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Abstract. A rigorous derivation of the Jüttner (covariant
Boltzmann) distribution is provided for anisotropic pressure
(or temperature) tensors. It was in similar form anticipated
first by Gladd (1983). Its manifestly covariant version fol-
lows straightforwardly from its scalar property.
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The Jüttner distribution (Jüttner, 1911) is the relativis-
tically generalized classical isotropic Maxwell–Boltzmann
distribution, whether written in its dependence on relativis-
tic particle energy εp =mγ (p)c2 or momentum p, with γ =√

1+p2/m2c2. The phase-volume element dx dp is covari-
ant (a consequence of its scalar nature). Hence the Jüttner
distribution is as well covariant but not manifestly covariant.
In anisotropic relativistic gases or plasmas (for application
to anisotropic plasmas cf. Yoon, 1989, 2007; Gladd, 1983)
and in drifting plasmas (for recent examples cf. e.g. Swis-
dak, 2013; Lopez et al., 2014; Alves et al., 2015; Zenitani,
2015; DeVore et al., 2015) the form of the Jüttner distribu-
tion is usually assumed. Below we provide its simple analyt-
ical derivation and manifestly covariant version.

Thermally relativistic implies thermal speeds ve/c&10−2.
Avoiding creation, annihilation, and Compton interactions
requires T < mc2, with T temperature in energy units, hence
weakly relativistic thermal electrons of some 10 eV< T <

0.5 MeV, covering most hot classical plasmas.
Maxwell–Boltzmann distributions are solutions of the sta-

tionary one-particle Boltzmann equation with the argument
of the ratio of the single particle to average thermal ener-
gies, viz. εp/T . Properly normalized they give the probabil-
ity at temperature T for finding all particles of given mo-
mentum p (or energy εp) in the interval dp (or dεp) in
momentum-space volume dp. With three-momentum vector

p = (p⊥ cosφ, p⊥ sinφ, p‖) in index notation

ε2
p = c

2piδ
i
jp

j
+m2c4 (1)

suggests introduction of temperature anisotropy guided
by the diagonal anisotropy of pressure P=N

[
T⊥δ

j
i +

(T‖− T⊥)δ
3
3
]

(as for instance in magnetized plasma), with
anisotropy in direction 3 (in plasma the direction of the
magnetic field b = B/B, for instance). The inverse pres-
sure / temperature tensor is P−1

= (T⊥N)
−12,

2=2ij = δi
j
+ (A− 1)δ3

3, with A= T⊥/T‖. (2)

Replacing δij in Eq. (1) with 2ij , valid in the four-velocity
frame Uj = (εp/mc,0), defining β⊥ =mc

2/T⊥, β‖ =

mc2/T‖, putting p⊥ = p sinθ,p‖ = p cosθ , and defining
p/mc −→ p yields

ε2
p

T 2
⊥

= β2
⊥

[
1+p2

(
sin2θ +Acos2θ

)]
. (3)

The square root of Eq. (3) enters the Boltzmann factor.
Up to normalization C, the anisotropic Jüttner distribution
function of the ideal gas becomes

FJ (p,A)= C exp
{
−β⊥

√
1+p2

⊥
+Ap2

‖

}
. (4)

With A= 1, β⊥ = β‖ = β this is the ordinary Jüttner func-
tion. Expanding the root in the limit c→∞ reproduces
the ordinary nonrelativistic anisotropic Maxwell–Boltzmann
distribution. Extensions to drifting or non-ideal gases are
straightforward.

This in principle trivial result was anticipated first without
proof by Gladd (1983) in application to the whistler instabil-
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ity in weakly relativistic anisotropic plasmas1. Normaliza-
tion, the purpose of Jüttner’s effort, yields

C =N
√
Aβ⊥/4π(mc)3K2 (β⊥) (5)

with K2(β⊥) the Bessel function, trivially containing the
anisotropy factor A.

The distribution Eq. (4) is covariant, valid in time-like
slices of Minkowski space. Explicit manifestly covariant
isotropic versions have been provided numerically as well
(cf. Chacón-Acosta et al., 2010; Curado et al., 2016). Since
F(p) is a scalar phase space density, its manifestly covariant
version is F(xν,pν)

√
−g for both isotropic and anisotropic

cases. g < 0 is the determinant of the metric tensor gµν in
(+−−−) metric, a version to be applied in curvilinear co-
ordinates. In general relativistic four-space, µ,ν = 0,1,2,3,
and p→ pν is the four-momentum. Operator interpretation
of the three-momentum p = }k relates any of these versions
to quantum field theory.

Jüttner’s anisotropic distribution is useful for analytical or
numerical (as in Gladd, 1983) calculations. In particle-in-cell
simulations the initial distribution is prescribed. In practice
there is little need to choose it in the simulations to satisfy
the Jüttner equilibrium requirement. Solving for all relativis-
tic particle orbits in their self-consistent fields, the initial dis-
tribution readily adjusts itself to the physical distribution that
evolves under the mutual interactions.

As a side product, this straightforward rigorous derivation
indicates that in relativistic media the isotropic temperature
T and its inverse β = 1/T should be understood as vectors
(confirming Nakamura, 2009, who suggested it for different
reasons). In presence of anisotropy they become tensors. In-
cluding particle spins requires a slightly different treatment.
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