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Abstract. When studying magnetospheric convection, it is

often necessary to map the steady-state electric field, mea-

sured at some point on a magnetic field line, to a magneti-

cally conjugate point in the other hemisphere, or the equa-

torial plane, or at the position of a satellite. Such mapping

is relatively easy in a dipole field although the appropriate

formulae are not easily accessible. They are derived and re-

viewed here with some examples. It is not possible to derive

such formulae in more realistic geomagnetic field models.

A new method is described in this paper for accurate map-

ping of electric fields along field lines, which can be used

for any field model in which the magnetic field and its spa-

tial derivatives can be computed. From the spatial derivatives

of the magnetic field three first order differential equations

are derived for the components of the normalized element of

separation of two closely spaced field lines. These can be in-

tegrated along with the magnetic field tracing equations and

Faraday’s law used to obtain the electric field as a function of

distance measured along the magnetic field line. The method

is tested in a simple model consisting of a dipole field plus a

magnetotail model. The method is shown to be accurate, con-

venient, and suitable for use with more realistic geomagnetic

field models.

Keywords. Ionosphere (ionosphere-magnetosphere interac-

tions; instruments and techniques) – magnetospheric physics

(instruments and techniques)

1 Introduction

In studies of magnetospheric convection, such as those by

the SuperDARN network (Greenwald et al., 1995), the map-

ping of electric fields along magnetic field lines to the lo-

cation of satellites on the same field line or the conjugate

point in the ionosphere in the opposite hemisphere is of con-

siderable importance. Except in the neighbourhood of strong

auroral activity it can be assumed that the parallel conduc-

tivity is infinite so that for large-scale electric fields that are

electrostatic on the timescale of interest, the magnetic field

lines are equipotentials. For a dipole magnetic field, the map-

ping is easy, although, surprisingly, techniques for doing so

are not explicitly covered in elementary texts on magneto-

sphere physics. For more realistic models of the magneto-

sphere where the magnetic field lines are stretched, as they

are for lines reaching the magnetic equator at distances r0
beyond geostationary orbit, the problem of mapping can be-

come quite complex.

Most mapping has been done by concentrating on the elec-

tric potential. For an electrostatic field the magnetic field

lines are equipotentials. If the field is required several mag-

netic field lines are traced and their separation calculated.

From their separation the gradient of the electric potential is

estimated to give the electric field. Examples of this approach

are in Lyons and Williams (1984, chapter 2) for a dipole field

and Baker et al. (2004) for a more general field. This is in-

herently inaccurate, requiring the evaluation of a small dif-

ference of large quantities. For example, the typical length of

an auroral latitude field line is 105 km. If we compare electric

fields at the conjugate points in the ionosphere by consider-

ing two field lines separated by 10 km at the ground, then in

order to achieve 10 % accuracy (1 km) in the field line sep-

aration at the conjugate point the arrival points of the two

adjacent field lines must be computed to 1 part in 105.

This paper presents a new technique that can directly com-

pute the electric field mapping in any geomagnetic field

model provided that the magnetic field and its spatial deriva-
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tives are given at all points of interest. Provided that the mag-

netosphere is in a steady state, the electric field mapping is a

straightforward application of Faraday’s law. If the element

of separation of two field lines can be calculated as a func-

tion of position on the field line, then, since the field lines are

equipotentials, the electric field can be calculated. Since the

separation is calculated by integrating an analytic formula

along with the field line, its accuracy is the same as that of

the field line position.

It is, however, also very useful to have as a reference the

expected mapping for a purely dipole field. The derivation of

expressions for mapping in a dipole field is straightforward,

but, surprisingly, no convenient collection of the relevant for-

mulae seems to be available. Mozer (1970) has provided for-

mulae for the special case of mapping the ionospheric elec-

tric field to the dipole equatorial plane but not the more gen-

eral formulae. There appears to be no simple published ver-

sion of the actual mapping of the components ofE and of the

components of the convective drift between conjugate points

along dipole field lines.

We therefore first provide an easily accessible derivation

of a number of relevant formulae for a dipole field. They are

useful for tutorial purposes and provide analytic expressions

for validating the new tensor field mapping techniques. These

mappings are used for some illustrative examples which give

rough estimates of how electric fields and convective drifts

vary with altitude. For example, we make comparisons be-

tween convective drifts measured by the DMSP satellites at

about 840 km altitude and SuperDARN F-region measure-

ments in the 250–325 km altitude range, forL values of about

6.6 and lower. For L∼ 6.6, these comparisons should nor-

mally show that the DMSP measurements should be about

14 % greater, simply because of the mapping of the convec-

tive drift from the F-region to DMSP altitude.

Finally we introduce a new method in which a second rank

tensor is analytically derived which satisfies a set of first or-

der differential equations. This tensor provides a measure of

the divergence and convergence of the field lines and can be

found by a step-by-step integration of the differential equa-

tions simultaneously with the tracing of the magnetic field

line. This can be used to deduce the electric field without the

inaccuracies inherent in the method used, inter alia, by Baker

et al. (2004). The method is tested for a simple model con-

sisting of a dipole field with a Harris (1962) current sheet to

simulate the magnetotail.

2 Mapping in a dipole field

2.1 Basic ideas

All mapping techniques depend on the same principle. Ex-

cept where there are electric fields parallel to B, for example

near auroral arcs, the magnetic field lines are equipotentials.

We may write Faraday’s law in the form∮
E · dl = 0 (1)

provided that the timescales on which changes take place is

longer than the Alfvén transit time so that the magnetic in-

duction d8/dt can be ignored. If we then consider a contour

bounded by two adjacent field lines and terminated at each

end by line segments δw normal to B then there is no contri-

bution to the integral from the portion of the contour coincid-

ing with the field lines. Then if E1 is the component of the

electric field parallel to w1 and E2 that parallel to w2, (Eq. 1)

becomes

E1δw1−E2δw2 = 0 (2)

or

E1

E2

=
δw2

δw1

. (3)

Thus we simply need to find how δw changes along the

field lines and the electric field component along it is in-

versely proportional to its magnitude. Equivalently, the mag-

netic field lines lie on electric equipotentials so that the elec-

tric field is perpendicular to the magnetic field. If we consider

two closely spaced magnetic field lines separated by perpen-

dicular distance δw and having an electric potential differ-

ence δ8 then the component of the electric field parallel to

δw is given by

E =− lim
δw→0

δ8

δw
∝

1

δw
. (4)

Mozer (1970) gives expressions for the mapping of the

electric field between the ionosphere and the equatorial

plane:

EMi

EMe

= 2L

√
L−

3

4
(5)

EWi

EWe

= L3/2, (6)

where EM is the component of the electric field perpendicu-

lar to B in the meridian plane and EW is the westward com-

ponent. The subscripts i and e refer to the values at the iono-

sphere and the equatorial plane, although actually the formu-

lae are calculated as if the ionosphere was at zero altitude.

We shall generalize these to apply to the mapping between

any two points on a magnetic field line.

2.2 Dipole field geometry

We shall map the electric field components in a simple cen-

tred magnetic dipole field. Expressions describing the dipole

field and its geometry are given, for example, by Walker

(2005, Appendix B). The geometry near the surface of the
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Earth is shown in Fig. 1. We can use a spherical polar system

with the axis coincident with the dipole axis. Rather than po-

lar angle we use its complement, the magnetic latitude. This

is not the same as the magnetic latitude defined in realistic

models of the magnetic field.

The field is given as a function of position by

B =
BeqR

3
E

r3

{
−2r̂ sinλ+ λ̂cosλ

}
, (7)

where the unit vectors are along the radial and latitudinal di-

rections,Beq is the field at the surface of the earth at the equa-

tor (∼ 3.154×10−5T ), RE is the Earth’s radius (∼ 6378 km),

λ is the magnetic latitude, and r is the radial distance from

the Earth’s centre.

The equation of a dipole field line is

r = RELcos2λ, (8)

where L is the radial distance at which the field line crosses

the equator, measured in Earth radii. The radius r can be

eliminated from Eqs. (7) and (8) to give B as a function of λ

on the field line defined by the parameter L:

B =
B0

{
−2r̂ sinλ+ λ̂cosλ

}
cos6λ

, (9)

where B0, the value of B at the apex of the field line is

B0 = Beq/L
3. (10)

The magnitude of the magnetic field as a function of latitude

on the field line is then

B =
B0

√
1+ 3sin2λ

cos6λ
. (11)

The magnetic field lines lie in the magnetic meridian plane,

in which the unit vector parallel to the magnetic field is given

by

µ̂=
−2r̂ sinλ+ λ̂cosλ√

1+ 3sin2λ
. (12)

The unit outward normal vector in the meridian plane is

given by

ν̂ =
r̂ cosλ+ 2λ̂sinλ√

1+ 3sin2λ
. (13)

We complete the right-handed system with a unit vector

φ̂ normal to the meridian plane in the easterly direction.

The right-handed coordinate system is defined by the vec-

tors µ̂, ν̂, φ̂, in that order. This system of local coordinates is

easily generalized to situations where the field lines do not

lie in a plane. The directions of the unit vectors are shown

B
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A

B
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^^
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Figure 1. Dipole field: directions of unit vectors.

in Fig. 1. The grid at the bottom of the figure shows lines of

latitude and longitude at the Earth’s surface.

The figure also shows the unit vectors r̂ in the radial direc-

tion and λ̂ in the direction of increasing latitude. The angle

between λ̂ and µ̂ is the dip angle ψ , as is the angle between

r̂ and ν̂. Thus

cosψ = λ̂ · µ̂= r̂ · ν̂ (14)

and from Eqs. (12) or (13)

cosψ =
cosλ√

1+ 3sin2λ
. (15)

The element of perpendicular distance between two field

lines that lie in the meridian plane is

δwν = δr cosψ. (16)

The element δr is the radial length element at constant λ so

that, from (Eq. 8),

δr =

(
∂r

∂L

)
λ

δL= REcos2λδL. (17)

Thus

δwν =
REcos3λ√
1+ 3sin2λ

δL. (18)

The perpendicular distance between two closely spaced

field lines that lie in the same L-shell, expressed in terms

of the difference δφ in longitude is r cosλδφ. From the field

line equation this can be expressed in terms of the latitude:

δwφ = LREcos3λδφ. (19)
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Sometimes we need to consider a horizontal path between

the field lines L and L+ δL. At a fixed radius r Eq. (8) for a

field line can be differentiated, keeping r constant, to obtain

0= REcos2λδL− 2RELsinλcosλδλ (20)

so that, at any fixed radius r and latitude λ, the change in L

in moving to a neighbouring field line at λ+ δλ is

δL= 2L tanλδλ. (21)

If we assume that there are no potential drops along the

magnetic field lines, then there can be no component of the

electric field parallel to the magnetic field, and therefore can

only have components along ν̂ and φ̂, so we can write

E = ν̂Eν + φ̂Eφ . (22)

Since ν̂Eν = r̂Er + λ̂Eλ, from Eq. (13) we get

Er =
cosλ√

1+ 3sin2λ
Eν (23)

Eλ =
2sinλ√

1+ 3sin2λ
Eν (24)

and thus Er and Eλ are related by

Er =
1

2
Eλ cotλ. (25)

The mapping of the perpendicular components of the elec-

tric field is now straightforward. We specify a point on the

field line by its latitude λ. Then from the general mapping

relation (Eq. 2) and the expression (Eq. 18) the ratio between

the ν-components of the electric field at two different lati-

tudes is

Eν1

Eν2

=
cos3λ2

cos3λ1

√
1+ 3sin2λ1

1+ 3sin2λ2

(26)

and from Eq. (19) that between the φ components is

Eφ1

Eφ2

=
cos3λ2

cos3λ1

. (27)

There are two closed paths we shall use for Eq. (1). First,

we integrate in the meridian plane between an ionospheric

segment at a fixed altitude r = constant, then along the field

line labelled L (where LRE is the radial distance at which the

line reaches the equator), then radially outward from LRE

to (L+ δL)RE and finally back along the field line to the

ionosphere, as shown in Fig. 2. Then (Eq. 1) becomes

Eλ r δλ= Er,eqRE δL. (28)

Figure 2. Dipole field: meridian plane.

Then Eqs. (8), (21), and (28) can be used to show that

Er,0 =
cos3λ

2sinλ
Eλ, (29)

where the subscript 0 refers to the value at the apex of the

field line.

We can eliminate Eλ from Eq. (24) and (29) to obtain Eν
in terms of Er,0

Eν =

√
1+ 3sin2λ

cos3λ
Er,0. (30)

The total field can then be written

E =
r̂ cosλEr,0+ 2λ̂sinλEr,0+ φ̂Eφ,0

cos3λ
. (31)

2.3 Mapping the convective drift

The convective or Hall drift is given by

vH =
E×B

B2
=
ν̂Eφ − φ̂Eν

B
, (32)

which gives the convective (Hall) drift in terms of the two

E-vector components perpendicular to B. From Eqs. (30)

and (27) this becomes

vH =
ν̂Eφ,0cos3λ

B0

√
1+ 3sin2λ

φ̂Er,0cos3λ

B0

. (33)

We can take the cross product ofE andB given by Eqs. (7)

and (31) to express the drift in spherical polar coordinates

vH =
r̂Eφ,0cos4λ

B0(1+ 3sin2θ)
+

2λ̂Eφ,0 sinλcos3λ

B0(1+ 3sin2λ)

φ̂Er,0cos3λ

B0

. (34)

Equations (33) and (31) can be used to find the ratios of

the convective flow values at two conjugate points (r1,λ1)
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and (r2,λ2). From Eq. (33), the meridian plane convective

velocity component ratio is

vν,2

vν,1
=

cos3λ2

cos3λ1

√
1+ 3sin2λ1

1+ 3sin2λ2

=

(
r2

r1

)3/2
√

4L− 3r1/RE

4L− 3r2/RE

(35)

and the eastward velocity component ratio is

vφ,2

vφ,1
=

cos3λ2

cos3λ1

=

(
r2

r1

)3/2

. (36)

Consider as an example the mapping from the ionosphere

to a DMSP satellite. Table 1 gives the ratios of the velocity

components for mapping along field lines of varying L from

an ionospheric height h1 to DMSP at an assumed altitude h2

of 840 km, using RE = 6378 km.

2.4 Cross-section of a magnetic flux tube

Since ν̂ and φ̂ are mutually perpendicular, and both are nor-

mal to B, the element of cross-sectional area of a flux tube

is

δA= ν̂δwν × φ̂δwφ = µ̂δwνδwφ (37)

We use Eqs. (18) and (19) to show that

δA=
LR2

Ecos6λ√
1+ 3sin2λ

δLδφ (38)

so that, using Eq. (11)

BδA= BeqR
2
ELδφδL= B0δA0 (39)

expressing the conservation of magnetic flux along a field

line. This is, of course, merely a verification that our deriva-

tion of the quantities δwν and δwφ is correct. However, in

what follows, when the magnetic field is not dipolar, the com-

parison of the computed cross-sectional area with the mag-

netic field is a valuable method of checking the accuracy of

the method of computation.

3 Field mapping in general models of the magnetic field

Mathematical models of the geomagnetic field are now avail-

able that not only provide for a good fit to the Earth’s interior

field, but also allow for the various exterior current systems

arising from the interaction of the solar wind and the mag-

netosphere. The IGRF is a spherical harmonic representation

of the interior field (Maus et al., 2005) while Tsyganenko

(1987, 1995, 1996) has used solar wind data to determine ap-

propriate parameters for the exterior field model where each

contribution is given by appropriate polynomials of the co-

ordinate system with the coefficients determined by the solar

wind conditions. In such a model the magnetic field is speci-

fied everywhere as a function of position

B = B(r), (40)

where r is the position.

We discuss the mapping of electric fields along field lines

in such a model. It is not the intention of this paper to perform

detailed calculations in the various realistic models; this will

be left to a future paper. We discuss only the principles with

illustrative calculations in a simplified model.

In what follows we use vector notation and Cartesian ten-

sor notation (eg Walker, 2005, Appendix A1) interchange-

ably as convenient. A subscript i takes the values (1,2,3) rep-

resenting the three Cartesian components of a vector. Second

rank Cartesian tensors have two subscripts. A repeated suf-

fix implies summation. Consider a field line originating at a

point located at a radius ri . An adjacent point on the field line

is at ri + δri where the magnitude of δri is δs. The notation

is that differences δ represent the difference between quanti-

ties measured on the adjacent field lines, while differences1

arise as a consequence of moving along the field line.

The unit vector parallel to the field line is

dri(s)

ds
≡ µ̂i =

Bi

B
. (41)

If the magnetic field is defined throughout space this is a set

of three first order simultaneous differential equations for the

field line. They can be integrated numerically step by step

using a Runge-Kutta or other suitable process.

Now consider a field line passing through some point in

space that is taken as the origin as shown in Fig. 3a. At a point

A, distance s along the field line, the unit vector µ̂≡ B/B is

directed parallel to the field line. An adjacent field line passes

through point B, displaced, normal to µ̂, by a small amount

w⊥i . The adjacent field line lies along BD. Taylor’s theorem

shows that, to first order in w⊥i , the unit vector tangent to the

second field line at B is

µ̂i + δµ̂i = µ̂i +
∂µ̂i

∂xj
w⊥j = µ̂i + Tijw

⊥

j , (42)

where

Tij ≡
∂µ̂i

∂xj
. (43)

Note that unit vectors can only change direction not mag-

nitude. Since µ̂i is a unit vector, δµ̂i is normal to it, and

has components parallel and perpendicular to w⊥i . The par-

allel component arises from the divergence of the two field

lines while the perpendicular component is the consequence

of shear of the field lines.

If we now advance a small distance 1s from A to C and

from B to D the separation of the adjacent field line is w⊥i +

1w⊥i . In the diagram AC and BE are parallel and of length

www.ann-geophys.net/34/55/2016/ Ann. Geophys., 34, 55–65, 2016
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Table 1. Mapping of the convective drift from the ionosphere at height h1 to DMSP altitude h2 = 840 km along dipole field lines of varying

L. The ratio of the eastward (φ) components (column 2) does not change with L. The ratio of velocity components vν in the magnetic

meridian plane is given for various L.

h1 vφ,2/vφ,1 vν,2/vν,1 vν,2/vν,1 vν,2/vν,1 vν,2/vν,1 vν,2/vν,1 vν,2/vν,1 vν,2/vν,1
(km) (all L) L= 6.6 L= 6.0 L= 5.5 L= 5.0 L= 4.5 L= 4.0 L= 3.0

350 1.1112 1.1168 1.1174 1.1181 1.1189 1.1199 1.1213 1.1260

300 1.1237 1.1299 1.1306 1.1314 1.1323 1.1334 1.1350 1.1402

250 1.1365 1.1433 1.1441 1.1449 1.1459 1.1472 1.1489 1.1546

200 1.1494 1.1569 1.1578 1.1587 1.1598 1.1612 1.1631 1.1694

150 1.1627 1.1708 1.1718 1.1728 1.1740 1.1755 1.1775 1.1827

100 1.1762 1.1850 1.1860 1.1871 1.1884 1.1901 1.1923 1.1997

1s. The distance BG is also of length 1s. If we were to

move from point B a distance 1s in a straight line along the

direction of µ̂ we would reach the point E while along the

direction of µ̂+ δµ̂ we would reach G. The displacement

from E to G is δw⊥ and results from the divergence and

shear of the field lines. Clearly, since the magnitude of µ̂ is

unity,

δw⊥i

1s
=
δµ̂i

1
= Tijw

⊥

j . (44)

The vector w⊥+ δw⊥ is not, however, perpendicular to the

field line at C because of the curvature. It must be rotated to

point D to coincide with w⊥+1w⊥. The definition of the

field line curvature is illustrated in Fig. 3b (Walker, 2005,

Appendix B.2). A small arc of length 1s on the field line

subtends an angle φ at the centre of curvature. The unit vector

µ̂i , tangent to the field line rotates along the arc through the

same angle φ. In the limit φ→ 0, 1µ̂i is normal to µ̂i . The

curvature κ is defined as a vector of magnitude 1/R directed

towards the centre of curvature. Clearly, in the limit of small

φ,

φ =
1µ̂

1
=
1s

R
(45)

so that

κ =
dµ̂

ds
= (µ̂.∇)µ̂⇒ µ̂jTij . (46)

As shown in Fig. 3c κ makes an angle θ with w⊥. The com-

ponent ofw⊥ along κ is the scalar product ofw⊥ and the unit

vector κ̂ . It is positive when θ is an acute angle and negative

when it is obtuse. The vector δs is then given by

δs

κ̂ .w⊥
=−µ̂

1s

R
(47)

or, in subscript notation

δsi

1s
=−µ̂i

κ̂jw
⊥

j

R
=−µ̂iκjw

⊥

j =−µ̂iµ̂kTjkw
⊥

j . (48)

Figure 3. Definition of Tij . (a) Relative displacement of adjacent

field lines; (b) Field line curvature; (c) Component of w⊥ along

curvature vector.

The elements of Tij are given by

Tij =
∂µ̂i

∂xj
=

∂

∂xj

(
Bi

B

)
=

1

B

{
∂Bi

∂xj
−
Bi

B

∂B

∂xj

}
=

1

B

{
δik −

BiBk

B2

}
∂Bk

∂xj
(49)

and the components of B and its derivatives may be found

from the model. Finally

1w⊥i = δw
⊥

i + δsi (50)

so that, from Eqs. (44) and (48)

dw⊥i

ds
= Tijw

⊥

j − µ̂iµ̂lTklw
⊥

k . (51)

The differential width w⊥i can be normalized to its initial

value so that, at s = 0, w⊥i (0) is a unit vector in the direction

Ann. Geophys., 34, 55–65, 2016 www.ann-geophys.net/34/55/2016/
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Figure 4. Covariant and contravariant components of E.

of the electric field. To map a component of the electric field

along a field line, Eqs. (41) and (51) can be integrated nu-

merically to the desired end point. The mapping procedure is

then as follows:

– The initial value for integrating (Eq. 51) is a unit vector

in the direction of the desired component of the electric

field E.

– Equations (41) and (51) are integrated step by step along

the field line giving the coordinates of the field line and

the coordinates of the vector w⊥ as a function of dis-

tance s along the field line.

– The mapped electric field component in the direction

of w⊥ at each point on the field line has magnitude

E0/w⊥.

– The procedure can be carried out for two initial values

of w⊥ to give two components of the field line.

Although the two initial values of w⊥ may be at right an-

gles to each other, there is no reason to suppose that they

will remain at right angles as the integration proceeds along

the field line. The computation of the resultant electric field

therefore requires care. In general, the directions of the two

values of w⊥ define a set of two-dimensional oblique coordi-

nates as shown in Fig. 4. The two components ofE that have

been calculated are E1 and E2, the covariant components in

the oblique system. To calculate the resultant E we need the

contravariant components given by

E1
=

E1−E2 cosθ

sin2θ
(52)

E2
=
−E1 cosθ +E2

sin2θ
, (53)

as can be seen from the figure. The resultant E is calculated

from these using the parallelogram rule.

4 A simple night-side model

4.1 Characteristics of the model

We illustrate the use of the first order differential Eqs. (41)

and (51). We use a right-handed CGM coordinate system

with origin at the centre of the Earth, x directed towards the

Sun, y from dawn to dusk and z northward along the axis.

The magnetic field is a dipole field with the addition of a

Harris (1962) current sheet to represent the tail. The mag-

netic field components are then given by

Bx = −
3BeqR

3
Exz

(x2+ y2+ z2)5/2
+Bh tanh

z

d
(54)

By = −
3BeqR

3
Eyz

(x2+ y2+ z2)5/2
(55)

Bz =
BeqR

3
E(x

2
+ y2
− 2z2)

(x2+ y2+ z2)5/2
, (56)

where the last term in Eq. (54) arises from a Harris cross

tail current. This model is not over-complicated and gives

qualitatively realistic magnetic fields on the night side.

The derivatives of the components of B are then

∂Bx

∂x
=

3BeqR
3
Ez(4x

2
− y2
− z2)

(x2+ y2+ z2)7/2
(57)

∂Bx

∂y
=

15BeqR
3
Exyz

(x2+ y2+ z2)7/2
(58)

∂Bx

∂z
=

3BeqR
3
Ex(−x

2
− y2
+ 4z2)

(x2+ y2+ z2)7/2
+
Bt

w
sech2 z

d
(59)

∂By

∂x
=

15BeqR
3
Exyz

(x2+ y2+ z2)7/2
(60)

∂By

∂y
=

3BeqR
3
Ez(−x

2
+ 4y2

− z2)

(x2+ y2+ z2)7/2
(61)

∂By

∂z
=

3BeqR
3
Ey(−x

2
− y2
+ 4z2)

(x2+ y2+ z2)7/2
(62)

∂Bz

∂x
=

3BeqR
3
Ex(−x

2
− y2
+ 4z2)

(x2+ y2+ z2)7/2
(63)

∂Bz

∂y
=

3BeqR
3
Ey(−x

2
− y2
+ 4zz)

(x2+ y2+ z2)7/2
(64)

∂Bz

∂z
=

3BeqR
3
Ez(−3x2

− 3y2
+ 2z2)

(x2+ y2+ z2)7/2
. (65)

These can be used in Eq. (51) which can then be integrated si-

multaneously with Eq. (41). The components of the unit vec-

tor found from this, together with the magnitude of E found

from Eq. (2) gives the electric field at all points along the

field line. For tests of the process the Harris field Bh can be

set to zero, so that the integration of the differential equa-

tions applies to a dipole magnetic field, and the results can

be compared with the explicit formulae of Sect. 2.
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4.2 Mapping of electric field in the model

For our simple model we use what are effectively GSM co-

ordinates with origin at the centre of the Earth, x towards lo-

cal noon, z along the dipole axis, and y completing the right

hand set. The field line trace can start from any point x,y,z

on a field line. Normally the point would be defined by lat-

itude, longitude and radius (or height) and converted to the

rectangular system.

The initial value of w⊥i must be found from the elec-

tric field. When measuring an electric field in the upper

ionosphere or magnetosphere, it is only necessary to have

two components. Because the component parallel to B is

zero, the third component can be found from the condition

E ·B = 0. For example if the H andD components of E are

measured by a SuperDARN radar then the vertical compo-

nent is given by

Ez =−
BHEH +BDED

Bz
. (66)

Let τ be the local time measured in hours. Then the longitude

φ measured from noon (i.e. from the positive x axis) is given

by

φ =
( τ

12
− 1

)
π. (67)

Then the direction cosines of the H and D directions are

n̂λi = {−sinλcosφ,−sinλsinφ,cosλ} (68)

n̂
φ
i = {−sinφ,cosφ,0} (69)

and

E = n̂λEH + n̂φED + ẑEz. (70)

It should be noted that, if all three components of E are

given, they must be normal to the magnetic field. The dif-

ferential Eqs. (51) assume this and if it is not true, there will

be a cumulative error in the integration.

The starting value for w⊥ is then the unit vector

w⊥(0)=
n̂λEH + n̂φED + ẑEz√

E2
x +E

2
y +E

2
z

. (71)

5 Computational results

5.1 Dipole field: comparison with explicit formulae

An initial test of the method is to use Eqs. (41) and (51) to

trace field lines in a dipole magnetic field and compare the

results with the explicit formulae of Sect. 2. We set Bh = 0

in Eqs. (54) and (59) and used a straightforward 4th order

Runge-Kutta method similar to that of Press et al. (1989,

Sect. 15.1) to integrate the equations. With an appropriate

choice of step length, all computed values agreed with the
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Figure 5. Element of field line separation in the meridian plane for

a dipole magnetic field, normalized to the value at the Earth’s sur-

face. The full line shows the values obtained by integrating the first

order differential equations, while the crosses are obtained from the

analytic expression.

analytic values to within the numerical accuracy of the in-

tegration process. For example Fig. 5 compares the field line

separation in the magnetic meridian (full line) with that com-

puted from Eq. (18) (crosses) for a field line starting at 72◦

at a height of 250 km in the ionosphere and finishing at the

equatorial plane. The results agree to better than 1 part in 106

for an integration step length of 1 RE.

5.2 Electric field mapping in the Harris model

We have tested the validity of the method of field line map-

ping that is described in Sect. 3 by using the Harris model.

The coding is in Python with the intention of providing a

template for an open source package that will be developed

for electric field mapping in more realistic magnetic field ge-

ometries (Maus et al., 2005; Tsyganenko, 1987, 1995, 1996).

The integration process is the same as described above for

a dipole. The results for the field line coordinates xi and nor-

malized separation wi are stored in arrays. If we wish to ter-

minate at a particular point we specify a function of s, the

distance along the field line that must be zero at the end point.

When this function changes sign we take the coordinates of

the last two points as the starting values for a regula falsi

(Press et al., 1989) process to find the zero of the function.

For example, if we choose to end the trace in the ionosphere

at an altitude of 250 km we evaluate h− 250 at each point

along the path. When it changes sign we enter the regula

falsi routine. This interpolates linearly between the last two

values s1 and s2 of s to find a new value s3 that is closer to

the root. With a step length of s3− s2 the equations are ad-

vanced another step to find a new h. This is repeated until

|h− 250| ≤ ε where ε is small enough to give the required

accuracy. Although this is a first order convergent process
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Figure 6. Field line trace (blue) and electric field mapping (red) in

a Harris model with Beq = 3.4× 104 nT, B0 = 50.0 nT and plasma

sheet thickness d = 1.5RE. The trace starts at 70◦ latitude, 03:00 LT

(local time), and 250 km altitude. The projections of the mag-

netic field line and the electric field vectors on the coordinate

planes are also shown. Scale of electric field vector: 1 length

unit= 35.4 mV m−1.

and converges more slowly than a second order process such

as the Newton-Raphson method, it requires much less com-

putation. In practice it only requires about five or six steps to

achieve an accuracy of one part in 106.

Figure 6 shows the results of such a process. A field line is

traced from a point in the Northern Hemisphere ionosphere

at altitude 250 km, latitude 70◦ and local time 03h00. The

parameters of the model (shown in the caption) are chosen to

produce a strong tail field. The trace is terminated at an alti-

tude of 250 km in the opposite hemisphere. The model is, of

course, symmetric about the equatorial plane. The blue line

represents the magnetic field line. The effect of the Harris

sheet is obvious, with the field line being swept back tail-

wards and strong curvature within the plasma sheet. We also

show the projection of the field line on each of the coordi-

nate planes. The electric field is represented by the red line

segments along the field line projections. Each line segment

represents the projection of the electric field vector on the

coordinate plane.

Because there is strong dependence of the electric field

magnitude on radius the field vectors are barely discernable

at larger radii. The diagram is not, however, intended to pro-

vide a quantitative picture of the electric field mapping but to

give a feel for the geometry. A better idea of the variation of

E along the field line is given in Figs. 7 and 8. Figure 7 shows

magnitude of the electric field and of its three components as
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Figure 7. Electric field normalized to the value at the starting point,

for the field line traced and electric field mapped in Fig. 6.

a function of s, the distance measured along the field line

(negative when in the opposite direction to B). The x and y

components of E are symmetric about the equator while Ez
is antisymmetric. There is strong variation of the magnitude

of E, which varies from 35.4 mV m−1 in the ionosphere to

about 0.5 mV m−1 near the equator. A better idea of how E

varies near the equator can be obtained by examining Fig. 8.

The normalized width vector is in the same direction as E

and its magnitude is proportional to the reciprocal of E.

It is not the intention of this paper to provide the results

of a large number of computations in a model that is only in-

tended to be illustrative. The purpose is to validate the tech-

nique of computation in a relatively simple model. We de-

scribe below the various checks that we have made on the

accuracy of the integration technique.

5.3 Computational checks of mapping in the Harris

model

We have already described how, in a dipole model, we can

use the integration technique and compare the results with

the explicit formulae presented in the first part of the paper.

The agreement is, in all cases, very good. With integration

steps of 1.5 to 2.0 RE agreement between the computed val-

ues of position xi and field line separation wi/w0 is typically

about 1 part in 106 for a dipole model. Larger steps than this

increase the truncation error and reduce the accuracy. The

step length is best chosen by the user to suit the numerical

accuracy of the computer and the requirements of the prob-

lem.

In the Harris model the curvature of the field lines near the

plasma sheet can be quite large. If the step length is compa-

rable with the radius of curvature, truncation error becomes

important. In this case the orthogonality of w and B is not
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Figure 8. Element of field line separation in the electric field direc-

tion, for the field line traced in Fig. 6.

maintained. As a check against this, at each step, we calcu-

late the scalar product of the unit vectors parallel tow andB.

If its magnitude exceeds a predetermined value an exception

is raised and the user can set a better step length. Ultimately,

in production versions of the program for realistic models it

will be necessary to use a more sophisticated adaptive step

integration technique. For the present the simpler technique

suffices.

Another check that will be particularly useful in more

elaborate models is to take two initial values of w, w1 and

w2, in different directions perpendicular toB. These can both

be integrated simultaneously along the field line. Then the

cross-section of the flux tube defined by these is w1×w2.

The magnetic flux is constant along the flux tube and we can

check this by evaluating B ·w1×w2 at each step. In an inte-

gration in the Harris model constancy can be maintained to

about 1 part in 106 with appropriate step length. The compu-

tational overhead of integrating three additional equations is

too large for this to be useful in routine calculations, but it is

very useful in checking the correctness of the coding for the

magnetic field model.

6 Discussion and conclusions

In this paper we have introduced a new method of mapping

electric fields along geomagnetic field lines. A set of three

differential equations for the components of the normalized

separation of two field lines has been obtained. These can be

integrated simultaneously with the equations that trace the

field line. Since the magnetic field lines are equipotentials,

this allows the calculation of a component of the electric field

as a function of distance measured along the field line. Two

values of the normalized separation are required to give two

field line components resulting in a total of nine first order

differential equations that must be simultaneously integrated.

The computational effort in integrating the set of nine

equations is the same as that for tracing three field lines. The

accuracy of the process is better, however, since finding the

electric field by finding the difference between the end posi-

tions of the two field lines requires taking small differences

of large quantities. Such numerical differentiation is notori-

ously inaccurate.

The viability of the method has been carefully tested. The

analytic expressions for a number of relevant properties of

a magnetic dipole field, while easily derived, are not read-

ily available in the literature. We have provided a derivation

of these for convenient reference and compared the results

calculated from them with those obtained by the integration

method. We have also tested the method in a qualitatively

more realistic model of the night side magnetosphere. All

the tests show that the method is accurate and suitable for

mapping in more realistic models. In the accompanying pa-

per (Walker, 2016) the process is applied to the International

Geomagnetic Reference Field.
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