function of the dipole moment M. The cost function
is calculated on a grid in the range —12 x 10" Tm3 <M<
—6 x 101 Tm?. The grid space between two values of M is
taken to be 0.004 x 10! Tm?. The minimum value of the cost
function determines the estimated dipole moment. A value
for the dipole moment is estimated from the magnetosheath
data close to the x axis separately for each orbit of THC be-
tween 24 August and 6 September 2008. As an example, the
magnetosheath data on 31 August 2008 in the model coor-
dinates is presented in Fig. 1. We choose a 5 min time reso-
lution for the OMNI as well as THC spacecraft data which
is in accord with the quasi-stationary approximation used in
the reduced MHD model. Note that 5 min is the order of the
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Figure 1. Magnetosheath spacecraft data on 31 August 2008 (red)
and adjusted model results (blue) which determined the dipole mo-
ment to M using the time-dependent OMNI solar wind data (green)
presented in model coordinates.
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Figure 2. Estimated dipole moments using THC data at orbits from
24.8,25.8,27.8,29.8,31.8,2.9, 4.9, and 6.9, labeled by orbit num-
bers 1 to 8. The dipole moment was estimated by THC bow shock
observations together with pre-shock solar wind conditions (blue),
by THC magnetosheath data using the time-dependent OMNI so-
lar wind observations, and by THC magnetosheath data with aver-
age solar wind conditions (green). The z component of the Earth’s
dipole moment is depicted as a black line. Dipole moments are nor-
malized to mporm = 8.0 x 101 Tm?3.

solar wind transit time across the subsolar magnetosheath.
The time-varying OMNI solar wind data are used as bound-
ary conditions. The reduced magnetosheath model solution
is adjusted to the magnetosheath data via minimization of
cost function (32), which determines the dipole moment M.
The corresponding adjusted reduced MHD model solution
on 31 August 2008 is also depicted in Fig. 1. The eight esti-
mated dipole moments from the eight magnetosheath cross-
ings are shown in Fig. 2. Each estimated dipole moment dif-
fers not more than 13 % from the value of the Earth’s dipole
moment. The mean value of the eight computed dipole mo-
ments is M = —7.9 x 10" Tm?3 with a standard deviation of
0.4 x 10" Tm?. The error is less than 4 % with respect to the
z component and less than 2 % with respect to the magnitude
of the Earth’s dipole moment.
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Figure 3. Estimated dipole moments (red) using cost function (32)
and the value of the cost function at its minimum normalized to
the number of data points of the respective magnetosheath transi-
tion (grey). The dipole moments are normalized to mporm = 8.0 X
1013 Tm?3.

The value of the estimated dipole moment using the en-
tire magnetosheath data seems comparable to the estimate
using bow shock location information. However, the standard
deviation, related to the statistical error, is halved. The esti-
mated dipole moments taking only bow shock locations into
account are also displayed in Fig. 2. No correlation between
the results of the two different methods is apparent; the cor-
relation coefficient is 0.13. Thus, one can assume different
sources of errors for the two methods. For example, the es-
timations with the bow shock locations use solar wind con-
ditions close to the subsolar point of the shock. Instead, the
OMNI solar wind data take spacecraft data far away from the
bow shock to estimate the conditions at Earth. The latter ap-
proach requires a model to transfer the solar wind conditions
to the Earth which is more error-prone. However, using the
complete time interval of magnetosheath data instead of only
the bow shock location, more data are taken into account, so
that statistical errors might be reduced.

Additionally to the estimated dipole moments, the value
of the cost function (32) normalized to the number of data
points Kpp := K /Mgata is considered in Fig. 3. The value of
Kpp is in the range of 0.04 and 0.2, which gives a mean devi-
ation between data and model solution. Smaller values of the
normalized cost function correspond to a better agreement
between data and model solution. Values of the cost function
below 0.1, i.e., orbit numbers 1, 3, 4, and 5, correspond to
estimators close to the true value. Consequently, it might be
suitable to give more emphasis to estimates which show a
better agreement of model solution and data.

To allow for better comparison of the two different meth-
ods, the approach using magnetosheath data is modified to
take only measured bow shock locations Axgg together with
the OMNI solar wind data into account. Then, cost func-
tion (32) is replaced by a new function,

K = (Axps — Axps) (33)

where Axgsm denotes the subsolar bow shock location of
the model solution corresponding to a certain dipole moment
M. Minimizing this cost function determines the dipole mo-
ment M for any solar wind conditions and measured bow
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shock location. The solar wind conditions using OMNI data
can be determined at all shock transitions of THC consid-
ered in Table 1. The solar wind data are determined as a
mean value of 10 min around a shock crossing. The dipole
moments for all 11 shock transitions are calculated and mul-
tiple shock crossings on an orbit are summed to an average
value. Thus, eight dipole moment estimators are obtained
with a mean value of M = —8.2 x 10" Tm? with a standard
deviation of 1.2 x 10! Tm3. This result has a significantly
increased statistical error compared to the previous result us-
ing the entire magnetosheath data. The error is reduced by
taking the entire magnetosheath data into account instead of
only bow shock locations.

For single-spacecraft missions, the solar wind conditions
during a magnetosheath transition are usually not well known
and average values need to be assumed. To investigate the ad-
vantage of time-dependent considerations, the Earth dipole
moment is estimated using the mean values of the solar
wind conditions of all transitions considered here. These av-
erage conditions of all eight magnetosheath transitions are
for the ion particle density < Ngw >= 6.65cm >, the ve-
locity < vsw >=382.2kms~!, and the magnetic field <
Bsw >=2.84nT. Using these average values as the bound-
ary condition of the reduced MHD model, dipole moments
M can be estimated from the eight magnetosheath cross-
ings once again. The results are also presented in Fig. 2.
The mean value of the dipole moment from the eight val-
ues is M = —8.4 x 10" Tm? with a standard deviation of
1.3 x 10" Tm?>. This corresponds to an error of about 10 %
with respect to the Earth’s dipole moment.

The use of average solar wind conditions leads to a result
that is worse compared to the use of time-dependent solar
wind conditions. The dipole moment is significantly overes-
timated and standard deviation is 3 times larger. The reason
is the nonlinear dependence of the MHD model solution on
the solar wind conditions. Thus, for a precise estimation of
the planetary magnetic field from spacecraft data obtained
within a region strongly influenced by the interaction with
the solar wind, it is an advantage to include the actual solar
wind conditions instead of using average conditions.

4 Conclusions

We examined two different methods to estimate the plane-
tary magnetic dipole field using a reduced MHD model to
take the solar wind interaction into account. The methods
presented were investigated in preparation for the analysis
and interpretation of measurements from the BepiColombo
mission to Mercury (Benkhoff et al., 2010). The results show
that the precision of the estimated dipole field is much better
if the actual solar wind conditions are considered instead of
average values. Thus, we expect more accurate estimates of
Mercury’s magnetic field using BepiColombo data than pre-
vious approaches can provide. Further, the statistical error
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can be reduced by taking more orbits into account. A good
estimation can be made even for single-spacecraft missions
by considering bow shock location information. In contrast
to magnetopause locations, the actual solar wind conditions
at the bow shock can be determined using the pre-shock so-
lar wind data. Here, this leads to an error of less than 4 %
for eight magnetosheath transitions considered with respect
to the true value. Taking not only the bow shock location in-
formation but also data from the entire magnetosheath into
account leads to similar results. However, the statistical er-
ror is significantly reduced. In summary, considering time-
dependent solar wind information as well as data of the en-
tire magnetosheath gives the best estimator for the planetary
dipole moment with smallest statistical error.

In this study, we used a simple reduced MHD model of the
interaction. In a next subsequent step, more data need to be
included to reduce the statistical error. Therefore, the reduced
MHD model, which is valid close to the x axis of the model,
needs to be replaced by an MHD model of the entire magne-
tosheath. Furthermore, the estimation of higher-degree plan-
etary moments such as a quadrupole moment should be con-
sidered.

Data availability. Data from the THEMIS mission are publicly
available and can be obtained from http://themis.ssl.berkeley.edu/
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