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Abstract. A method of mapping electric fields along geo-

magnetic field lines is applied to the IGRF (International Ge-

omagnetic Reference Field) model. The method involves in-

tegrating additional sets of first order differential equations

simultaneously with those for tracing a magnetic field line.

These provide a measure of the rate of change of the sepa-

ration of two magnetic field lines separated by an infinites-

imal amount. From the results of the integration Faraday’s

law is used to compute the electric field as a function of po-

sition along the field line. Examples of computations from

a software package developed to implement the method are

presented. This is expected to be of use in conjugate studies

of magnetospheric phenomena such as SuperDARN (Super

Dual Auroral Radar) observations of convection in conjugate

hemispheres, or comparison of satellite electric field obser-

vations with fields measured in the ionosphere.

Keywords. Ionosphere (instruments and techniques) – me-

teorology and atmospheric dynamics (instruments and tech-

niques)

1 Introduction

In an accompanying paper (Walker and Sofko, 2016, here-

after Paper 1) a new method for mapping electric fields in ge-

omagnetic field models has been described. The method uses

an additional set of first order differential equations for w⊥,

the perpendicular separation of two closely spaced field lines.

These differential equations use the spatial gradient tensor of

the geomagnetic field to compute how the separation of the

field lines changes with distance measured along the field

line. For magnetostatic fields the field lines are equipoten-

tials. This means that Faraday’s law can be used to deduce

how a component of the electric field changes with distance

along the field line. If two values of w⊥ are calculated then

the total electric field can be found.

Electric field mapping is important for conjugate studies

of ionospheric and magnetospheric convection. In this pa-

per we discuss its application to the IGRF (International Ge-

omagnetic Reference Field) (Finlay et al, 2010; Finlay and

Thébault, 2015), presenting expressions for the gradient ten-

sor, and computing examples of electric field mapping.

Because we have limited this paper only to the Earth’s in-

ternal field, the results will only be suitable for use at fairly

low altitude or at lower latitudes, where the external fields

are small. Future work will incorporate the external fields in

the form of the Tsyganenko (1987, 1995, 1996) models.

2 Method of calculation

2.1 Differential equations

The method of calculating the electric field mapping is de-

scribed in detail in Paper 1. It involves integrating a set of

nine simultaneous first order differential equations:

dxi

ds
= µ̂i =

Bi

B
(1)

dw
(1)
i

ds
= Tijw

(1)
j − µ̂iµ̂lTklw

(1)
k (2)

dw
(2)
i

ds
= Tijw

(2)
j − µ̂iµ̂lTklw

(2)
k . (3)

Here x1, x2, x3 are the Cartesian coordinates of a point on a

field line, and s is the distance measured along the field line.

The separation vectors w
(1)
i and w

(2)
i represent the perpen-

dicular separation of two closely spaced field lines, normal-

ized with respect to their initial values. The geomagnetic field
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Bi is assumed to be modelled by a well-behaved function of

xi whose spatial derivatives are known. The unit vector in the

magnetic field direction is µ̂i ≡ Bi/B. The gradient tensor of

µ̂i is

Tij =
∂µ̂i

∂xj
. (4)

2.2 Coordinate systems

The IGRF is fixed in a frame rotating with the Earth. The

coordinate system in which it is expressed is the XYZ sys-

tem of geomagnetism, which is a spherical polar system in

which X is the horizontal northward component of B, Y its

eastward component, and Z its component inwards along r .

Computationally, the most straightforward way to integrate

Eqs. (1), (2), and (3) is in a suitable Cartesian system. The

obvious coordinate system to use is the geographic system

GEO (Russell, 1971) in which z is aligned with the spin axis,

x is in the equatorial plane through the Greenwich meridian,

and y is eastward. These are the only two coordinate systems

used in this paper. Only when the external magnetic field is

introduced will other coordinate systems be introduced. In

this section we provide some results necessary for the use of

these coordinate systems.

In the XYZ system the gradient operator is

∇ =−θ̂
1

r

∂

∂θ
+ φ̂

1

r sinθ

∂

∂φ
− r̂

∂

∂r
. (5)

If we define

dx′ =−r dθ (6)

dy′ = r sinθ dφ (7)

dz′ =−dr (8)

we can write

B ′i =−
∂V

∂x′i
(9)

and

Tij =
∂Bi

∂x′j
. (10)

The transformation of Bi and Tij from the orthogonal

curvilinear XYZ system to the GEO system is the only re-

quired coordinate transformation that involves non-Cartesian

tensors. We can avoid the need to invoke the formalism of

general tensor notation by calculating these transformations

explicitly.

The transformation of the operator ∂/∂x′i (and hence the

magnetic field) from spherical polar to geographic coordi-

nates is

∂

∂xi
= lij

∂

∂x′i
, (11)

where

lij =

 −cosθ cosφ −sinφ −sinθ cosφ

−cosθ sinφ cosφ −sinθ sinφ

sinθ 0 −cosθ



=

 −xz/ρr −y/ρ −x/r

−yz/ρr x/ρ −y/r

ρ/r 0 −z/r

 , (12)

where

r2
= x2
+ y2
+ z2 (13)

ρ2
= x2
+ y2. (14)

Note that lij is not a tensor but a 3×3 transformation matrix.

For transformations between Cartesian systems lij is con-

stant: for the curvilinear XYZ system it is not. Thus

∂Bi

∂xj
=−

∂lik

∂xj

∂V

∂x′k
− lik

∂2V

∂xj∂x
′

k

=
∂lik

∂xj
B ′k + liklj l

∂B ′k

∂x′l
(15)

and the 3× 3× 3 transformation matrix Sijk ≡ ∂lik/∂xj can

be represented by its i = 1,2,3 components

S1jk =


z(ρ2x2

− r2y2)

ρ3r3

xy

ρ3
−
y2
+ z2

r3

xyz(r2
+ ρ2)

ρ3r3
−
x2

ρ3

xy

r3

−
ρx

r3
0

xz

r3



S2jk =


xyz(r2

+ ρ2)

ρ3r3

y2

ρ3

xy

r3

z(ρ2y2
− r2x2)

ρ3r3
−
xy

ρ3
−
x2
+ z2

r3

−
ρy

r3
0

yz

r3



S3jk =


xz2

ρr3
0

xz

r3

yz2

ρr3
0

yz

r3

−
ρz

r3
0 −

ρ2

r3

 .

(16)

2.3 The electric field

In Eqs. (1), (2), and (3) the initial magnitudes of w
(1)
i and

w
(2)
i , are unity. So long as they are not collinear, they can

be in any direction normal to the magnetic field at the ini-

tial point on the magnetic field line. For convenience we can

take the initial values as those lying respectively in the mag-

netic meridian and in the longitudinal direction. Thus they

and the magnetic field are initially mutually perpendicular.
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During the integration they remain perpendicular to the mag-

netic field, but not necessarily to each other.

The electric field components are found using Faraday’s

law as described in paper 1. The more elementary discussion

there means that if E
(1)
i and E

(2)
i are the covariant compo-

nents of the electric field along w
(1)
i and w

(2)
i then the scalar

products, E
(1)
i w

(1)
i and E

(2)
i w

(2)
i are constant along a field

line. The covariant components of E can be found from this

and converted to contravariant components using(
E1

E2

)
=

1

sin2θ

(
1 −cosθ

−cosθ 1

)(
E1

E2

)
, (17)

where θ is the angle betweenw
(1)
i andw

(2)
i . The total electric

field can then be found from the parallelogram rule.

3 The IGRF and its spatial derivatives

3.1 Definition of the IGRF

The internal magnetic field of the earth (Finlay et al, 2010)

can be described by a magnetic scalar potential, expressed as

a spherical harmonic expansion:

V (r,θ,φ)= a

N∑
n=1

n∑
m=−n

Rl(r)8
m
n (φ)2

m
n (θ), (18)

where

Rn(r)=
{a
r

}n+1

(19)

8mn (φ)= g
m
n cosmφ+hmn sinmφ (20)

2mn (θ)= P
m
n (cosθ), (21)

where a is the radius of the Earth, r the radial distance

from its centre, θ the co-latitude, φ the longitude measured

eastwards, ξ = cosθ , and the Pmn are the Schmidt quasi-

normalized associated Legendre polynomials of degree n and

order m with normalization constants

(−1)m

√
2(n−m)!

(n+m)!
(22)

The International Geomagnetic Reference Field (IGRF) is

characterized by the coefficients gmn and hmn that have been

computed by determining the best fit to data from the exten-

sive world wide network of geomagnetic observatories. For

dates earlier than the year 2000 N = 10, and for dates there-

after N = 13. The coefficients g and h have units of nan-

otesla. We choose to measure all lengths in units of Earth

radii, so that, in what follows, a = 1. Thus, in our calcula-

tions, the units of V are nanotesla × Earth-radii, the units of

B are nanotesla and the units of the magnetic gradient tensor

are nanotesla per Earth-radius.

3.2 Expressions for the magnetic field and gradient

tensor

The magnetic field is given by

B =−∇V (23)

and thus the components of B are

X =
1

r

∂V

∂θ
=

N∑
n=1

n∑
m=−n

{
Rn

r
8mn

d2mn

dθ

}
(24)

Y =−
1

r sinθ

∂V

∂φ
=−

N∑
n=1

n∑
m=−n

{
Rn

r

d8mn

dφ

2mn

sinθ

}
(25)

Z =
∂V

∂r
=

N∑
n=1

n∑
m=−n

{
dRn

dr
8mn2

m
n

}
. (26)

The elements of the tensor ∂B ′i/∂x
′

j in the geomagnetic

system of coordinates are then

∂B1

∂x1

≡−
1

r

∂X

∂θ

=−

N∑
n=1

n∑
m=−n

{
Rn

r2
8mn

d22mn

dθ2

}
(27)

∂B1

∂x2

≡
1

r sinθ

∂X

∂φ

=

N∑
n=1

n∑
m=−n

{
Rn

r2

d8mn

dφ

1

sinθ

d2mn

dθ

}
(28)

∂B1

∂x3

≡−
∂X

∂r

=−

N∑
n=1

n∑
m=−n

{(
1

r

dRn

dr
−
Rn

r2

)
8mn

d2mn

dθ

}
(29)

∂B2

∂x1

≡−
1

r

∂Y

∂θ

=

N∑
n=1

n∑
m=−n

{
Rn

r2

d8mn

dφ

[
−
2mn cosθ

sin2θ
+

1

sinθ

d2mn

dθ

]}
(30)

∂B2

∂x2

≡
1

r sinθ

∂Y

∂φ

=−

N∑
n=1

n∑
m=−n

{
Rn

r2

d28mn

dφ2

2mn

sin2θ

}
(31)

∂B2

∂x3

≡−
∂Y

∂r

=

N∑
n=1

n∑
m=−n

{(
1

r

dRn

dr
−
Rn

r2

)
d8mn

dφ

2mn

sinθ

}
(32)
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∂B3

∂x1

≡−
1

r

∂Z

∂θ
=

N∑
n=1

n∑
m=−n

{
1

r

dRn

dr
8mn

d2mn

dθ

}
(33)

∂B3

∂x2

≡
1

r sinθ

∂Z

∂φ

=

N∑
n=1

n∑
m=−n

{
1

r

dRn

dr

d8mn

dφ

2mn

sinθ

}
(34)

∂B3

∂x3

≡−
∂Z

∂r

=−

N∑
n=1

n∑
m=−n

{
d2Rn

dr2
8mn2

m
n

}
. (35)

We require Bi and the tensor ∂Bi/∂xj in the geo-

graphic system. These can be found using the transforma-

tions (Eq. 11) and (Eq. 15). The coding of these is easy in

Python, using the Scipy Einstein summation function to sum

on repeated suffices.

4 Examples of electric field mapping

The method of calculation is essentially the same as that de-

scribed in Paper 1, except that the magnetic field and the gra-

dient tensor are found from the IGRF rather than the Har-

ris model. The integration is carried out in the GEO system.

The initial values for the integration are the coordinates in

the GEO system of the starting point on the field line, and

the components of the unit vectors perpendicular to the mag-

netic field in the azimuthal and meridional directions. The

normalization of the field line separations is in terms of the

initial infinitesimal separation element, hence the initial val-

ues have magnitude unity. At each step of the integration the

magnetic field and gradient tensor are computed in the XYZ

system and transformed to the GEO system using the trans-

formations of Sect. 2.2. The associated Legendre polynomi-

als and their first derivatives are obtained from the standard

Scientific Python (scipy) package. Their second derivatives

are found from the second order differential equation for the

polynomials. After each step the field line coordinates and

the normalized separation vector are recorded in the GEO

system. At the conclusion of the integration procedure any

initial electric field can be mapped to each point along the

field line, as described in Sect. 2.3.

We present here some examples of mapping in the IGRF.

It should be borne in mind that, because the external field

is not included, the techniques are only valid for mid to low

invariant latitudes, or for low altitudes.

4.1 Mapping to the ionosphere

In order to map to the ionosphere, either from the conjugate

ionosphere in the opposite hemisphere, or from a spacecraft

position, after each step in the integration we evaluate the

difference between the calculated height and the height at
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Figure 1. Normalized field line separation for a field line originating

from Sanae Antarctica (72.0◦ S, 1.0◦W).

which to terminate the integration:

f (s)= h(s)−h0 = {r(s)−RE}−h0. (36)

When f (s) changes sign we exit from the integration pro-

cess and use the last two values of f (s) as the initial values of

a root finding process to find the value of the step that makes

f (s) zero. The root finding process is regula falsi, the rule of

false position (Press et al., 1989, Sect. 15.1). Although a first

order process it generally converges after only a few steps.

To illustrate the procedure we select a starting point at

Sanae Antarctica (71◦,40′22′′ S, 2◦50′26′′W ). Although this

site is at a relatively high geographic latitude, it is a plasma-

pause station with corrected geomagnetic latitude 60.69◦,

based on IGRF 2005 (Cafarella et al., 2008). At times of low

magnetic activity, the field lines are quite well represented by

the IGRF.

Figure 1 shows the normalized field line separations plot-

ted as functions of position along the field line. The “az-

Ann. Geophys., 34, 67–73, 2016 www.ann-geophys.net/34/67/2016/
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(a) (b)

(c) (d)

Figure 2. Different aspects of the geomagnetic field line origi-

nating from Sanae Antarctica (Geographic coordinates −71.67◦,

−2.84◦) and electric field vectors (shown in red). Initial electric

field has meridional component 40 mV m−1 and azimuthal compo-

nent −30 mV m−1. Equator and Greenwich meridian shown in red,

180◦ meridian shown in green. Lines of latitude and longitude are

separated by 15◦.

imuthal” direction means that the initial separation is mea-

sured in the direction waz = µ̂× r̂; the “meridional” direc-

tion means that the initial direction of the separation is in the

direction waz× µ̂. It must be emphasized that these separa-

tions do not remain in these orientations as the integration

progresses as would be the case with a dipole field. Nor do

the two directions remain normal to one another. While the

integration procedure ensures that they each remain normal

to B, by the time the opposite hemisphere is reached the an-

gle between the two directions is 80.4◦.

The electric field can be found at points along the field line

by defining its value at the starting point, by using Eqs. (52)

and (53) of Paper 1. As an example, let its component in the

meridian direction be 40 mV m−1 and in the azimuthal direc-

tion 30 mV m−1. Figure 2 shows a Mayavi2 (Ramachandran

and Varaquaux, 2011) visualization of this mapping from

Sanae Antarctica to the opposite hemisphere. The visualiza-

tion software allows the image to be rotated as desired. Four

different views are shown as the image is rotated. It can be

seen how the field line reaches a conjugate point in the iono-
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Figure 3. Electric field as a function of distance measured along the

field line.

sphere of the southern coast of Greenland. The field is large

at the ionospheres and becomes much smaller in the equato-

rial plane. Visualizations such as this do not greatly improve

our understanding when the field is approximately dipolar: it

will be much more useful when the external fields have been

incorporated in the model.

The components and total electric field as a function of

distance measured along the magnetic field line are shown

in Fig. 3. This allows us to gain a more quantitative idea of

the variation along the magnetic field line. Note, in partic-

ular, how much stronger the electric field is off Greenland

compared with that at Sanae. This a consequence of the fact

the Sanae is sufficiently close to the South Atlantic magnetic

anomaly for the magnetic field to be significantly smaller

than the dipole field for the magnetic latitude.

It should be noted that, while the electric field compo-

nents are inversely proportional to the field line separation,

the magnetic field is inversely proportional to the cross sec-

tional area of the flux tube, which is of the order of the square

of the field line separation. The convection velocity, with

magnitude E/B therefore scales as cross-sectional area di-

vided by field line separation: the convection velocity E/B

increases with decreasing magnetic field.

Another representation is shown in Fig. 4. Here the pro-

jections of the electric field on the three coordinate planes of

the GEO system are shown. This gives a good idea of how

the components of the electric field vary along the field line.

The actual values of the electric fields in the GEO system at

the beginning and end points for this particular case are

E0 = (−36.37,−14.59,−31.06) mVm−1

Eend = (−55.64,−19.83,36.01) mVm−1.

This shows how different values at the two conjugate points

can be because of the asymmetries in the IGRF. The same

result is shown graphically in the left hand panel of Fig. 5.
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Figure 4. Projection of electric field on the coordinate planes for

the case shown in Fig. 2.

−40 −30 −20 −10 0 10
Meridional component of E (mV/m)

−10
0

10
20
30
40
50
60
70

Az
im

ut
ha

l c
om

po
ne

nt
 o

f E
 (m

V/
m

)

E0
Eend

−40 −30 −20 −10 0 10
Meridional component of E (mV/m)

−10

0

10

20

30

40

50

Az
im

ut
ha

l c
om

po
ne

nt
 o

f E
 (m

V/
m

)

E0
Eend

Figure 5. Comparison of electric fields at conjugate points. Left-

hand panel: conjugate points in opposite hemispheres. Right-hand

panel: conjugate points at Sanae and the magnetic equator.

4.2 Mapping to the equatorial surface

We define the intersection with the magnetic equatorial sur-

face to be the point on the field line where r reaches its max-

imum value, i.e. where dr/ds = 0. Then

dr

ds
=
∂r

∂x

dx

dr
+
∂r

∂y

dy

dr
+
∂r

∂z

dz

dr
(37)

Since r2
= x2n+ y2

+ z2,

∂r

∂x
=
x

r

∂r

∂y
=
y

r

∂r

∂z
=
z

r
(38)

and dx/dr , dy/dr , dz/dr are given by Eq. (1). We thus have

the conditions

µ̂ · r̂ = 0, (39)

which we could have stated directly. The left hand side of this

equation is the function of s whose root must be found in the

convergence process. The result of this for the same point of

origin as the previous example is that, at the equator,

Eeq = (0.4,−4.71,−0.82) mV/m. (40)

This field is compared with the initial field in the right hand

panel of Fig. 5.

We need not show any graphical information for this case

since it is the same as the initial half of the trace for the pre-

vious case.

5 Discussion and conclusions

The purpose of this paper has been to implement the method

of electric field mapping described by Walker and Sofko

(2016) for the IGRF. Expressions for the gradient tensor of

the geomagnetic field for this case have been derived. From

these a set of first order differential equations for the per-

pendicular distance between two magnetic field lines sepa-

rated by an infinitesimal amount can be found. This distance

is normalized in terms of the value at the starting point to

give a separation vector. These equations can be evaluated

numerically simultaneously with the equations for tracing a

magnetic field line. The component of the electric field in the

direction of the separation vector can be mapped along the

field line by applying Faraday’s Law, noting that the electric

field is always normal to the magnetic field. If this is done for

two different initial separation vectors then the total electric

field can be found.

The results of calculations show that the method is viable

and generally useful. Currently the limitations are that it can

only be used where external magnetic fields are small enough

to be neglected, that is not between points on field lines that

extend into a region where the external fields are important.

This limitation will be removed by applying the method to

the Tsyganenko field model.
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Of course, the method only applies to electrostatic fields.

In practice this means that scale of time variation of the elec-

tric field must be long compared with the Alfvén transit time

along the field line. So long as we are only considering con-

ditions where the IGRF is a good representation of the total

magnetic field this is reasonable. Extending the method to

greater radii and more active conditions will require imple-

mentation using the Tsyganenko models. In such cases it will

be necessary to proceed with caution, ensuring that the elec-

tric fields induced by the changing magnetic fields are small

compared with the electrostatic field.

A software package is being developed for general use and

will be released under an open source licence.
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