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Abstract. Shock waves can strongly influence magnetic re-
connection as seen by the slow shocks attached to the dif-
fusion region in Petschek reconnection. We derive necessary
conditions for such shocks in a nonuniform resistive mag-
netohydrodynamic plasma and discuss them with respect to
the slow shocks in Petschek reconnection. Expressions for
the spatial variation of the velocity and the magnetic field
are derived by rearranging terms of the resistive magnetohy-
drodynamic equations without solving them. These expres-
sions contain removable singularities if the flow velocity of
the plasma equals a certain characteristic velocity depend-
ing on the other flow quantities. Such a singularity can be
related to the strong spatial variations across a shock. In con-
trast to the analysis of Rankine—Hugoniot relations, the in-
vestigation of these singularities allows us to take the finite
resistivity into account. Starting from considering perpendic-
ular shocks in a simplified one-dimensional geometry to in-
troduce the approach, shock conditions for a more general
two-dimensional situation are derived. Then the latter rela-
tions are limited to an incompressible plasma to consider the
subcritical slow shocks of Petschek reconnection. A gradi-
ent of the resistivity significantly modifies the characteristic
velocity of wave propagation. The corresponding relations
show that a gradient of the resistivity can lower the charac-
teristic Alfvén velocity to an effective Alfvén velocity. This
can strongly impact the conditions for shocks in a Petschek
reconnection geometry.

Keywords. Space plasma physics (magnetic reconnection;
shock waves)

1 Introduction

In space plasmas, one of the most efficient conversion mech-
anisms of magnetic energy into kinetic or thermal energy
is magnetic reconnection. Reconnecting magnetic field lines
change the magnetic field topology due to a finite electri-
cal resistivity and the plasma can be highly accelerated as
described by the Sweet-Parker model (Sweet, 1958; Parker,
1957). Petschek (1964) claimed that it is not only diffusion
that can convert magnetic energy into kinetic but that addi-
tional slow shocks can also do so. Such shocks attached to
a resistive region can significantly modify the reconnection
geometry and enhance the reconnection rate. Plasma sim-
ulations of magnetic reconnection show that a nonuniform
resistivity profile with a strong locally enhanced resistivity
lead to a reconnection solution with slow shocks (e.g., Ugai
and Tsuda, 1977; Scholer, 1989; Yan et al., 1992). Such a
locally enhanced resistivity can be caused by, e.g., micro-
instabilities (see, e.g., Treumann, 2001).

A nonuniform resistivity can significantly impact the mag-
netohydrodynamic (MHD) flow by the occurrence of shocks.
For an ideal MHD plasma, the Rankine—Hugoniot relations
demonstrate that a flow velocity which exceeds the magne-
tosonic velocity can lead to shocks (see, e.g., Petrinec and
Russell, 1997). Considering shock transitions with a finite
thickness, as expected for resistive MHD, requires a differ-
ent approach. We derive expressions for the spatial velocity
and magnetic field variation by rearranging terms of the re-
sistive MHD equations. Under certain conditions, removable
singularities of these expressions can be related to the strong
spatial variations of the flow quantities at shocks. A related
approach was applied to a one-dimensional hydrodynamic
situation to examine the influence of cosmic rays on the crit-
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ical Mach number (e.g., Achterberg, 1987; Ko et al., 1997;
Becker and Kazanas, 2001). Burgess and Scholer (2015) con-
sidered such an approach for the two fluid MHD equations to
discuss the dissipation mechanisms of sub- and supercritical
shocks for a uniform resistive plasma. However, in the ex-
pressions derived in these approaches, the spatial variations
across a shock can be caused by terms in the numerator as
well as by singularities due to the denominator. In contrast,
the occurrence of shocks in our expressions is restricted to
the singularities. Thus, the singularities determine necessary
conditions for shocks. Here, the results are discussed for the
incompressible limit of Petschek reconnection, which is re-
lated to subcritical slow shocks.

2 Quasi one-dimensional geometry

To introduce the procedure of how the velocity conditions
for shocks can be derived from the resistive and nonuniform
MHD equations, a quasi one-dimensional situation is con-
sidered. The magnetic field is restricted to the x direction,
i.e., B = (By,0,0)". All quantities can vary with z only. The
flow velocity is along the z direction, i.e., u = (0,0, u.)7.
The only exception is that a flow divergence may be present
so that the flow can be deflected (9,u, # 0, d,u, # 0). Note
that this situation often is a good approximation for stagna-
tion streamline flows. Then the stationary continuity equation
(V - (pu) = 0) with the mass density p can be written as

Oxux + dyuy + 0;u
3Z,0=—p(xx u) y zz)' )
z

The stationary induction equation for a plasma with nonuni-
form resistivity n is

VxuxB)=Vxnj), 2)

where j =V x B/uyg is the current density. To simplify the
representation, we set o = 1 in the following. The induction
equation is solved with respect to 9, B,, which gives

— By (d,uz + dyuy) + 192 B,

d0,B, =
o u; —;:m

©)

Note that the denominator is the result of a modification of
the advective contribution u,d, B, due to the term (9,1)d, B,
in the induction equation (Zita, 2013). The stationary mo-
mentum equation of MHD is

o(u-VYu+Vp—jxB=0, (4)

with the gas pressure p. The spatial variation of the gas pres-
sure is substituted by 9, p =c§81p, with the sound speed
cs == (3, p)°°. Substituting Egs. (1) and (3) in the momen-
tum Eq. (4) and solving the momentum equation with respect
to d,u; yields

2 2
5 _CSDS+KMA,xD51 c
M= —%"> 2 ®)
7 T CsTKUA
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where up , is the x component of the Alfvén velocity ua :=
B/p%5 and « is defined by

K= ug/(uz — 09;m). (6)

Further, we substituted Ds:=dyu, +dyu, and Day:=
dyuy —(n 8§Bx)/Bx, terms corresponding to flow modifica-
tions, e.g., due to an obstacle in the flow. In Eq. (5), the
Alfvén velocity ua_, is scaled by «%°. Therefore, we intro-
duce an effective Alfvén velocity ua ., defined by

UAx = KO‘SMA,X. )

The modification of the Alfvén velocity ua . is due to a resis-
tivity gradient, and for 9, — 0, the effective Alfvén velocity
ua, . equals the Alfvén velocity ua .

Across a shock, the MHD quantities, e.g., the flow veloc-
ity, change their values. We restrict our analysis to approxi-
mately normal shocks, i.e., the upstream flow velocity is ap-
proximately orthogonal to the shock. Thus, dyu, and dyu,
are usually small compared to 9., and 9, B, across a shock.
Further, we assume that the resistive contribution of the nu-
merator in Da1 is small, which is related to a small shock
thickness. With these conditions, the variations of the numer-
ator of Eq. (5) are bounded to small values compared to d,u,
across a shock. Then large values of 9,u are restricted to the
neighborhood of the singularities of Eq. (5), which are given

by

uz=:|:,/c§+ﬁzA’x. (8)

Note that in resistive MHD, the singularities are usually re-
movable and no infinite gradients occur. Although it is nec-
essary to be close to such a singularity to obtain high values
of d,u., it is not a sufficient condition. The actual value of
d,u, depends on the limits of numerator and denominator.
The velocity u, in Eq. (8) determines a characteristic velocity
of wave propagation. If the flow velocity equals this charac-
teristic velocity, shock waves can form due to the steepening
of waves. For a uniform resistivity, the characteristic veloc-
ity is the magnetosonic velocity, as expected. Consider, e.g.,
the hydrodynamic limit where the magnetic field vanishes.
Then ua » =0 in Eq. (5). An obstacle such as a sphere in
the flow requires flow deflection away from the stagnation
streamline to decelerate the flow, and consequently Ds > 0.
If the initial flow velocity is supersonic, the flow has to pass
the singularity in Eq. (5) during the deceleration. The result-
ing solution including the shock gives Ds = 0 ahead of the
shock and Ds > 0 postshock (see, e.g., Nabert et al., 2013).

3 Two-dimensional reconnection geometry

We extend the previous analysis to investigate the velocity
conditions for shocks in a two-dimensional diffusion region
in the x—z plane (Fig. 1).
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Figure 1. The current sheet of the diffusion region is represented by
the circles with a cross. The plasma is reconnected at the X point
and is accelerated outward along the z direction. Shock pairs can
appear (dashed lines) for Petschek reconnection. Long arrows in-
dicate magnetic field lines and short arrows the plasma inflow and
outflow.

Thus, all components and variations with respect to y are
neglected. Then the stationary continuity equation reduces to

UxOxp + poxity +uzd;p + pdzu; =0. ©)

Using the substitutions d, p = cZd.p and 3, p = ¢33, p, the
momentum Eq. (4) yields

Uity + pudyuy + 30y p = B,0, B, — B3, B, (10)

and

puxdett; + puzd,u, +c29.p = Bydy B, — By0,B,.  (11)
The x component of the induction Eq. (2) gives

Uy 0z By + B;0;uyx — u;0; By — By 0zu; (12)
=010y B; — 9;:n9;Bx + RI\/_,

where Ry := (79,3 B, — nd2By)/p%3. To simplify the cal-
culations, we assume that the resistivity depends on z, only.
Then the z component of the induction Eq. (2) is

Uz0x By + By 0xut; — uxdx B; — B;0xuty = R2./p, (13)

with Ry := (79,9, Bx —132B.)/p%°. As with the previous
quasi one-dimensional considerations, expressions for the
spatial variations of the MHD quantities are considered.
Therefore, all partial derivatives of MHD quantities (e.g.,
dyu,, 0, B;) are treated as variables. We choose a coordinate
system with the x axis along the normal direction of a possi-
ble shock. Note that Petschek’s slow shocks are only approx-
imately normal to the z axis, so that the coordinate system
(x, z) has to be rotated until the x axis matches the shock’s
normal direction. Then we can assume that variations of the
MHD quantities with respect to the z direction are usually
minor compared to variations with respect to the x direc-
tion. Note that one exception is d, B, which vanishes ap-
proximately across a shock due to the divergence-free mag-
netic field if the x direction is approximated as normal di-
rection. Consequently, the system of Egs. (9)—(13) is solved
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Table 1. The coefficients in Eq. (15) using Au? :=u? —c3 and
Auy = u; — d;n to simplify the representation.

fi= ua; (u%\’xAuZ +”)2c (uiz - Auzuz))

fo= uA’chuxAuZ — ui‘)xAuz
—UA x (u'%\ zu;‘; + AuzAuZuZ)

(e (c(dn+u)—u? Auz))

fa=

pO.S
1= (u%ui\—uxcgui,x)
4= 4 05
f B (c%Auz(uA.xAueruA,zuxuz))
5= P

fe= R2 (uﬁuZ — Auzuxazn) — Ry (u%\,xAuz + uizui)

with respect to d,uy, 9y B;, 3; By, dxu;, and 9, p wWhich are
the most significant variables at a shock. The solution for
dx B; is given by

D

0xB; = )
(9;m —uz) (u)zc (”)Zc - c% —K M,ZA) tx M:ZA xcg)

(14)

with ua := |ual|. The numerator is abbreviated by D, which
can be written as

D = f10;ux~+ f20;u;+ f30x By + f49;B;+ f50;p+ f5, (15)

with the coefficients displayed in Table 1.

Note that the solution for the chosen variables o,u,, o, B,
9, By, 0yuz, and 9, p all provide the same denominator. Sim-
ilarly to the analysis of the quasi one-dimensional flow, large
values of d, B, are related to the neighborhood of removable
singularities in Eq. (14) because the terms with partial deriva-
tives in the numerator are assumed to be small. The root of
the denominator in Eq. (14) yields a relation for the critical
flow velocity at the singularity which is given by

1 1 2
uizz(%—i—xu%)i\//cu,zo\’xcé—i-Z(Cé-i-KuzA) . (16)

If the condition in Eq. (16) is satisfied, strong variations in
all the quantities along the x direction can appear, a nec-
essary condition to obtain a shock. For an incompressible
plasma, the sound velocity approaches infinity (cs — o).
Then (u? — ¢4 —kui) — (—c3), and the characteristic ve-
locity of Eq. (14) gives the following nontrivial singularity
conditions:

Uy = FUA x. @an
If the resistivity is uniform, k — 1 and the characteristic ve-

locity is the Alfvén velocity ua . In a nonuniform resistive
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plasma, a super-Alfvénic inflow with respect to the effective
Alfvén velocity ua , can cause a shock by passing the re-
movable singularity.

To obtain a first insight into the effects of the inflow ve-
locity conditions for shocks, we compare the limit of a uni-
form resistivity to a steep decreasing gradient of the resistiv-
ity along the z direction. Such a steep decreasing gradient is
expected for a locally enhanced resistivity on the right half-
plane of the reconnection geometry in Fig. 1. The critical
velocity for shocks of the inflow is determined by Eq. (17).
For a uniform resistivity (3,7 — 0), the critical inflow ve-
locity for shocks becomes the Alfvén velocity ua . Away
from the x axis and close to the z axis, uy < ua_x due to the
finite magnetic field B, and the vanishing velocity compo-
nent u, (see Fig. 1). Far away from the z axis, u, becomes
the inflow velocity of the reconnection region and ua . van-
ishes. However, the x axis is not strictly normal to the slow
shock of Petschek reconnection. To correct this, we have to
use the normal component of the magnetic field with respect
to a possible shock instead of By, as discussed previously.
Assuming a shock angle as proposed by the Petschek model
for the slow shocks leads the inflow velocity to converge to
the Alfvén velocity ua . However, the inflow remains be-
low the critical velocity for Petschek’s slow shocks for a uni-
form resistivity. A decreasing gradient of the resistivity, i.e.,
d.n < 0, leads to « < 1. As a consequence, the critical inflow
velocity, determined by Eq. (17), becomes smaller. Then the
inflow can exceed the effective Alfvén velocity and a shock
can be triggered if the condition in Eq. (17) holds. The slow
shocks in Petschek reconnection are such shocks. The limit
9,n — —oo leads to « — 0, and thus, the effective Alfvén
velocity ua , vanishes. This leads to a critical flow veloc-
ity to obtain shocks of u, = 0, and waves cannot propagate
against the upstream flow at the location of the gradient.

4  Summary

An approach to derive necessary conditions for shocks from
the stationary resistive MHD equations was presented and
applied to the slow shocks of Petschek reconnection. The ap-
proach treats terms with partial derivatives in the MHD equa-
tions as variables. The equations were solved with respect to
terms with spatial derivatives which are normal to a possi-
ble shock. The resulting expressions are displayed by frac-
tions, whereby the numerator contains the terms with spatial
derivatives tangential to the possible shock. Across a shock,
the variations of the MHD quantities are usually small com-
pared to variations along the shock plane. Note that this as-
sumes the curvature of a shock to be small, i.e., an approx-
imately plane shock front. Therefore, the high values of the
spatial derivatives of quantities normal to a shock, e.g., for
the normal and tangential velocity components, require a root
of the denominator in our expressions. This determines a nec-
essary condition for a shock. The approach was introduced
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by a quasi one-dimensional situation with the magnetic field
perpendicular to the flow velocity. This example is there-
fore limited to perpendicular shocks. Then a more general
two-dimensional situation was considered. It was assumed
that the resistivity profile is uniformly normal to a shock.
The resulting necessary condition for a shock (Eg. 16) was
discussed for the occurrence of subcritical slow shocks in
Petschek reconnection depending on the resistivity profile.
Therefore, the limit of an incompressible plasma was used
which leads to Eq. (17). A gradient of the resistivity can sig-
nificantly influence the necessary condition for shocks in the
reconnection geometry. This is related to the slow shocks of
Petschek reconnection. Although the approach was consid-
ered in the limit of a reconnection geometry, the necessary
shock Eq. (16) holds for more general situations. Note that
the critical velocity for shocks is related to a characteristic
velocity of wave propagation. Therefore, the approach pre-
sented might be extended to consider changes of wave prop-
agation in a nonuniform resistivity profile.
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