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Abstract. This paper presents observational evidence of fre-
quent ionospheric perturbations caused by the magnetar flare
of the source SGR J1550–5418, which took place on 22 Jan-
uary 2009. These ionospheric perturbations are observed in
the relative change of the total electron content (1TEC/1t)
measurements from the coherent ionospheric Doppler radar
(CIDR). The CIDR system makes high-precision measure-
ments of the total electron content (TEC) change along ray-
paths from ground receivers to low Earth-orbiting (LEO)
beacon spacecraft. These measurements can be integrated
along the orbital track of the beacon satellite to construct
the relative spatial, not temporal, TEC profiles that are use-
ful for determining the large-scale plasma distribution. The
observed spatial TEC changes reveal many interesting fea-
tures of the magnetar signatures in the ionosphere. The onset
phase of the magnetar flare was during the CIDR’s nighttime
satellite passage. The nighttime small-scale perturbations de-
tected by CIDR, with 1TEC/1t ≥ 0.05 TECU s−1, over the
eastern Mediterranean on 22 January 2009 were synchro-
nized with the onset phase of the magnetar flare and consis-
tent with the emission of hundreds of bursts detected from the
source. The maximum daytime large-scale perturbation mea-
sured by CIDR over northern Africa and the eastern Mediter-
ranean was detected after ∼ 6 h from the main phase of
the magnetar flare, with 1TEC/1t ≤ 0.10 TECU s−1. These
ionospheric perturbations resembled an unusual poleward
traveling ionospheric disturbance (TID) caused by the ex-
traterrestrial source. The TID’s estimated virtual velocity is
385.8 m s−1, with 1TEC/1t ≤ 0.10 TECU s−1.
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1 Introduction

Magnetars are a subclass of isolated neutron stars possess-
ing the most extreme magnetic fields in the universe with
B > 1014–1015 G (Thompson and Duncan, 1995, 1996). The
magnetar model (Thompson et al., 2002) identified the power
source of these objects to be the decay of their strong mag-
netic fields. Originally classified as two distinct types of
objects, anomalous X-ray pulsars (AXPs) and soft gamma
repeaters (SGRs) are currently believed to be of the mag-
netar class (for reviews, see Woods and Thompson, 2006;
Mereghetti, 2008). In addition to being bright X-ray sources,
SGRs and AXPs emit intense bursts in hard X-rays and soft
gamma rays at a highly unpredictable frequency with peak
luminosities ranging from 1038 to > 1047 erg s−1, which is
considered as the observational signature of magnetars (Dun-
can and Thompson, 1992; Kouveliotou et al., 1998). They
are known to exhibit emissions as sporadic bursts, which
are classified into three kinds according to their luminosi-
ties and durations: giant flares, intermediate flares, and short
bursts. The X-ray source 1E 1547.0–5408, also known as
SGR 1550–5418, was discovered in 1980 with the Einstein
satellite as a point source (Lamb and Markert, 1981). The
discovery of radio pulsations with a period of 2.1 s and a pe-
riod derivative of 2.3×10−11 s s−1 confirmed its AXP classi-
fication (Camilo et al., 2007). It was identified only recently
as a magnetar by Gelfand and Gaensler (2007) based on its
X-ray spectrum and infrared flux. The dipole surface mag-
netic field strength and characteristic age are estimated to
be about 3.2× 1014 G and 0.69 kyr, respectively (Dib et al.,
2012). These features make this object relatively young and
classify it as one of the fastest known rotating magnetars.

In early October 2008, both the Swift Burst Alert Tele-
scope (BAT) and the Fermi Gamma Ray Burst Monitor
(GBM) were triggered by numerous bursts from the source
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SGR 1550–5418 (Israel et al., 2010; von Kienlin et al., 2012).
The source entered a second, even more active phase on
22 January 2009, during which a large number of bursts were
observed by several satellites, as detected by Swift (Gron-
wall et al., 2009), Fermi GBM (Connaughton and Briggs,
2009; von Kienlin and Connaughton, 2009), Konus-Wind
(Golenetskii et al., 2009), and RHESSI (Bellm et al., 2009).
BAT was triggered on 22 January 2009 at 01:32:41 UT and
the first X-Ray telescope (XRT) observation on the Swift
satellite began about 50 min later. The peak of the persis-
tent emission occurred ∼ 6 h after BAT was first triggered.
This was accompanied by a hardening of the spectrum in
the 1× 10 keV band (see a summary of the observations
in Table 1 in Scholz and Kaspi, 2011). The wide-band all-
sky monitor (WAM) onboard the Suzaku satellite detected
at least 254 bursts in the 0.16–6.2 MeV band over the pe-
riod of 22 January 2009 00:57–17:02 UT from the direc-
tion of the source. One of these bursts, which occurred
at 06:45:13 UT, produced the brightest fluence in the 0.5–
6.2 MeV range, with an averaged 0.16–6.2 MeV flux and
extrapolated 25 keV–2 MeV fluence of about 1× 10−5 and
about 3× 10−4 erg cm−2, respectively (Terada et al., 2009).
Mereghetti et al. (2009) reported on the observations ob-
tained by the INTEGRAL satellite on 22 January 2009 with
the emission of hundreds of bursts in a time span of a
few hours, starting at 02:46 UT. The peak of the bursting
rate occurred around 06:48 UT, when more than 50 bursts
were recorded in 10 min. The total fluence measured from
the 125 bursts emitted from 04:30 to 07:00 UT was 5.2×
104 erg cm2 (25 keV–2 MeV). This activity was observed by
several high-energy missions, creating a good opportunity for
investigating the broadband spectra of magnetar short bursts
and intermediate flares in detail. Broadband spectral proper-
ties have been reported by several authors (e.g., van der Horst
et al., 2012; Lin et al., 2012; Younes et al., 2014).

Earth’s ionosphere can be thought of as a gigantic detec-
tor that responds to the ionizing radiation emitted through
high-energy astrophysical phenomena without interruption
such as Earth occultation (Mondal et al., 2012). Soft X-ray
emissions from solar flares are the more common sources
of ionospheric disturbances, which can be monitored us-
ing the very low frequency (VLF) technique (Bracewell and
Straker, 1949; Thomson et al., 2005; Pacini and Raulin,
2006; Raulin et al., 2006, 2010). In addition to these solar–
terrestrial events, the lower ionosphere is also affected by
high-energy photons (X-rays and gamma rays) from extrater-
restrial sources like gamma ray burst (GRB) and SGR (Inan
et al., 1999, 2007; Tanaka et al., 2010). Cosmic gamma
rays play an important role in ionizing the neutral atmo-
sphere through electromagnetic cascading (Mahrous and In-
oue, 2002). The ionospheric disturbance caused by a cos-
mic gamma ray burst was first reported by Fishman and
Inan (1988). It suggested that gamma rays deposit their en-
ergies in the lower ionosphere, abnormally ionize the neu-
tral atmosphere there, and modify the electron density height

profile. So far the detection of ionization excesses by using
VLF observations has only been reported for four extrater-
restrial events (for summary see Raulin et al., 2014).

Many authors observed and reported the first observa-
tion of the source SGR J1550–5418 through VLF pertur-
bation on 22 January 2009. The South America VLF Net-
work (SAVNET; Raulin et al., 2009) clearly showed sud-
den amplitude and phase changes at the corresponding times
of eight of these X-ray bursts (Tanaka et al., 2010). Mon-
dal et al. (2012) found convincing evidence that the lower
ionospheric height went down significantly by about 15 km
during that event. They also computed the evolution of the
electron number density of the ionosphere due to that event
and found that the ionosphere was becoming increasingly
charged due to repeated bombardment of the high-energy ra-
diations. Raulin et al. (2014) detected an ionospheric distur-
bance during the event, which was revealed by the simul-
taneous phase and amplitude records from two VLF propa-
gation paths between the transmitter NPM (Hawaii) and the
receivers ROI (Brazil) and EACF (Antarctic Peninsula). Al-
though the previously mentioned authors have specifically
studied the temporal sudden ionospheric disturbance (SID)
due to the magnetar flare, there was no information about the
spatial ionospheric perturbations, sometimes called the trav-
eling ionospheric disturbance (TID), caused by the event.

The TIDs are understood as plasma density fluctuations
that propagate through the ionosphere at an open range of ve-
locities and frequencies. The trends of such fluctuations can
be seen in most of the ionosphere measurement techniques
(Hernández-Pajares, et al., 2006). However, the exact gener-
ation mechanisms of TIDs, such as Joule heating and Lorentz
force (e.g., Oyama and Watkins, 2012) are only poorly under-
stood because of several interaction mechanisms with elec-
tric and magnetic fields as well as thermospheric winds.

In this paper, we introduced the spatial, not temporal, iono-
spheric disturbance during the gigantic extraterrestrial event
from the source SGR J1550–5418 that took place on 22 Jan-
uary 2009. The unusual TID parameters due to that magnetar
flare, such as direction and speed are estimated. The paper is
divided into four sections. We describe the instrumentation in
Sect. 2, the discussion in Sect. 3, and finally the conclusions
in Sect. 4.

2 Instrumentation

The Ionospheric Tomography Network of Egypt (ITNE) is a
chain of passive UHF–VHF (ultra-high-frequency) receivers,
known as coherent ionospheric Doppler radars (CIDRs). The
first ITNE CIDR was installed in May 2008 at Helwan (ge-
ographic latitude 29.9◦, longitude 31.3◦) (Mahrous et al.,
2010). CIDR receivers make high-precision (on the order of
104 TECU s−1) (1 TEC unit (TECU)= 1016 electrons m−2)

measurements (where TEC is total electron content) between
rays underneath low Earth-orbiting (LEO) spacecraft. Each
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Figure 1. Map shows the solar nighttime and daytime conditions (dark blue and light blue areas, respectively) on 22 January 2009 at
00:52 UT, the projection on the surface of the Earth of the Sun’s position (yellow circle), moon’s position (white circle), and the sub-flare
point (red star). The black rectangle defines the field of view of CIDR, as indicated by the satellite tracks in Fig. 2.

receiver measures the Doppler shift in 150 and 400 MHz sig-
nals at a 1 s data rate. A linear combination of these Doppler
shifts reveals relative change of the total electron content
(1TEC/1t). These measurements can be integrated along
the orbital track of the beacon satellite, flying between 700
and 1100 km, to construct the relative TEC profile at a 1 s
data rate (relative to an unknown integration constant). The
derived TEC values are useful for determining the large-
scale plasma distribution, but the 1TEC/1t data are more
sensitive to small-scale phenomena and wave activity. The
CIDR system has many advantages over the Global Naviga-
tion Satellite System (GNSS). Because CIDR’s LEO space-
craft fly at lower orbits, with an altitude range of 521 to
1158 km, the measured TEC is purely ionospheric, as op-
posed to GNSS TEC measurements, which have a minor
plasmaspheric component. In addition, LEO satellites cross
the receiver’s field of view in less than 15 min; therefore, the
structures with 1TEC/1t are usually treated as spatial not
temporal variations. CIDRs and their measurements are dis-
cussed in greater detail by Garner et al. (2008, 2009).

3 Discussion

This study examines five satellite passes observed by CIDR
during the SGR J1550–5418 burst on 22 January 2009.
We add one additional pass to show the recovery phase
of the magnetar flare on 23 January 2009. The space
weather data show that 22 January 2009 was a geomagnet-
ically quiet day. The total Kp index was 2.0 (http://wdc.
kugi.kyoto-u.ac.jp/kp/index.html), and the F10.7 cm solar ra-
dio flux was 70.1× 1022 W m−2 Hz (http://eng.sepc.ac.cn/
F107Index.php). Figure 1 shows the solar terminator during
the SGR burst on 22 January 2009 at 00:52 UT. The dark and
light blue areas indicate the regions under night time con-
ditions and under solar illumination, respectively. The white
and yellow circles represent the projections of the moon and

the Sun, respectively, on the Earth’s surface. The point on the
Earth directly beneath the flare (sub-flare point) was located
at 54.3◦ S, 14.0◦ E (Tanaka et al., 2010), and its position is
defined by a red star. The black rectangle shows the field of
view of CIDR, corresponding to the satellite tracks in Fig. 2.
The onset phase of the magnetar flare was during the CIDR’s
nighttime satellite passage. Figure 2 shows a set of maps of
the CIDR’s passing satellites over northern Africa and the
eastern Mediterranean region. The satellite tracks are shown
in solid lines and the ionospheric pierce point (i.e., the in-
tersection of the receiver satellite line of sight with the iono-
sphere, assumed as a thin layer at a fixed height) is shown
in thick lines on the map, respectively. The CIDR’s passing
satellites began at 01:21 UT on 22 January 2009 and ended
on 23 January 2009 at 04:10 UT. Half of the satellite passes
were during the local nighttime (indicated by black filled cir-
cles in the bottom right corner of each map), while the rest
were during the daytime (open white circles). The F region
pierce point is set to 350 km and the obliquity factor is only
used for azimuth angles within 30◦ of an overhead pass. The
geomagnetic equator is offset 7–8◦ north of the geographic
equator in the Egyptian sector.

Figure 3 shows the vertical total electron content (VTEC)
along the satellite tracks shown in Fig. 2 as a function of
the geographic latitude. The VTEC latitudinal distribution
at the 350 km intercept resembles a logarithmic profile. The
complete profile of the equatorial anomaly is shown in pan-
els a, c, and d. The gradual reduction of VTEC from 22 to
30◦ geographic latitude (from 15 to 23◦ magnetic latitude)
suggests that radio rays are passing through the equatorward
side of the northern equatorial fountain peak (see Mahrous et
al., 2010, for details). The total VTEC gradient was slightly
larger than 5× 10−2 TECU per degree, as measured by the
OSCAR 25 satellite overpass. A larger TEC gradient is ob-
served in those local sunrise passes (panels c, d, and e) than
was seen during the previous nighttime passes (panels a, b,
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Figure 2. Set of maps show the satellite track (thin line) and the F
region (thick line) pierce points over northern Africa and the eastern
Mediterranean. The local night and day times during the satellite
passes are indicated by black filled and white open circles at the
bottom right corner of each map. The CIDR passes (alphabetically
sequenced from a to f) were detected on 22 January 2009 at 01:21,
02:56, 12:48, 14:36, 15:44 UT and on 23 January 2009 at 04:10 UT,
respectively.

and f). This enhancement is over 3 times larger than the en-
hancement observed during the morning pass.

Figure 4 shows the relative change in the total electron
content 1TEC/1t along the corresponding satellite tracks
shown in Fig. 2 as a function of the geographic latitude.
The VTEC latitudinal distribution at the 350 km intercept
resembles a logarithmic profile. The first CIDR passage
(Fig. 4a) showed that the ionosphere was remarkably smooth
on 22 January 2009 at 01:21 UT. Both BAT and INTEGRAL
were triggered with the emission of hundreds of bursts in the
band (25 keV–2 MeV) from the source SGR 1550–5418 at
01:32:41 and 02:46 UT, respectively (see Scholz and Kaspi,
2011; Mereghetti et al., 2009). Nearly 10 s after INTEGRAL
was triggered, the CIDR started to detect small-scale iono-
spheric disturbances over the eastern Mediterranean between
30.5 and 41◦ geographic latitude at 02:56 UT (Fig. 4b), with
1TEC/1t ≥ 0.05 TECU s−1. The peaks of the bursting rate
detected by BAT, Suzaku, and INTEGRAL occurred around

Figure 3. VTEC versus geographic latitude of the F region inter-
cept. The passage time corresponds to the same panels (alphabeti-
cally sequenced) in Fig. 2.

07:32:41, 06:45:13, and 06:48 UT, respectively. These day-
time emissions affected the lower ionosphere with hundreds
of bursts in the band 1 kev–6.2 MeV (Tanaka et al., 2010;
Mondal et al., 2012; Raulin et al., 2014). A high level of iono-
spheric perturbations were detected by CIDR over northern
Africa and the eastern Mediterranean ∼ 6 h later between 23
and 28◦, with 1TEC/1t ≤ 0.10 TECU s−1 at 12:48 UT (see
Fig. 4c).

The visual examination of this passage found a structure
in the 1TEC/1t profile similar to the wave-like structure
that occurred between 29 and 42◦. It is worthwhile to men-
tion that this is a signature of gravity waves created over the
Anatolian plateau. This scenario is suggested by Garner et
al. (2011), who verified that these kinds of ionospheric per-
turbations are associated with the orographic lift of the at-
mosphere over the Anatolian region, possibly through the
propagation of the upward gravity waves. The amplitude of
these waves is ≥ 0.01 TECU s−1, indicating that they would
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Figure 4. 1TEC/1t versus geographic latitude of the F region in-
tercept. The passage time corresponds to the same panels (alphabet-
ically sequenced) in Fig. 2. The vertical red dashed lines show the
disturbance upper limits during the main phase of the magnetar’s
flare.

not generally be visible during more active ionospheric con-
ditions.

The ionospheric perturbation continued, and even ex-
panded, to much higher latitudes up to 35◦ (see Fig. 4d).
These structures resembled the poleward TIDs observed be-
tween 23 and 36◦ at 14:36 UT. The upper latitude limit of the
ionospheric disturbance detected during the main phase of
the magnetar flare is indicated by the red dashed vertical lines
in Fig. 4c and d. The comparison between the two upper lim-
its defines the growth of the disturbed area, which expanded
from 28 to 35◦ within 1.8 h. The TID’s estimated virtual ve-
locity is 385.8 m s−1, with 1TEC/1t ≤ 0.10 TECU s−1. The
descending phase of the ionospheric perturbation observed
between 33 and 37.5◦ continued until 15:44 UT (Fig. 4e),
then totally recovered on 23 January 2009 at 04:10 UT
(Fig. 4f).

4 Conclusions

This paper presents convincing evidence that the source SGR
J1550–5418 repeatedly caused significant ionospheric distur-
bances during the burst onset phase of the magnetar flare.
The space weather data show that 22 January 2009 was a ge-
omagnetically quiet day, with no effects of solar flares and
geomagnetic storms on the ionosphere. The repeated bom-
bardment of the high-energy radiations by that source was
enough to enhance the electron number density of the iono-
sphere as computed by Mondal et al. (2012). The spatially
relative TEC changes observed by the CIDR system reveal
many interesting features of the magnetar’s signature in the
ionosphere. The northern equatorial fountain peak and grav-
ity waves created over the Anatolian plateau are two ordi-
nary phenomena resolved from VTEC latitudinal distribu-
tion. The onset phase of the magnetar flare was during the
CIDR’s nighttime satellite passage.

The nighttime small-scale perturbations detected by
CIDR, with 1TEC/1t ≥ 0.05 TECU s−1, over the eastern
Mediterranean on 22 January 2009 were synchronized with
the onset phase of the magnetar flare and were consistent
with the emission of hundreds of bursts from the source,
as detected by BAT and INTEGRAL. It is well known
that only the stronger bursts can be detected during day-
time ionospheric conditions. In the present case, the emit-
ted bursts would have produced an ionospheric disturbance
large enough to be detected by CIDR during the daytime. The
maximum large-scale perturbation was detected by CIDR,
with 1TEC/1t ≤ 0.10 TECU s−1, over northern Africa and
the eastern Mediterranean during the daytime ∼ 6 h after the
main phase of the magnetar flare. These ionospheric pertur-
bations resembled an unusual poleward TID caused by an
extraterrestrial source. The TID’s estimated virtual velocity
was 385.8 m s−1, with 1TEC/1t ≤ 0.10 TECU s−1. The di-
rection of the TID towards the North Pole suggests the op-
posite location of the ionizing source, which is in harmony
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with the sub-flare point (see Fig. 1). The proposed creation
mechanism is similar to joule or particle heating, except that
the ionizing radiation is X-ray emitted by the source SGR
1550–5418.

In general, CIDR observations appear as an interesting di-
agnostic tool of high-energy astrophysical bursts emitted by
extraterrestrial sources. For magnetars, their ionospheric re-
sponse complements their detection in space, in particular
when space observations are not available due to detector sat-
uration or Earth occultation.

Data availability. Short-time data are available. Kindly contact the
author.
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