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Abstract. Shock waves can strongly influence magnetic re-

connection as seen by the slow shocks attached to the dif-

fusion region in Petschek reconnection. We derive necessary

conditions for such shocks in a nonuniform resistive mag-

netohydrodynamic plasma and discuss them with respect to

the slow shocks in Petschek reconnection. Expressions for

the spatial variation of the velocity and the magnetic field

are derived by rearranging terms of the resistive magnetohy-

drodynamic equations without solving them. These expres-

sions contain removable singularities if the flow velocity of

the plasma equals a certain characteristic velocity depend-

ing on the other flow quantities. Such a singularity can be

related to the strong spatial variations across a shock. In con-

trast to the analysis of Rankine–Hugoniot relations, the in-

vestigation of these singularities allows us to take the finite

resistivity into account. Starting from considering perpendic-

ular shocks in a simplified one-dimensional geometry to in-

troduce the approach, shock conditions for a more general

two-dimensional situation are derived. Then the latter rela-

tions are limited to an incompressible plasma to consider the

subcritical slow shocks of Petschek reconnection. A gradi-

ent of the resistivity significantly modifies the characteristic

velocity of wave propagation. The corresponding relations

show that a gradient of the resistivity can lower the charac-

teristic Alfvén velocity to an effective Alfvén velocity. This

can strongly impact the conditions for shocks in a Petschek

reconnection geometry.

Keywords. Space plasma physics (magnetic reconnection;

shock waves)

1 Introduction

In space plasmas, one of the most efficient conversion mech-

anisms of magnetic energy into kinetic or thermal energy

is magnetic reconnection. Reconnecting magnetic field lines

change the magnetic field topology due to a finite electri-

cal resistivity and the plasma can be highly accelerated as

described by the Sweet-Parker model (Sweet, 1958; Parker,

1957). Petschek (1964) claimed that it is not only diffusion

that can convert magnetic energy into kinetic but that addi-

tional slow shocks can also do so. Such shocks attached to

a resistive region can significantly modify the reconnection

geometry and enhance the reconnection rate. Plasma sim-

ulations of magnetic reconnection show that a nonuniform

resistivity profile with a strong locally enhanced resistivity

lead to a reconnection solution with slow shocks (e.g., Ugai

and Tsuda, 1977; Scholer, 1989; Yan et al., 1992). Such a

locally enhanced resistivity can be caused by, e.g., micro-

instabilities (see, e.g., Treumann, 2001).

A nonuniform resistivity can significantly impact the mag-

netohydrodynamic (MHD) flow by the occurrence of shocks.

For an ideal MHD plasma, the Rankine–Hugoniot relations

demonstrate that a flow velocity which exceeds the magne-

tosonic velocity can lead to shocks (see, e.g., Petrinec and

Russell, 1997). Considering shock transitions with a finite

thickness, as expected for resistive MHD, requires a differ-

ent approach. We derive expressions for the spatial velocity

and magnetic field variation by rearranging terms of the re-

sistive MHD equations. Under certain conditions, removable

singularities of these expressions can be related to the strong

spatial variations of the flow quantities at shocks. A related

approach was applied to a one-dimensional hydrodynamic

situation to examine the influence of cosmic rays on the crit-
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ical Mach number (e.g., Achterberg, 1987; Ko et al., 1997;

Becker and Kazanas, 2001). Burgess and Scholer (2015) con-

sidered such an approach for the two fluid MHD equations to

discuss the dissipation mechanisms of sub- and supercritical

shocks for a uniform resistive plasma. However, in the ex-

pressions derived in these approaches, the spatial variations

across a shock can be caused by terms in the numerator as

well as by singularities due to the denominator. In contrast,

the occurrence of shocks in our expressions is restricted to

the singularities. Thus, the singularities determine necessary

conditions for shocks. Here, the results are discussed for the

incompressible limit of Petschek reconnection, which is re-

lated to subcritical slow shocks.

2 Quasi one-dimensional geometry

To introduce the procedure of how the velocity conditions

for shocks can be derived from the resistive and nonuniform

MHD equations, a quasi one-dimensional situation is con-

sidered. The magnetic field is restricted to the x direction,

i.e., B = (Bx,0,0)
T . All quantities can vary with z only. The

flow velocity is along the z direction, i.e., u= (0,0,uz)
T .

The only exception is that a flow divergence may be present

so that the flow can be deflected (∂xux 6= 0, ∂yuy 6= 0). Note

that this situation often is a good approximation for stagna-

tion streamline flows. Then the stationary continuity equation

(∇ · (ρu)= 0) with the mass density ρ can be written as

∂zρ =−
ρ
(
∂xux + ∂yuy + ∂zuz

)
uz

. (1)

The stationary induction equation for a plasma with nonuni-

form resistivity η is

∇ × (u×B)=∇ × (ηj) , (2)

where j =∇ ×B/µ0 is the current density. To simplify the

representation, we set µ0 = 1 in the following. The induction

equation is solved with respect to ∂zBx , which gives

∂zBx =
−Bx

(
∂zuz+ ∂yuy

)
+ η∂2

zBx

uz− ∂zη
. (3)

Note that the denominator is the result of a modification of

the advective contribution uz∂zBx due to the term (∂zη)∂zBx
in the induction equation (Zita, 2013). The stationary mo-

mentum equation of MHD is

ρ(u · ∇)u+∇p− j ×B = 0, (4)

with the gas pressure p. The spatial variation of the gas pres-

sure is substituted by ∂zp = c
2
S∂zρ, with the sound speed

cS := (∂ρp)
0.5. Substituting Eqs. (1) and (3) in the momen-

tum Eq. (4) and solving the momentum equation with respect

to ∂zuz yields

∂zuz =
c2

SDS+ κ u
2
A,xDS1

u2
z − c

2
S− κ u

2
A,x

, (5)

where uA,x is the x component of the Alfvén velocity uA :=

B/ρ0.5 and κ is defined by

κ := uz/(uz− ∂zη). (6)

Further, we substituted DS := ∂yuy + ∂xux and DA1 :=

∂yuy − (η ∂
2
zBx)/Bx , terms corresponding to flow modifica-

tions, e.g., due to an obstacle in the flow. In Eq. (5), the

Alfvén velocity uA,x is scaled by κ0.5. Therefore, we intro-

duce an effective Alfvén velocity ũA,x , defined by

ũA,x := κ
0.5 uA,x . (7)

The modification of the Alfvén velocity uA,x is due to a resis-

tivity gradient, and for ∂zη→ 0, the effective Alfvén velocity

ũA,x equals the Alfvén velocity uA,x .

Across a shock, the MHD quantities, e.g., the flow veloc-

ity, change their values. We restrict our analysis to approxi-

mately normal shocks, i.e., the upstream flow velocity is ap-

proximately orthogonal to the shock. Thus, ∂xux and ∂yuy
are usually small compared to ∂zuz and ∂zBx across a shock.

Further, we assume that the resistive contribution of the nu-

merator in DA1 is small, which is related to a small shock

thickness. With these conditions, the variations of the numer-

ator of Eq. (5) are bounded to small values compared to ∂zuz
across a shock. Then large values of ∂zuz are restricted to the

neighborhood of the singularities of Eq. (5), which are given

by

uz =±

√
c2

S+ ũ
2
A,x . (8)

Note that in resistive MHD, the singularities are usually re-

movable and no infinite gradients occur. Although it is nec-

essary to be close to such a singularity to obtain high values

of ∂zuz, it is not a sufficient condition. The actual value of

∂zuz depends on the limits of numerator and denominator.

The velocity uz in Eq. (8) determines a characteristic velocity

of wave propagation. If the flow velocity equals this charac-

teristic velocity, shock waves can form due to the steepening

of waves. For a uniform resistivity, the characteristic veloc-

ity is the magnetosonic velocity, as expected. Consider, e.g.,

the hydrodynamic limit where the magnetic field vanishes.

Then ũA,x = 0 in Eq. (5). An obstacle such as a sphere in

the flow requires flow deflection away from the stagnation

streamline to decelerate the flow, and consequently DS > 0.

If the initial flow velocity is supersonic, the flow has to pass

the singularity in Eq. (5) during the deceleration. The result-

ing solution including the shock gives DS = 0 ahead of the

shock and DS > 0 postshock (see, e.g., Nabert et al., 2013).

3 Two-dimensional reconnection geometry

We extend the previous analysis to investigate the velocity

conditions for shocks in a two-dimensional diffusion region

in the x–z plane (Fig. 1).
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Figure 1. The current sheet of the diffusion region is represented by

the circles with a cross. The plasma is reconnected at the X point

and is accelerated outward along the z direction. Shock pairs can

appear (dashed lines) for Petschek reconnection. Long arrows in-

dicate magnetic field lines and short arrows the plasma inflow and

outflow.

Thus, all components and variations with respect to y are

neglected. Then the stationary continuity equation reduces to

ux∂xρ+ ρ∂xux + uz∂zρ+ ρ∂zuz = 0. (9)

Using the substitutions ∂xp = c
2
S∂xρ and ∂zp = c

2
S∂zρ, the

momentum Eq. (4) yields

ρux∂xux + ρuz∂zux + c
2
S∂xρ = Bz∂zBx −Bz∂xBz (10)

and

ρux∂xuz+ ρuz∂zuz+ c
2
S∂zρ = Bx∂xBz−Bx∂zBx . (11)

The x component of the induction Eq. (2) gives

ux∂zBz+Bz∂zux − uz∂zBx −Bx∂zuz (12)

= ∂zη∂xBz− ∂zη∂zBx +R1
√
ρ,

where R1 := (η∂z∂xBz− η∂
2
zBx)/ρ

0.5. To simplify the cal-

culations, we assume that the resistivity depends on z, only.

Then the z component of the induction Eq. (2) is

uz∂xBx +Bx∂xuz− ux∂xBz−Bz∂xux = R2
√
ρ, (13)

with R2 := (η∂x∂zBx − η∂
2
xBz)/ρ

0.5. As with the previous

quasi one-dimensional considerations, expressions for the

spatial variations of the MHD quantities are considered.

Therefore, all partial derivatives of MHD quantities (e.g.,

∂xuz, ∂zBz) are treated as variables. We choose a coordinate

system with the x axis along the normal direction of a possi-

ble shock. Note that Petschek’s slow shocks are only approx-

imately normal to the z axis, so that the coordinate system

(x,z) has to be rotated until the x axis matches the shock’s

normal direction. Then we can assume that variations of the

MHD quantities with respect to the z direction are usually

minor compared to variations with respect to the x direc-

tion. Note that one exception is ∂xBx , which vanishes ap-

proximately across a shock due to the divergence-free mag-

netic field if the x direction is approximated as normal di-

rection. Consequently, the system of Eqs. (9)–(13) is solved

Table 1. The coefficients in Eq. (15) using 1u2
:= u2

x − c
2
S

and

1uz := uz− ∂zη to simplify the representation.

f1 = uA,z

(
u2

A,x
1u2
+ u2

x

(
u2

A,z
−1uzuz

))
f2 = uA,zc

2
S
ux1uz− u

3
A,x

1u2

−uA,x

(
u2

A,z
u2
x +1u

21uzuz

)
f3 =

(
uxuz

(
c2

S(∂zη+uz)−u
2
x1uz

))
ρ0.5

f4 =

(
u3
xu

2
A−uxc

2
Su

2
A,x

)
ρ0.5

f5 =

(
c2

S1uz
(
uA,x1u

2
+uA,zuxuz

))
ρ

f6 = R2

(
u3
xuz−1u

2ux∂zη
)
−R1

(
u2

A,x
1u2
+ u2

A,z
u2
x

)

with respect to ∂xux , ∂xBz, ∂zBx , ∂xuz, and ∂xρ which are

the most significant variables at a shock. The solution for

∂xBz is given by

∂xBz =
D

(∂zη− uz)
(
u2
x

(
u2
x − c

2
S− κ u

2
A

)
+ κ u2

A,xc
2
S

) , (14)

with uA := |uA|. The numerator is abbreviated by D, which

can be written as

D = f1∂zux+f2∂zuz+f3∂xBx+f4∂zBz+f5∂zρ+f6, (15)

with the coefficients displayed in Table 1.

Note that the solution for the chosen variables ∂xux , ∂xBz,

∂zBx , ∂xuz, and ∂xρ all provide the same denominator. Sim-

ilarly to the analysis of the quasi one-dimensional flow, large

values of ∂xBz are related to the neighborhood of removable

singularities in Eq. (14) because the terms with partial deriva-

tives in the numerator are assumed to be small. The root of

the denominator in Eq. (14) yields a relation for the critical

flow velocity at the singularity which is given by

u2
x =

1

2

(
c2

S+ κ u
2
A

)
±

√
κ u2

A,xc
2
S+

1

4

(
c2

S+ κu
2
A

)2

. (16)

If the condition in Eq. (16) is satisfied, strong variations in

all the quantities along the x direction can appear, a nec-

essary condition to obtain a shock. For an incompressible

plasma, the sound velocity approaches infinity (cS→∞).

Then (u2
x − c

2
S− κu

2
A)→ (−c2

S), and the characteristic ve-

locity of Eq. (14) gives the following nontrivial singularity

conditions:

ux =±ũA,x . (17)

If the resistivity is uniform, κ→ 1 and the characteristic ve-

locity is the Alfvén velocity uA,x . In a nonuniform resistive
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plasma, a super-Alfvénic inflow with respect to the effective

Alfvén velocity ũA,x can cause a shock by passing the re-

movable singularity.

To obtain a first insight into the effects of the inflow ve-

locity conditions for shocks, we compare the limit of a uni-

form resistivity to a steep decreasing gradient of the resistiv-

ity along the z direction. Such a steep decreasing gradient is

expected for a locally enhanced resistivity on the right half-

plane of the reconnection geometry in Fig. 1. The critical

velocity for shocks of the inflow is determined by Eq. (17).

For a uniform resistivity (∂zη→ 0), the critical inflow ve-

locity for shocks becomes the Alfvén velocity uA,x . Away

from the x axis and close to the z axis, ux ≤ uA,x due to the

finite magnetic field Bx and the vanishing velocity compo-

nent ux (see Fig. 1). Far away from the z axis, ux becomes

the inflow velocity of the reconnection region and uA,x van-

ishes. However, the x axis is not strictly normal to the slow

shock of Petschek reconnection. To correct this, we have to

use the normal component of the magnetic field with respect

to a possible shock instead of Bx , as discussed previously.

Assuming a shock angle as proposed by the Petschek model

for the slow shocks leads the inflow velocity to converge to

the Alfvén velocity uA,x . However, the inflow remains be-

low the critical velocity for Petschek’s slow shocks for a uni-

form resistivity. A decreasing gradient of the resistivity, i.e.,

∂zη < 0, leads to κ < 1. As a consequence, the critical inflow

velocity, determined by Eq. (17), becomes smaller. Then the

inflow can exceed the effective Alfvén velocity and a shock

can be triggered if the condition in Eq. (17) holds. The slow

shocks in Petschek reconnection are such shocks. The limit

∂zη→−∞ leads to κ→ 0, and thus, the effective Alfvén

velocity ũA,x vanishes. This leads to a critical flow veloc-

ity to obtain shocks of ux = 0, and waves cannot propagate

against the upstream flow at the location of the gradient.

4 Summary

An approach to derive necessary conditions for shocks from

the stationary resistive MHD equations was presented and

applied to the slow shocks of Petschek reconnection. The ap-

proach treats terms with partial derivatives in the MHD equa-

tions as variables. The equations were solved with respect to

terms with spatial derivatives which are normal to a possi-

ble shock. The resulting expressions are displayed by frac-

tions, whereby the numerator contains the terms with spatial

derivatives tangential to the possible shock. Across a shock,

the variations of the MHD quantities are usually small com-

pared to variations along the shock plane. Note that this as-

sumes the curvature of a shock to be small, i.e., an approx-

imately plane shock front. Therefore, the high values of the

spatial derivatives of quantities normal to a shock, e.g., for

the normal and tangential velocity components, require a root

of the denominator in our expressions. This determines a nec-

essary condition for a shock. The approach was introduced

by a quasi one-dimensional situation with the magnetic field

perpendicular to the flow velocity. This example is there-

fore limited to perpendicular shocks. Then a more general

two-dimensional situation was considered. It was assumed

that the resistivity profile is uniformly normal to a shock.

The resulting necessary condition for a shock (Eq. 16) was

discussed for the occurrence of subcritical slow shocks in

Petschek reconnection depending on the resistivity profile.

Therefore, the limit of an incompressible plasma was used

which leads to Eq. (17). A gradient of the resistivity can sig-

nificantly influence the necessary condition for shocks in the

reconnection geometry. This is related to the slow shocks of

Petschek reconnection. Although the approach was consid-

ered in the limit of a reconnection geometry, the necessary

shock Eq. (16) holds for more general situations. Note that

the critical velocity for shocks is related to a characteristic

velocity of wave propagation. Therefore, the approach pre-

sented might be extended to consider changes of wave prop-

agation in a nonuniform resistivity profile.
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