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Abstract. Collisionless shock waves in space and astrophys-
ical plasmas can accelerate electrons along the shock layer
by an electrostatic potential, and scatter or reflect electrons
back to the upstream region by the amplified magnetic field
or turbulent fluctuations. The notion of the critical pitch an-
gle is introduced for non-adiabatic electron acceleration by
balancing the two timescales under a quasi-perpendicular
shock wave geometry in which the upstream magnetic field
is nearly perpendicular to the shock layer normal direction.
An analytic expression of the critical pitch angle is obtained
as a function of the electron velocity parallel to the magnetic
field, the ratio of the electron gyro- to plasma frequency, the
cross-shock potential, the width of the shock transition layer,
and the shock angle (which is the angle between the upstream
magnetic field and the shock normal direction). For typical
non-relativistic solar system applications, the critical pitch
angle is predicted to be about 10◦. An efficient acceleration
is expected below the critical pitch angle.
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1 Introduction

Collisionless shocks in space and astrophysical plasmas are
unique in that electrons are efficiently accelerated there. Dif-
ferent types are possible for the acceleration mechanisms.
For a quasi-parallel shock at which the upstream magnetic
field is nearly aligned with the normal direction of the shock
layer, the electrons can be efficiently trapped by turbulent
fluctuations on the both sides of the shock. Since the incom-

ing flow speed on the upstream side is higher than that on the
downstream side, the electron trapping leads to a diffusive
shock acceleration (Drury, 1983). For a quasi-perpendicular
shock, the electrons are accelerated within the shock transi-
tion layer by the electrostatic, cross-shock potential which is
sustained by different bulk motions of the ions to the elec-
trons (Goodrich and Scudder, 1984). On the other hand, the
electrons can be scattered or reflected away from the shock
layer by a sudden increase of the magnetic field or turbulent
fluctuations at the shock ramp. One may thus formulate that
the electrons at the quasi-perpendicular shock undergo two
competing effects: acceleration or scattering. The purpose of
this article is to estimate the critical pitch angle for the elec-
tron acceleration at the quasi-perpendicular shock.

2 Critical pitch angle

Naively speaking, for a smaller pitch angle, the electrons
are nearly field-aligned (with respect to the magnetic field)
and should have sufficient time to stay in the shock transi-
tion layer for an efficient acceleration by the electrostatic po-
tential. For a larger pitch angle, the electrons are scattered
and eventually kicked away from the shock transition layer,
either in the upstream and downstream directions. We de-
fine the critical pitch angle through the balance between two
timescales, the electron acceleration time τacc and the elec-
tron scattering time τsc, into a formula as τacc = τsc.

One may roughly estimate the acceleration timescale as
τacc =

`
v‖

, where ` stands for the field-aligned length and
v‖ the electron velocity parallel to the magnetic field, re-
spectively. Likewise, the scattering timescale is estimated as
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τsc =
d
v⊥

using d , which is the width of the shock transi-
tion layer and v⊥ the perpendicular velocity. The two length
scales, ` and d are related to each other by an angle θnB be-
tween the upstream magnetic field and the shock normal di-
rection as `cosθnB = d.

We use the equation of motion (in a non-relativistic sense)
for the electron in the parallel or field-aligned component:

mv̇‖ = eE‖, (1)

from which the parallel velocity for a timescale of τacc is
obtained as

v‖ =
e

m
E‖τacc+ v‖0 (2)

and the length scale parallel to the field as

`=
e

m
E‖τ

2
acc+ v‖0τacc. (3)

Herem denotes the electron mass, e the electric charge of the
electron, E‖ the field-aligned component of the electric field,
and v‖0 the initial parallel velocity of the electron. For the
perpendicular component, we have

d = v⊥τsc. (4)

That is, the scattering timescale is of the order of the electron
gyro-period. The pitch angle is defined as tanα = v⊥/v‖. The
electrons are treated as non-adiabatic particles in this theoret-
ical frame by neglecting the mirror force in Eq. (1) and the
electron drift in Eq. (4). See Eqs. (3.92) and (3.87) in Bellan
(2006) for the parallel component of equation of motion and
the perpendicular component of electron drift, respectively.
The question of whether the electrons are adiabatic or not at
the shock transition needs to be evaluated additionally when
testing the notion of the critical pitch angle against observa-
tional or simulation data.

The acceleration timescale can explicitly be obtained by
regarding Eq. (3) as a quadratic equation of τacc. The solution
for τacc > 0 is

τacc =
m

2eE‖

(
−v‖0+

√
v2
‖0+ 4

e

m
E‖`

)
. (5)

The condition for the critical pitch angle is τacc = τsc, from
which we obtain an estimate for the critical pitch angle αcr
(after some algebra) as

tanαcr =
2eE‖d
mv2
‖0

[
−1+

√
1+

4eE‖d
mv2
‖0 cosθnB

]−1

(6)

=
2x

−1+
√

1+ 4x
cosθnB

, (7)

where the dimensionless quantity x is introduced as

x =
eE‖d

mv2
‖0
=
c2

v2
‖0

�e

ωpe

E‖

B

d

λe
=
c2

v2
‖0

�e

ωpe

8

Bλe

d

λe
. (8)

Figure 1. Critical pitch angle as a function of the dimensionless
quantity x for different values of the shock angle between the up-
stream magnetic field and the shock normal direction θnB.

For the particle-in-cell simulation by Comişel et al. (2011,
2015), v‖0

c
= 0.3, �e

ωpe
=

1
8 , 8

Bλe
= 0.1, d

λe
= 1, θnB = 81◦, the

dimensionless quantity is x = 0.14, and the critical angle is
αcr = 14◦.

Figure 1 shows the profile of the critical pitch angle αcr as
a function of the dimensionless quantity x (Eq. 7). Smaller
values of x indicate high-energy, small-pitch-angle electrons
in a thin shock layer. The critical pitch angle shows an
asymptotic behavior at smaller values of x (x < 0.1), and be-
comes smaller from about 20 to 10◦ and further to 1◦ as the
magnetic field angle from the shock normal changes from
70, 80, and 89◦. It is interesting to note that x increases at
a larger electrostatic potential and a weaker magnetic field.
Therefore, a stronger electrostatic potential leads to a larger
critical pitch angle and thus enables more particles to be ac-
celerated.

3 Perspective

The critical shock angle is formulated as a function of the
electron velocity parallel to the magnetic field, the ratio of the
electron gyro- to plasma frequencies, the electrostatic poten-
tial, the width of the shock transition layer, and the shock an-
gle (which is the angle between the upstream magnetic field
and the shock normal direction). From the above simple (and
algebraic) estimate, particularly in Eq. (8), one draws a les-
son that the electron acceleration is efficient in an increasing
sense of the critical pitch angle (or equivalently, an increas-
ing sense of the dimensionless quantity x) under the condi-
tions of (1) lower parallel velocities of the incoming parti-
cles, (2) a stronger magnetic field or a lower electron density,
(3) a higher electrostatic potential at the shock transition, or
(4) a thicker transition layer. For typical non-relativistic so-
lar system applications, the critical pitch angle is predicted to
be about 10◦ or even less. Our treatment does not include the
effect of turbulent fluctuations explicitly. Thus it would be in-
teresting to study in detail whether or how adiabatic electron
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acceleration and heating are affected by the shape or time
evolution of the shock potential.

A caveat needs to be addressed here. As we have assumed
non-adiabatic motion of electrons, the spatial gradient of the
magnetic or electric field must be smaller than the electron
gyro-radius such that the magnetic moments of electrons are
no longer constant. The condition of non-adiabatic motion
for the electric field is (Gedalin et al., 1995)

e|∇E⊥|

me�2
e
> 1. (9)

Here�e = eB/me is the electron cyclotron frequency. Using
the Gauss law on the electric field,

∇ ·E =
ρe

ε0
, (10)

where ρe and ε0 denote the charge density and the permit-
tivity of free space, respectively. One may re-write the non-
adiabatic condition (Eq. 9) into a simpler form (using the re-
lation to the permeability of free space µ0 and the speed of
light c as ε0µ0 = c

−2) as

Erest

Emag
=

1
2me δne c

2

1
2µ0
B2

> 1, (11)

where the fluctuating electron number density is estimated
through the electric charge density as δne = ρe/e, neglecting
the ion contribution. In essence, the rest energy of the per-
turbed electron fluid must exceed the energy density of the
magnetic field.

Understanding the relationship between the cross-shock
potential and the particle dynamics such as trapping, par-
allel acceleration, and perpendicular scattering with respect
to the mean magnetic field has various applications to the
collisionless shocks in the solar system and in astrophysical
systems. The method of Liouville mapping provides high-
time-resolution electron velocity distribution functions and
is a useful tool to evaluate the cross-shock potential (Scud-
der et al., 1986; Scudder, 1995; Lefebvre et al., 2007). The
dependence of the critical pitch angle on the shock geometry,
the shock potential, and the electron parallel velocity can be
tested not only numerically using direct numerical simula-
tions such as particle-in-cell algorithms but also observation-
ally using the novel MMS (Magnetospheric Multiscale) mis-
sion (Burch et al., 2016). It is also interesting to note that the
idea of critical pitch angle works for any short-scale gradi-
ent with a parallel electric field such as a steepened electron-
scale whistler wave, and not exclusively at shock waves.
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