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Abstract. In this paper we investigate quantitatively the ef-

fect of data gaps for four methods of estimating the ampli-

tude spectrum of a time series: fast Fourier transform (FFT),

discrete Fourier transform (DFT), Z transform (ZTR) and

the Lomb–Scargle algorithm (LST). We devise two tests: the

single-large-gap test, which can probe the effect of a sin-

gle data gap of varying size and the multiple-small-gaps test,

used to study the effect of numerous small gaps of variable

size distributed within the time series. The tests are applied

on two data sets: a synthetic data set composed of a super-

position of four sinusoidal modes, and one component of the

magnetic field measured by the Venus Express (VEX) space-

craft in orbit around the planet Venus. For single data gaps,

FFT and DFT give an amplitude monotonically decreasing

with gap size. However, the shape of their amplitude spec-

trum remains unmodified even for a large data gap. On the

other hand, ZTR and LST preserve the absolute level of am-

plitude but lead to greatly increased spectral noise for in-

creasing gap size. For multiple small data gaps, DFT, ZTR

and LST can, unlike FFT, find the correct amplitude of sinu-

soidal modes even for large data gap percentage. However,

for in-situ data collected in a turbulent plasma environment,

these three methods overestimate the high frequency part of

the amplitude spectrum above a threshold depending on the

maximum gap size, while FFT slightly underestimates it.

Keywords. Space plasma physics (instruments and tech-

niques)

1 Introduction

Spectral analysis is a widely used tool in data analysis and

processing in most fields of science. The technique became

very popular with the introduction of the fast Fourier trans-

form algorithm which allowed for an extremely rapid com-

putation of the Fourier Transform. In the absence of modern

supercomputers, this was not just useful, but also the only

realistic solution for such calculations. This limitation is no

longer relevant except for data sets of extremely large size.

Still, FFT has remained the most popular tool for spectral

analysis, because it is both easy to use and very fast. This

makes it an extremely powerful tool and generally it is the

first choice from the “toolbox” of spectral analysis methods.

It is readily available in all programming languages of notice

and it is accurate under perfect conditions. However, real data

is rarely perfect. We address here the very common problem

of data gaps.

Due to the wide usage of FFT, the literature on this sub-

ject is spread over a wide array of scientific disciplines:

astronomy (Scargle, 1982, 1989), seismology (Baisch and

Bokelmann, 1999), paleoclimatology (Heslop and Dekkers,

2002; Rehfeld et al., 2011), turbulence (Britz and Antonia,

1996; van Maanen and Oldenziel, 1998; Broersen et al.,

2000; Harteveld et al., 2005), biomedical sciences (Schim-

mel, 2001). However, despite the vast amount of literature,

studies on the effects of data gaps are few in number (Stahn

and Gizon, 2008; Musial et al., 2011).
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The problem of data gaps, i.e., occasionally missing obser-

vations from an otherwise continuous set of measurements,

can be viewed as a special case of the more general problem

of non-uniformly sampled data, i.e., measurements made at

random time intervals throughout the data set. Although our

study is mostly concerned with data gaps, all the methods

used in our paper can also be straight-forwardly applied to

problems related to non-uniform sampling. A recent review

of the methods for spectral analysis of non-uniformly sam-

pled data is presented in Babu and Stoica (2010).

Data gaps can occur in a variety of ways, from tempo-

rary malfunctions of the measuring instrument, to the inher-

ent non-continuous nature of the physical phenomenon being

studied. Pope et al. (2011), for example, describe the var-

ious challenges and difficulties in measuring the magnetic

field environment around the planet Venus using the mag-

netically unclean spacecraft Venus Express (VEX). They de-

termined that distinctive artificial patterns are introduced in

the magnetic field data by the magnetic disturbances pro-

duced by different spacecraft and scientific instruments, and

they tried to correct the data using advanced cleaning algo-

rithms. The cleaning procedures, although successful in gen-

erating scientific data with a good data coverage, still left

many gaps and other artifacts (various interpolation proce-

dures were also used in the cleaning process) in the data.

Also, the high-resolution measurements of the magnetic field

are more severely affected, making them impossible to clean.

Many papers dealing with spectral analysis of real data of-

ten avoid the problems related to data gaps by subdividing the

time series into smaller samples with continuous data cover-

age. One such paper is the study by Teodorescu et al. (2015),

where the spectral properties of fast and slow solar wind are

analyzed using tools based on FFT. They analyzed magnetic

field data provided by the VEX satellite, which contains a

large number of data gaps. They avoid the data gap problem

by imposing a series of constraints regarding the maximum

length and distribution of data gaps. This resulted in the loss

of more than 80 % of their initial data set. Constraints and

quality checks of this type are not uncommon in time series

analysis.

In the case of multiple data gaps distributed throughout

the data set and/or irregular time sampling, where avoiding

data gaps is not an option, one can either use data recon-

struction (interpolation) and FFT, or more advanced spectral

analysis methods designed to handle non-uniform sampling.

Reconstruction can be achieved with a simple linear inter-

polation across the gaps (which is one of the methods used

in our study), or with more advanced reconstruction tech-

niques, like the method based on singular-spectrum analysis

(SSA) (Ghil et al., 2002; Kondrashov and Ghil, 2006).The

SSA method was used by Kondrashov et al. (2010) and Kon-

drashov et al. (2014) to fill in gaps in solar wind data. Kon-

drashov et al. (2014) used the filled-in, continuous solar wind

data as input into the TS05 empirical magnetic field model

(Tsyganenko and Sitnov, 2005), and checked the reconstruc-

tion accuracy by comparing these results with GOES mea-

surements at geostationary orbit. They found that the SSA

gap-filling method improves the accuracy of the empirical

magnetic field model, especially for large gaps.

We intend to quantify the distortions introduced by data

gaps using four popular methods of estimating the frequency

spectrum: fast Fourier transform, discrete Fourier transform,

Z transform and Lomb–Scargle transform. The results are

compared qualitatively and quantitatively using synthetic and

real data sets.

We use a synthetic time series consisting of several peri-

odic signals and added noise. Different, frequently encoun-

tered data gap configurations are applied to it and the am-

plitude spectra are calculated and compared to the known

spectrum of the unaltered signal. Two gap configurations are

used to highlight the effects: (a) a single large gap, where the

original data set is altered by removing an increasing number

of points from the central part, and (b) multiple small gaps,

where we remove short series of consequent points whose

length and precise location are randomly selected. The same

methodology is also used to test the effect of data gaps on

the amplitude spectra of magnetic field measurements made

by the Venus Express spacecraft in orbit around the planet

Venus. For these two tests, we determine practical thresholds

where the use of the methods is no longer feasible.

The paper is structured as follows: a description of the gen-

eral methodology and methods is presented in Sect. 2; Sect. 3

shows the results for a synthetic data set comprising of four

sinusoidal signals, and Sect. 4 applies the same methodology

on a real data set of Venus Express magnetic field measure-

ments. Section 5 gives a brief summary and presents the main

conclusions of our study.

2 Analysis methods

The fast Fourier transform is extremely fast to calculate, but

requires strictly uniform sampling. It is by far the most popu-

lar method for computing the frequency spectrum. It is some-

times used on non-uniformly sampled data, first using linear

interpolation to fill in the data gaps. Linear interpolation al-

ters the signals, but the FFT is still able to capture an accept-

able level of spectral details, depending on the size and num-

ber of gaps. This is demonstrated quantitatively and qualita-

tively in Sects. 3 and 4.

The effect of linear interpolation can be derived analyti-

cally from first principles. For a given signal x(t), the Fourier

transform y(ω) is defined as (see, e.g., Bloomfield, 2000):

y(ω)=

tn∫
t1

x(t)e−iωtdt. (1)

If we assume a gap between ta and tb, we will have the fol-

lowing:
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y(ω)=

ta∫
t1

x(t)e−iωtdt + g+

tn∫
tb

x(t)e−iωtdt, (2)

where

g =

tb∫
ta

x(t)e−iωtdt ∼=−g1+ g2, (3)

with

g1= i

(
x(ta)−

x(tb)− x(ta)

tb− ta
ta

)
×
e−iωta − e−iωtb

ω
, (4)

and

g2=
x(tb)− x(ta)

tb− ta
×
e−iωtb(1+ iωtb)− e

−iωta(1+ωta)

ω2
, (5)

where the data gap is replaced by a straight line. As the

gap size (tb− ta) is increased, both g1 and g2 will decrease,

resulting in smaller Fourier amplitudes y(ω). This is also

true for the dependence on ω: as we increase the frequency,

the two terms corresponding to the data gap will decrease,

resulting in decreased amplitudes. At low frequencies, and

for large differences between the two end points of the gap

(x(tb)− x(ta) > 0), g2 can become larger than g1 leading to

increased Fourier amplitudes. This simple analytical exam-

ple shows that FFT, in case of linearly interpolated data gaps,

can lead to an underestimation of high-frequency amplitudes

and an overestimation of low-frequency amplitudes.

The discrete Fourier transform is a discretization of the

Fourier integral of Eq. (1), which we chose to do using the

trapezoidal method:

y(ω)=

n∑
j=1

x(tj+1)e
−iωtj+1 + x(tj )e

−iωtj

2
× (tj+1− tj ). (6)

For a comprehensive description of the FFT, DFT, and

Fourier analysis in general, the reader is invited to con-

sult monographs such as those by Bath (1974) and Priestley

(1981).

The z-transform is a generalization of the Fourier Trans-

form for discrete series rather than for continuous functions

(see, e.g., Jury, 1973; Weeks, 2011). By definition, the z-

transform of a signal x(t) is

y(z)=

n∑
j=1

x(tj )z
−tj , (7)

where z is a complex number. Using the exponential nota-

tion, z= reiω, and choosing r = 1, we get the following:

y(ω)=

n∑
j=1

x(tj )e
−iωtj , (8)

which is usually considered to be the formal definition for

the discrete Fourier transform. In order to use both forms of

the discrete Fourier transform, Eq. (6) will define the DFT

method used throughout our paper, and Eq. (8) will be re-

ferred to as ZTR.

The Lomb-Scargle method performs a least squares fit of

the data using a superposition of sinusoidal modes (Lomb,

1976; Scargle, 1982, 1989; Hocke and Kämpfer, 2009).

By applying the four methods above we obtain a complex

amplitude spectrum y(ω) for each method, where ω = 2πf ,

with the values for the frequency f uniformly distributed be-

tween fmin = fs/L and fmax = f s/2, fs = 1/dt being the

sampling frequency, dt the sampling interval, andL the num-

ber of points. We then compute the one-sided amplitude

spectrum by calculating the complex magnitude (modulus)

of y(ω), normalize it by the number of points L, and multi-

plying it by 2 (since we use only positive frequencies).

By squaring the one-sided amplitude spectrum one can ob-

tain the periodogram, which is a non-parametric estimate of

the power spectral density (PSD). Our methodology of sys-

tematically comparing the spectra for the signals with gaps

with the spectrum for the original, uniformly sampled signal,

allows us to use only the simple one-sided spectrum to study

the effect of data gaps. While more comprehensive method-

ologies of estimating the PSD do exist, they are beyond the

scope of this study. In the following, we will use the term

amplitude spectrum to denote the one-sided amplitude spec-

trum.

While DFT, ZTR and LST are equivalent to FFT for uni-

form sampling, they can provide, as we will show later, very

different results when analyzing time series with data gaps.

Note that the issues due to data gaps are not limited to a

single method, but are a fundamental property of the result-

ing amplitude spectrum. For a uniformly sampled data set,

there is an orthogonal set of frequencies for which the val-

ues of the Fourier coefficients are independent. In the case

of non-uniformly sampled data, such an orthogonal set gen-

erally does not exist (Van Dongen et al., 1999), allowing for

spectral leakage to occur. This cannot be avoided regardless

of the method used since the problem does not derive from

the algorithm. For this reason the problem cannot be entirely

resolved. We intend to diagnose the extent by which the data

gaps impact the results obtained with different methods and

for different gap configurations.

3 Synthetic data tests

In order to determine the effect introduced by data gaps

on the Fourier transform, we test the four above-mentioned

spectral analysis methods on a synthetic signal with artifi-

cial gaps. The FFT method is applied to a signal where the

gaps are linearly interpolated, while DFT, ZTR and LST are

applied to a signal with no data interpolation. We test two

configurations of gaps: (a) a single large gap (SLG), based
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Figure 1. (a) Synthetic signal and (b) its associated FFT amplitude

spectrum. The signal consists of four sinusoidal modes, with ampli-

tude 1 and frequencies f 1= 10 Hz, f 2= 20 Hz, f 3= 30 Hz and

f 4= 40 Hz, plus noise.

on the alteration of the original data set by removing an in-

creasing number of points from the central part; the proce-

dure is repeated until the central gap reaches 99.8 % of the

total length of the signal, and (b) multiple small gaps (MSG),

based on the alteration of the signal by removal of short se-

ries of consequent points whose length and precise location

are randomly selected; the procedure is applied repeatedly

for various distributions of random gaps. The two cases were

studied first on a synthetic signal sampled uniformly.

The synthetic data set is a superposition of four sinusoidal

modes with unit amplitude and the following frequencies:

f1 = 10 Hz, f2 = 20 Hz, f3 = 30 Hz and f4 = 40 Hz. The

signal is sampled at 100 samples per second with a total

length of L= 1000 points. We also added a white noise with

unit amplitude such that the synthetic signal x(t) can be de-

scribed by the following:

x(t)= noise+

4∑
i=1

sin(2πfi t), (9)

and is illustrated in Fig. 1 together with its amplitude (FFT)

spectrum. The latter serves as reference and will be compared

to the spectra obtained by the four methods applied to various

distributions of gaps.

3.1 Single-large-gap test applied to the synthetic data

set

In this case the data gap is created by removing a number

of points from the central part of the synthetic signal. We

generate 100 signals from Eq. (9) on which we generate a

single gap with size varying from 1 to 99.8 % of the length of

the original time series. As an example, we illustrate in Fig. 2

the performance of the four methods on a signal whose gap

is 50 % of the length of y(t). Figure 2 shows that when the

FFT analysis is applied to the interpolated signal, it provides

a Fourier spectrum whose amplitude is half of the original

spectrum at all four eigen-frequencies of the synthetic signal.

The accuracy of the amplitude spectrum computed with

DFT is sensitive not only to the size of the central gap but

also to the phase at the two end points of the gap. If at least

one end point has a value different from the mean value of the

signal (which is zero in the case of our synthetic signals) then

the results are distorted. This distortion is also seen in Fig. 2,

where the DFT amplitudes depict a very large background

level (even above one), and the four signals barely rise above

the background. This distortion is larger for large deviations

of the two end points from the mean.

Since we are interested mainly in the effect of the gap

size, we apply a Tukey (tapered cosine) window (Bloom-

field, 2000) to the two parts of the signal around the gap,

which cancels the offset on either side of the gap (as well as

at start and end of the signal). In order to treat all four meth-

ods similarly, we apply the same windowing procedure to all

the four methods. The results obtained after the windowing

procedure are shown in Fig. 3, in the same format as Fig. 2.

For FFT, the windowing procedure removes the high ampli-

tudes at very low frequencies seen in Fig. 2b, which were due

to the slope of the linear interpolation. DFT results are now

similar to FFT, and show the same 50 % decrease in ampli-

tude.

Figure 2 shows that the two other spectral analysis meth-

ods, ZTR and LST, provide very accurately the same ampli-

tude level as the original, full data set, even when the gap

is quite wide. We also see that the spectral background level

(∼ 3× 10−2) is larger for these two methods, compared to

the original level of ∼ 10−2 depicted in Fig. 1b. Figure 3

shows that the windowing procedure hardly affects the ZTR

and LST results. The increase of the spectral background will

have important implications for the analysis of real data, as

we will see in Sect. 4.

Figures 4 and 5 show how the amplitudes change when

the length of the central gap is increased. Figure 4 shows the

amplitude spectra obtained by the four methods in color cod-

ing, with the y-axis giving the total gap percentage (TGP) of

the signal and the x axis representing the frequency. Figure 4

includes 100 spectra of the signal (Eq. 9) with the central

gap increasing linearly from 1 to 99.8 % of the signal. Fig-

ure 4a shows that the amplitude spectrum calculated by the

FFT transform decreases systematically with the increasing

size of the central gap. The results of the FFT and the win-

dowed DFT are very similar until the TGP exceeds about

80 %, when the DFT background noise level increases dra-

matically. The spectra corresponding to gap sizes larger than

about 60 % exhibit a gradual appearance and broadening of a

series of side lobes, leading to a palm-tree shape in the vicin-

ity of the spectral peaks. The gradual broadening of the indi-

vidual spectral peaks can be explained by the finite length of

the original signal; the degradation of the signal by removal

of an increasingly large central part decreases the number of

sinusoidal peaks and leads to a broadening of the spectral

peak.

The spectra obtained with ZTR and LST are quite differ-

ent, but bear some similar features. As the size of the cen-

tral gap increases, the signal amplitude remains almost con-
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Figure 2. Case study for the SLG test applied to synthetic data. Panel (a) shows the non-windowed signal with total gap percentage (TGP) of

50 % and panels (b), (c), (d) and (e) show the corresponding amplitude spectra computed with the fast Fourier transform (FFT), the discrete

Fourier transform (DFT), the Z transform (ZTR) and the Lomb–Scargle transform (LST). FFT is applied to the signal were the data gap was

linearly interpolated, while the other three methods are applied to the signal containing the data gap. The TGP parameter represents the total

number of points removed from the time series, and is defined as a percentage of the original length L.
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Figure 3. Case study for the SLG test applied to the synthetic data. Panel (a) shows the windowed signal with TGP of 50 % and the other

panels are the same as in Fig. 2. The windowing procedure, using a Tukey window, is applied to the two parts of the signal around the gap,

thus canceling the offset on either side of the gap.

stant for all the four spectral peaks. Moreover, Fig. 4 shows

that the side lobes (the palm-tree) and the background noise

have considerably larger amplitudes for ZTR and LST than

for FFT and DFT.

In order to illustrate even more quantitatively the response

of the four methods to the increasing size of the central gap

we have studied the change for the first frequency, f1 =

10 Hz, of the full signal. Figure 5 shows how the amplitude of

the spectrum at f1 varies with TGP. Up to TGP< 80 %, FFT

and DFT show that the amplitude is monotonically decreas-

ing with increasing TGP. Beyond TGP of about 80 %, the

DFT amplitude increases rather erratically, indicating the in-

creasing background level (see Fig. 2). On the other hand, the

amplitude at f1 obtained from ZTR and LST remains very

close to 1 up to TGP of about 95 %. Beyond this value, both

methods give increasingly disturbed amplitude levels.

Figure 6 shows the integral of the amplitude spectrum, i.e.,

the sum of all amplitudes, as a function of the TGP. In order

to study the effect of spectral noise we calculated the integral

not only for the synthetic signal given by Eq. (9), but also

for a “clean” signal (the sum of sinusoids without noise) as

well as for pure noise. We found that FFT and DFT behave

in a similar way within the limit of small TGP, up to about

60 % (see earlier discussion). The integral corresponding to

the clean signal has an almost constant value as we increase

the gap size. For pure noise, the integral decreases with in-

creasing gap size. For the signal contaminated with noise, the

original signal given by Eq. (9), the result is a combination

of these two cases, i.e., the integral slowly decreases with

increasing TGP.

For the ZTR and LST methods, the integral increases as we

increase the gap size not only for pure noise and the noisy

signal, but also for the clean sum of sinusoids. We already

www.ann-geophys.net/34/437/2016/ Ann. Geophys., 34, 437–449, 2016
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Figure 4. SLG test applied to the synthetic data: amplitude in color code as a function of TGP and frequency. For the SLG test, we generate

100 signals, indexed from 1 to 100, with signal 1 corresponding to the signal with the smallest TGP and signal 100 to the one with the highest

TGP. For SLG, the TGP is a linear function of signal index. Panels (a), (b), (c) and (d) show the results for FFT, DFT, ZTR and LST. Color

scale is logarithmic and the color bars denote the log10 of amplitude.
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10 Hz sinusoidal mode (f1) as a function of TGP for: FFT (red line

marked with circles), DFT (green with x), ZTR (blue and square)

and LST (magenta and +). The case study for a TGP of 50 % (see

Fig. 3) is noted as a vertical black line, and the horizontal black line

gives the FFT amplitude for this case.
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Figure 6. SLG test applied to the synthetic data: integral ampli-

tudes as a function of TGP for the signal with noise (panel a), for

pure noise (panel b) and for the clean signal (panel c). The clean

signal is obtained by removing the noise from the original signal

(see Fig. 1). Colors denote the four methods. The thick lines are the

average values.

observed in Fig. 3 that, for the 50 % TGP, the spectral back-

ground was larger than the original background. We see here

that the background level increases systematically as we in-

crease the gap size, eventually dominating the integral for

large TGP and explaining the overall increase for these two

methods. This result will have an important impact on the

analysis of solar wind data, where dominant harmonics are

less frequent and the spectral noise dominates the integral.

3.2 Multiple-small-gaps test applied to the synthetic

data set

The second test performed on the synthetic signal of Eq. (8)

consists of removing a number of randomly distributed

points from the original signal. This test mimics the situation

often encountered in the experimental investigation of vari-

ous geophysical or space systems (e.g., ground-based mea-

surement of the geomagnetic field or satellite measurement

of the plasma and field parameters of the solar wind), where

randomly distributed data gaps are an inherent problem.

We choose the size distribution of the gaps using the

gamma function, which can be described by two parame-

ters: the shape parameter Ag and the scale parameter Bg. The

probability density function (PDF) for the gamma distribu-

tion can be expressed in terms of Ag and Bg, as follows:

PDFg(x | Ag,Bg)=
xAg−1

× e−x/Bg

B
Ag
g ×0(Ag)

. (10)

We use this PDF to create statistical ensembles of gaps, with

gap size probability being controlled by the mean (Mg =

Ag×Bg) and variance (Vg = Ag×B
2
g ) of the gamma distribu-

tion. In practice we choose a set of values forMg and Vg and

then compute a vector of gamma-distributed random num-

bers according to Eq. (9). The obtained vector comprises a set

Ann. Geophys., 34, 437–449, 2016 www.ann-geophys.net/34/437/2016/
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of real numbers from ∼ zero to a positive value Gm depend-

ing on Mg and Vg. These numbers are rounded to the nearest

integer value and thus we obtain the distribution of gap sizes,

each integer giving the number of consecutive points to be

removed from the uniformly sampled signal. The increasing

degradation of the signal is achieved by increasing both Mg,

which increases the size of the most probable gap, and Vg,

which increases the probability of obtaining large gaps.

As in the case of SLG, we calculate the Fourier spectra and

index them according to the selection of Mg and Vg values.

We also define the TGP associated with each spectrum as the

total percent of points removed from the signal, computed as

the sum of all gaps.

Figure 7 shows an example of a distribution of gaps for

Mg = 2.1 and Vg = 1.1, which removes 51 % of the points of

the signal. In this example the gaps with small size (between

1 and 3 consecutive points) have high probability, and their

cumulative effect is to remove more than 40 % of the points

of the original signal, as indicated by Fig. 7b. The largest gap

in this example has a size of 8 points; there is only one gap

of this size.

The amplitude spectrum obtained with FFT shows that the

amplitude of the sinusoidal modes decreases systematically

with increasing frequency. The other three methods (DFT,

ZTR and LST) are very robust for this configuration of gaps

and show no major modification in the amplitude spectra

compared with the original results (see Fig. 1).

The methodology outlined above was applied to an ensem-

ble of 100 synthetic signals obtained by degrading the origi-

nal signal by increasing the number of missing points accord-

ing to the gamma distribution. The mean and variance of the

distribution of gaps increase with signal index, and thereby,

the total number of removed points increases, although not

strictly linearly. Figure 8a shows the distribution of gap per-

centage as a function of signal index and gap size, and Fig. 8b

shows for each of the 100 degraded signals the corresponding

TGP. We note that this statistical ensemble of signals covers

indeed a broad range of different possible configurations, rel-

evant to investigate the response of the four spectral analysis

methods.

Figure 9 depicts the amplitude spectra of the 100 signals

described above and in Fig. 8 as a function of TGP and fre-

quency, similar to the SLG test of Fig. 4. One can see that the

FFT amplitude decreases with frequency and with increasing

TGP. The results for DFT, ZTR and LST show little decrease

in amplitude and no frequency dependence when TGP in-

creases.

Figure 10 shows the FFT amplitudes as a function of TGP

separately for the four frequencies f1,f2,f3 and f4. FFT am-

plitudes decrease rather systematically with TGP. However,

there is some variation in amplitudes, especially for large

TGP, which is due to the different effect of each individual

gap sample. So, TGP is not the only factor affecting the am-

plitude, but also the distribution of gaps matters.

Figure 11 shows the analogue of Fig. 6 for the MSG test,

i.e., the amplitude integral as a function of the TGP. As in

Fig. 6, the amplitude integral for the original signal is re-

moved in each case. There are interesting differences be-

tween Figs. 11 and 6 that are related to the different gap

structure between the two cases, even for the same total TGP.

In particular, there is a much larger integral amplitude in

FFT, even for clean sinusoids, which is due to the increased

background power. Figure 9 shows that the FFT amplitude

at low frequencies increases with TGP. However, there is an

increased background level even at lower TGP of about 40 %

(see Fig. 9), where the integral amplitude attains its maxi-

mum, as seen in Fig. 11.

4 Satellite data tests

The solar wind is a supersonic, turbulent plasma stream re-

leased from the upper atmosphere of the Sun. It is often con-

sidered to be the ideal turbulence laboratory, due to its very

large scale, compared to the usual Earth-based laboratories,

and to the large fleet of spacecraft actively investigating its

properties. Starting with the work by Coleman (1968), and

many more similar studies since, we now know that the mag-

netic frequency spectrum of the solar wind, in a range of in-

termediate frequencies, roughly behaves as a power-law (see,

e.g., Bruno and Carbone, 2013). In this regard, the solar wind

magnetic field measurements used in our study constitute a

highly representative sample. By comparing the results of the

SLG and MSG tests for two time series with very different

properties, one containing distinct spectral peaks, while the

other one showing a power-law behavior of the amplitude

spectrum, allows us to strengthen and extrapolate the results

for the simple artificial data set to the much more complex

real-world time series.

We now apply the above methods to the magnetic field

data from the Venus Express (VEX) spacecraft (Zhang et al.,

2006) in orbit around the planet Venus. The signal represents

a sample of the x component of the solar wind magnetic field,

measured by VEX on 17 January 2007. It includes 1000 data

points sampled at 1 s time resolution, forming a time series

of 16 min and 40 s without gaps. Figure 12 shows the signal

and its FFT amplitude spectrum.

4.1 Single-large-gap test applied to the VEX data set

This testing method is identical to the one described above

in Sect. 3.1. A case study obtained by removing 50 % of the

central part of the original signal (TGP= 50 %) is shown in

Fig. 13. Since the signal does not have significant peaks in the

original spectrum (see Fig. 12), we study the performance of

the four methods by comparing the average amplitude spec-

tra. For a given spectrum, the average is computed using a

moving average filter with a span of 100 points. Like in the

corresponding synthetic test, we see that FFT and DFT per-
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Figure 7. Case study for the MSG test applied to the synthetic data. The format is similar to Fig. 2 and 3, except for panel (b), which shows

the individual gap percentage as a function of gap size corresponding to this case study.

Figure 8. MSG test applied to the synthetic data: (a) distribution of

gap percentage (color coded) as a function of signal index and gap

size; (b) TGP as a function of signal index. Note that for the MSG

test, the TGP is not a linear function of signal index.

form roughly in a similar way. The spectral amplitudes of

the signal with TGP= 50 % are at a clearly lower level than

the original spectrum over the whole frequency interval. For

ZTR and LST, the overall average level of the spectrum is

fairly similar to the original one.

The results for the ensemble of 100 signals with the TGP

increasing linearly from 1 to 99.8 % (the procedure described

in Sect. 3.1) are shown in Figs. 14 and 15 (analogues of

Figs. 4 and 5). These figures illustrate the difference between

the estimated spectra of the signal with gaps and the original

spectrum. FFT and DFT show in Fig. 14 an overall decrease

in amplitude with increasing gap size. However, due to the

more complicated spectral content of the real signal, the re-

sults are not as clear as for the synthetic signal (Fig. 4). Also,

due to the more complex nature of the signal, the windowing

procedure is not very effective at large TGP values, and the

edge effect will result in a large increase of DFT amplitudes

for TGP above 80 %. ZTR and LST show an increase in am-

plitude with increasing gap size. Figure 14 shows the integral

of the amplitude spectra as a function of TGP. We see here a

pattern very similar to the one obtained for pure noise anal-

ysis (see Fig. 6b): a decrease in FFT and DFT (until about

60 % TGP) and an increase in ZTR and LST as we increase

the gap size.

4.2 Multiple-small-gaps test applied to the VEX data

set

A case study for the VEX signal from which we have re-

moved 49.4 % of the points by introducing small gaps ac-

cording to the gamma distribution is shown in Fig. 16. We

see that this gap configuration produces excessive power

over most of the frequency range for DFT, ZTR and LST.

Only FFT produces an amplitude spectrum that is close to

the original one. One can notice a threshold frequency at

about ft = 10−1 Hz which is common for the three meth-

ods, above which the spectral slope departs strongly from

the original one. This threshold value is related to the size of

the largest gap. In this case study, the period corresponding

to the threshold frequency is pt = 1/ft = 10 s, which is very

close the largest gap of 6 points (i.e., 6 s) (see Fig. 16b).

Figures 17 and 18 show the results of the test for the en-

semble of 100 signals with variable gap size distribution gen-

erated by the gamma function. Figure 17 shows the differ-

ence between the actual amplitude spectrum and the origi-

nal spectrum. It gives us a synoptic view of the behavior of

the four methods when degradation is increasing. Figure 17

shows that the FFT amplitude spectrum underestimates the

original spectrum for frequencies higher than about 0.1 Hz.

On the other hand, DFT, ZTR and LST overestimate the

spectrum over most of the frequency range. A significant in-

crease is detected for frequencies larger than 0.1 Hz, in agree-

ment with the case study depicted in Fig. 16. Interestingly

the increase seen in these three methods is frequency depen-

dent, and the affected range of frequencies seems to depend

on the actual distribution of the gaps and the power of the

signal. These results indicate that, at least when the data in-

cludes gaps, FFT is the best method to approximate reliably

the spectral slope of a signal recorded in a turbulent envi-

ronment. Figure 18 illustrates the integral spectral amplitude
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Figure 9. MSG test applied to the synthetic data: amplitude spectra in color code as a function of TGP and frequency for: FFT (panel a) DFT

(panel b), ZTR (panel c) and LST (panel d). Color as in Fig. 4.
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using a moving average filter with a span of 10 points.
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(as difference to the original) as a function of the TGP. The

integral gives a global measure of the spectrally differenti-

ated behavior seen in Fig. 17. Figure 18 shows quantitatively

the better agreement of the FFT amplitude with the original

spectrum than the three other methods, even for large TGP.
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Figure 12. A Venus Express (VEX) magnetic field signal. Panel

(a) shows the Bx component of the magnetic field as a function

of time and panel (b) shows its FFT amplitude spectrum.

5 Discussion and conclusions

We have analyzed the effect of data gaps on four com-

monly used spectral analysis methods: the fast Fourier trans-

form, the discrete Fourier transform, the Z transform and the

Lomb–Scargle algorithm. FFT is extremely fast and read-

ily available in all programming languages, and it is by far

the most popular method of estimating the amplitude spec-

trum. It is often applied also to signals containing data gaps,

using interpolation to compensate for the lack of data. The

simple discretization of the Fourier integral using the trape-

zoidal method (DFT), can be used without interpolation even

in the presence of data gaps. The Z transform, a general-

ization of the Fourier transform for discrete series and the

Lomb-Scargle algorithm, a least squares fit of the data using

a superposition of sinusoidal modes, are straight-forwardly

applicable for time series with non-uniform sampling and/or

data gaps.

In order to study the effect of data gaps and to mimic

frequently encountered gap configurations, we devised two

tests: the single-large-gap (SLG) test, which removes a num-

ber of consecutive points from the signal, and the multiple-

small-gaps (MSG) test, which removes a number of ran-
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Figure 13. Case study for the SLG test applied to the VEX data set. The format is similar to Fig. 3. In addition, panels (b)–(e) also show the
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Figure 14. SLG test applied to the VEX data set. Represented are the difference of amplitude spectra (method – original) as a function of

TGP and frequency for: (a) FFT, (b) DFT, (c) ZTR and (d) LST.
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Figure 15. SLG test applied to the VEX data set: integral ampli-

tudes as a function of TGP. Shown are the results for: FFT (red),

DFT (green), ZTR (blue) and LST (magenta).

domly distributed gaps whose size was given by the gamma

distribution. Both tests include an ensemble of 100 signals

with gap percentage increasing from 1 % (4.3 %) to 99.8 %

(83.6 %) in the case of the SLG test (MSG test, respectively).

The tests are applied to two data sets: a simple noisy superpo-

sition of four sinusoidal modes and magnetic field measure-

ments made by the Venus Express spacecraft in orbit around

the planet Venus.

The DFT method is very sensitive to the phase at the two

end points of the gap, giving very distorted results for large

deviations of the end points from the mean value of the sig-

nal. To remove this distortion, the SLG test uses a window-

ing procedure, where we apply a window function on the two

parts of the signal around the central gap, thus canceling the

offset on either side of the gap (as well as at the start and end

of the signal). The signal was windowed for all four methods,

although the effect of windowing was minimal for the other

three methods.

For FFT and DFT, the SLG test shows monotonically de-

creasing amplitudes of the sinusoidal modes, with increasing

total gap percentage (TGP). For DFT this decrease contin-

ues only to the limit of TGP of about 80 %, where after the

background level increases considerably because the win-

dowing procedure becomes less effective (due to the small

number of data points and related numerical noise). For the

VEX data, used here as an example of a realistic data set
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Figure 17. MSG test applied to the VEX data set. The format is similar to Fig. 14.
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Figure 18. MSG test applied to the VEX data set: integral ampli-

tudes as a function of TGP. The format is similar to Fig. 15.

with a more complex spectrum, the results are influenced by

the non-stationarity of the time series, but, overall, we see a

similar decrease in FFT and DFT amplitude when increasing

the TGP, as for the synthetic data. For the synthetic data set,

ZTR and LST show neither decrease in the amplitude of the

sinusoidal modes nor frequency dependence, when the TGP

is increased in the SLG test. However, for very large gaps,

the spectral background becomes increasingly noisy, leading

to an overall increase of the average level of the spectrum.

For the VEX data, since we do not have clear spectral peaks,

we only see the increase of the average level of the spectrum

as TGP increases.

The MSG test probes the effect of small, randomly dis-

tributed, gaps within the time series. For the synthetic data

set, FFT is the only method which is severely affected by

such small gaps, showing decreased amplitude and system-

atic frequency dependence in amplitude reduction, with high

frequencies being most affected. On the other hand, DFT,

ZTR and LST are able to recover the amplitudes of the sinu-

soidal modes, but the spectral background becomes increas-

ingly noisy when increasing the TGP. For the VEX data, the

FFT shows a similar decrease in amplitude and frequency de-

pendence as for the synthetic case. On the other hand, DFT,

ZTR and LST seriously overestimate the high frequency part

of the amplitude spectrum above a certain threshold fre-

quency. Moreover, we found that this threshold is depen-

dent on the distribution of the small data gaps, and is moving

to a lower frequency as the gap size increases. Beyond this

threshold the spectral amplitude is roughly constant since the
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Table 1. Summary of the results of the comparative numerical studies with various types of gaps applied to synthetic and real data from the

Venus Express satellite, respectively.

Data set Single large gap Multiple small gaps

Synthetic FFT and DFT show monotonically de-

creasing amplitudes of the sinusoidal

modes, with increasing TGP. ZTR and

LST show neither decrease in the am-

plitude of the sinusoidal modes nor fre-

quency dependence, when the TGP is

increased.

FFT shows decreased amplitudes and

a systematic frequency dependence in

amplitude reduction, with high frequen-

cies being most affected. DFT, ZTR

and LST recover the amplitudes of

the sinusoidal modes, but the spec-

tral background becomes increasingly

noisy when increasing the TGP.

Venus Express FFT and DFT show a decrease in the

average level of the spectrum when we

increase the TGP. ZTR and LST show

an overall increase of the average level

of the spectrum as TGP increases.

FFT shows a decrease in amplitudes

and a frequency dependence. DFT, ZTR

and LST overestimate the high fre-

quency part of the amplitude spectrum.

data gaps cover a large range of gap sizes corresponding to

the frequency range above the threshold.

Table 1 summarizes the main conclusions of our study.

The two columns show the results of the two tests (SLG –

left and MSG – right) for the synthetic data set (row 1) and

for the Venus Express data set (row 2).

Concluding, the FFT method can be used even for rela-

tively large single data gaps, although the absolute value of

the amplitude spectrum is systematically reduced with gap

size. On the other hand, the ZTR and LST methods preserve

the absolute level of the amplitude spectrum, but are more

vulnerable to increasing spectral background arising from in-

creasing the TGP. They are recommended for the analysis of

signals with strong sinusoidal modes, giving robust results

for the amplitude of sinusoidal modes. For more turbulent

spectra, the appearance of side lobs and spectral noise makes

the effect of data gaps more pronounced for these methods

than for FFT. Thus, our results indicate that, at least when

the data includes gaps, FFT is the best among the four tested

methods to approximate reliably the spectral slope of a signal

recorded in a turbulent environment.

Acknowledgements. The research leading to these results has re-

ceived funding from the European Community’s Seventh Frame-

work Programme (FP7/2007–2013) under grant agreement 313038

(STORM), and a grant of the Romanian Ministry of National Edu-

cation, CNCSUEFISCDI, project No. PN-II-ID-PCE-2012-4-0418.

We also acknowledge the financial support by the Academy of Fin-

land to the ReSoLVE Center of Excellence (project 272157) and to

project 264994.

The topical editor, G. Balasis, thanks Z. Voros and R. V. Donner

for help in evaluating this paper.

References

Babu, P. and Stoica, P.: Spectral analysis of nonuniformly sam-

pled data – a review, Digital Signal Processing, 20, 359–378,

doi:10.1016/j.dsp.2009.06.019, 2010.

Baisch, S. and Bokelmann, G. H.: Spectral analysis with incomplete

time series: an example from seismology, Comput. Geosci., 25,

739–750, doi:10.1016/S0098-3004(99)00026-6, 1999.

Bath, M.: Spectral Analysis in Geophysics, Elsevier Scientific Pub-

lishing Company, Amsterdam, ISBN: 0-444-41222-0, 1974.

Bloomfield, P.: Fourier Analysis of Time Series: An Introduc-

tion, 2nd Edition, A Wiley-Interscience Publication, http://eu.

wiley.com/WileyCDA/WileyTitle/productCd-0471889482.html,

ISBN: 0-471-88948-2, 2000.

Britz, D. and Antonia, R. A.: A comparison of methods of comput-

ing power spectra of LDA signals, Meas. Sci. Technol., 7, 1042,

doi:10.1088/0957-0233/7/7/008, 1996.

Broersen, P., de Waele, S., and Bos, R.: Accuracy of Time

Series Analysis for Laser-Doppler Velocimetry, in: Proceed-

ings of the 10th International Symposium on Applications of

Laser Techniques to Fluid Dynamics, Lisbon, Portugal, avail-

able at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.473.3886, 2000.

Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Lab-

oratory, Living Reviews in Solar Physics, 10, doi:10.12942/lrsp-

2013-2, 2013.

Coleman, Jr., P. J.: Turbulence, Viscosity, and Dissipa-

tion in the Solar-Wind Plasma, Astrophys. J., 153, 371,

doi:10.1086/149674, 1968.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.,

Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi,

F., and Yiou, P.: Advanced spectral methods for climatic time se-

ries, Rev. Geophys., 40, 3–1–3–41, doi:10.1029/2000RG000092,

2002.

Harteveld, W., Mudde, R., and den Akker, H. V.: Estimation

of turbulence power spectra for bubbly flows from Laser

Doppler Anemometry signals, Chem. Eng. Sci., 60, 6160–6168,

doi:10.1016/j.ces.2005.03.037, 2005.

Ann. Geophys., 34, 437–449, 2016 www.ann-geophys.net/34/437/2016/

http://dx.doi.org/10.1016/j.dsp.2009.06.019
http://dx.doi.org/10.1016/S0098-3004(99)00026-6
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471889482.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471889482.html
http://dx.doi.org/10.1088/0957-0233/7/7/008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.473.3886
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.473.3886
http://dx.doi.org/10.12942/lrsp-2013-2
http://dx.doi.org/10.12942/lrsp-2013-2
http://dx.doi.org/10.1086/149674
http://dx.doi.org/10.1029/2000RG000092
http://dx.doi.org/10.1016/j.ces.2005.03.037


C. Munteanu et al.: Effect of data gaps 449

Heslop, D. and Dekkers, M.: Spectral analysis of unevenly spaced

climatic time series using CLEAN: signal recovery and deriva-

tion of significance levels using a Monte Carlo simulation,

Phys. Earth Planet. In., 130, 103–116, doi:10.1016/S0031-

9201(01)00310-7, 2002.

Hocke, K. and Kämpfer, N.: Gap filling and noise reduction of

unevenly sampled data by means of the Lomb-Scargle peri-

odogram, Atmos. Chem. Phys., 9, 4197–4206, doi:10.5194/acp-

9-4197-2009, 2009.

Jury, E. I.: Theory and Application of the Z-Transform Method, R.

E. Krieger Publishing Company, ISBN: 9780882751221, 1973.

Kondrashov, D. and Ghil, M.: Spatio-temporal filling of missing

points in geophysical data sets, Nonlin. Processes Geophys., 13,

151–159, doi:10.5194/npg-13-151-2006, 2006.

Kondrashov, D., Shprits, Y., and Ghil, M.: Gap filling of solar

wind data by singular spectrum analysis, Geophys. Res. Lett.,

37, L15101, doi:10.1029/2010GL044138, 2010.

Kondrashov, D., Denton, R., Shprits, Y. Y., and Singer,

H. J.: Reconstruction of gaps in the past history of so-

lar wind parameters, Geophys. Res. Lett., 41, 2702–2707,

doi:10.1002/2014GL059741, 2014.

Lomb, N.: Least-squares frequency analysis of unequally

spaced data, Astrophys. Space Sci., 39, 447–462,

doi:10.1007/BF00648343, 1976.

Musial, J. P., Verstraete, M. M., and Gobron, N.: Technical Note:

Comparing the effectiveness of recent algorithms to fill and

smooth incomplete and noisy time series, Atmos. Chem. Phys.,

11, 7905–7923, doi:10.5194/acp-11-7905-2011, 2011.

Pope, S. A., Zhang, T. L., Balikhin, M. A., Delva, M., Hvizdos, L.,

Kudela, K., and Dimmock, A. P.: Exploring planetary magnetic

environments using magnetically unclean spacecraft: a systems

approach to VEX MAG data analysis, Ann. Geophys., 29, 639–

647, doi:10.5194/angeo-29-639-2011, 2011.

Priestley, M. B.: Spectral Analysis and Time Series, Academic

Press, London, ISBN: 0-12-564901-0, 1981.

Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of

correlation analysis techniques for irregularly sampled time se-

ries, Nonlin. Processes Geophys., 18, 389–404, doi:10.5194/npg-

18-389-2011, 2011.

Scargle, J. D.: Studies in astronomical time series analysis. II –

Statistical aspects of spectral analysis of unevenly spaced data,

The Astrophysical Journal, 263, 835–853, doi:10.1086/160554,

1982.

Scargle, J. D.: Studies in astronomical time series analysis. III

– Fourier transforms, autocorrelation functions, and cross-

correlation functions of unevenly spaced data, The Astrophysical

Journal, 343, 874–887, doi:10.1086/167757, 1989.

Schimmel, M.: Emphasizing Difficulties in the Detection of

Rhythms with Lomb-Scargle Periodograms, Biol. Rhythm Res.,

32, 341–346, doi:10.1076/brhm.32.3.341.1340, 2001.

Stahn, T. and Gizon, L.: Fourier Analysis of Gapped Time Series:

Improved Estimates of Solar and Stellar Oscillation Parameters,

Solar Phys., 251, 31, doi:10.1007/s11207-008-9181-0, 2008.

Teodorescu, E., Echim, M., Munteanu, C., Zhang, T., Bruno, R.,

and Kovacs, P.: Inertial range turbulence of fast and slow solar

wind at 0.72 AU and solar minimum, Astrophys. J. Lett., 804,

doi:10.1088/2041-8205/804/2/L41, 2015.

Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynam-

ics of the inner magnetosphere during strong geomagnetic

storms, J. Geophys. Res. (Space Physics), 110, A03208,

doi:10.1029/2004JA010798, 2005.

Van Dongen, H., Olofsen, E., Van Hartevelt, J., and Kruyt, E.: A

Procedure of Multiple Period Searching in Unequally Spaced

Time-Series with the Lomb-Scargle Method, Biol. Rhythm Res.,

30, 149–177, doi:10.1076/brhm.30.2.149.1424, 1999.

van Maanen, H. R. E. and Oldenziel, A.: Estimation of turbu-

lence power spectra from randomly sampled data by curve-fit to

the autocorrelation function applied to laser-Doppler anemome-

try, Meas. Sci. Technol., 9, 458, doi:10.1088/0957-0233/9/3/021,

1998.

Weeks, M.: Digital Signal Processing Using MATLAB and

Wavelets, Second Edition, Jones and Bartlett Publishers, Inc.,

2nd edn., http://dl.acm.org/citation.cfm?id=1841667, 2011.

Zhang, T., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A.,

Russell, C., Barabash, S., Balikhin, M., Berghofer, G., Biernat,

H., Lammer, H., Lichtenegger, H., Magnes, W., Nakamura, R.,

Penz, T., Schwingenschuh, K., Vörös, Z., Zambelli, W., Forna-

con, K.-H., Glassmeier, K.-H., Richter, I., Carr, C., Kudela, K.,

Shi, J., Zhao, H., Motschmann, U., and Lebreton, J.-P.: Magnetic

field investigation of the Venus plasma environment: Expected

new results from Venus Express, Planet. Space Sci., 54, 1336–

1343, doi:10.1016/j.pss.2006.04.018, 2006.

www.ann-geophys.net/34/437/2016/ Ann. Geophys., 34, 437–449, 2016

http://dx.doi.org/10.1016/S0031-9201(01)00310-7
http://dx.doi.org/10.1016/S0031-9201(01)00310-7
http://dx.doi.org/10.5194/acp-9-4197-2009
http://dx.doi.org/10.5194/acp-9-4197-2009
http://dx.doi.org/10.5194/npg-13-151-2006
http://dx.doi.org/10.1029/2010GL044138
http://dx.doi.org/10.1002/2014GL059741
http://dx.doi.org/10.1007/BF00648343
http://dx.doi.org/10.5194/acp-11-7905-2011
http://dx.doi.org/10.5194/angeo-29-639-2011
http://dx.doi.org/10.5194/npg-18-389-2011
http://dx.doi.org/10.5194/npg-18-389-2011
http://dx.doi.org/10.1086/160554
http://dx.doi.org/10.1086/167757
http://dx.doi.org/10.1076/brhm.32.3.341.1340
http://dx.doi.org/10.1007/s11207-008-9181-0
http://dx.doi.org/10.1088/2041-8205/804/2/L41
http://dx.doi.org/10.1029/2004JA010798
http://dx.doi.org/10.1076/brhm.30.2.149.1424
http://dx.doi.org/10.1088/0957-0233/9/3/021
http://dl.acm.org/citation.cfm?id=1841667
http://dx.doi.org/10.1016/j.pss.2006.04.018

	Abstract
	Introduction
	Analysis methods
	Synthetic data tests
	Single-large-gap test applied to the synthetic data set
	Multiple-small-gaps test applied to the synthetic data set

	Satellite data tests
	Single-large-gap test applied to the VEX data set
	Multiple-small-gaps test applied to the VEX data set

	Discussion and conclusions
	Acknowledgements
	References

