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Abstract. Spatial dimensions of the detailed structures of

the electron diffusion region in anti-parallel magnetic recon-

nection were analyzed based on two-dimensional fully ki-

netic particle-in-cell simulations. The electron diffusion re-

gion in this study is defined as the region where the posi-

tive reconnection electric field is sustained by the electron

inertial and non-gyrotropic pressure components. Past ki-

netic studies demonstrated that the dimensions of the whole

electron diffusion region and the inner non-gyrotropic re-

gion are scaled by the electron inertial length de and the

width of the electron meandering motion, respectively. In

this study, we successfully obtained more precise scalings of

the dimensions of these two regions than the previous stud-

ies by performing simulations with sufficiently small grid

spacing (1/16–1/8 de) and a sufficient number of particles

(800 particles cell−1 on average) under different conditions

changing the ion-to-electron mass ratio, the background den-

sity and the electron βe (temperature). The obtained scalings

are adequately supported by some theories considering spa-

tial variations of field and plasma parameters within the dif-

fusion region. In the reconnection inflow direction, the di-

mensions of both regions are proportional to de based on

the background density. Both dimensions also depend on βe

based on the background values, but the dependence in the

inner region (∼ 0.375th power) is larger than the whole re-

gion (0.125th power) reflecting the orbits of meandering and

accelerated electrons within the inner region. In the outflow

direction, almost only the non-gyrotropic component sus-

tains the positive reconnection electric field. The dimension

of this single-scale diffusion region is proportional to the ion-

electron hybrid inertial length (dide)
1/2 based on the back-

ground density and weakly depends on the background βe

with the 0.25th power. These firm scalings allow us to predict

observable dimensions in real space which are indeed in rea-

sonable agreement with past in situ spacecraft observations

in the Earth’s magnetotail and have important implications

for future observations with higher resolutions such as the

NASA Magnetospheric Multiscale (MMS) mission.

Keywords. Magnetospheric physics (magnetotail) – space

plasma physics (magnetic reconnection; numerical simula-

tion studies)

1 Introduction

Magnetic reconnection is one of the most important energy

transfer processes in space and laboratory plasmas, which

converts magnetic energy to kinetic energy by changing the

magnetic field topology (e.g., Birn and Priest, 2007; Yamada

et al., 2010; Paschmann et al., 2013; Treumann and Baumjo-

hann, 2015). The topology change in the reconnection pro-

cess takes place in a small-scale region called the diffusion

region where plasmas are decoupled from the magnetic field.

The diffusion region in collisionless plasmas is known to

have a multi-scale structure based on ion and electron scales,

which can be described by the extended Ohm’s law derived

from the electron momentum equation (e.g., Kuznetsova et

al., 1998; Pritchett, 2001),

E =−
1

c
U e×B −

∇ ·P e

en
−
me

e

dU e

dt
(1)

=−
1

c
U i ×B +

J ×B/c

en
−
∇ ·P e

en
−
me

e

dU e

dt
,

where J is the current density, P e is the electron pressure

tensor, n is the number density and U i and U e are the ion

and electron bulk flow velocities, respectively. Considering a
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two-dimensional situation in which reconnection develops in

the x–z plane, reconnection is sustained by the y component

of the electric field Ey and the multi-scale structure of the

diffusion region can be described by the y component of each

term in Eq. (1),

Ey =−(U i×B)y︸ ︷︷ ︸
EVB
y |ion

+(J ×B/cen)y︸ ︷︷ ︸
EHall
y︸ ︷︷ ︸

EVB
y =−(U e×B)y

(2)

−
1

en

(
∂Pexy

∂x
+
∂Peyz

∂z

)
︸ ︷︷ ︸

ENG
y

−
me

e

[
∂U e

∂t
+ (U e · ∇)U e

]
y︸ ︷︷ ︸

EEI
y .

The convection term EVB
y |ion is dominant outside the dif-

fusion region where electrons and ions move together. In the

outer diffusion region where ions are decoupled from elec-

trons, the Hall term EHall
y is not negligible and EVB

y is dom-

inant. In the inner diffusion region, electron inertial and ki-

netic (non-gyrotropic pressure) effects (i.e., EEI
y and ENG

y )

play central roles to dissipate the magnetic energy. In this

region, Erec
y = (E+U e×B)y ∼ E

NG
y +E

EI
y , which is some-

times called the reconnection electric field, is dominant. In

this paper, the region where Erec
y > 0 is defined as the elec-

tron diffusion region.

Past numerical studies considering the finite-mass electron

fluid showed that the dimension of the whole electron diffu-

sion region in the inflow direction (z direction in this paper)

is controlled by the electron inertial term EEI
y and scaled by

the electron inertial length de (e.g., Shay et al., 2001). Fully

kinetic simulations further demonstrated that near the cen-

ter of the diffusion region (the reconnection X-point), EEI
y

is negligible and instead the non-gyrotropic term ENG
y is

dominant (e.g., Hesse and Winske, 1998; Pritchett, 2001).

This non-gyrotropic pressure component is known to result

from the electron meandering motion whose width can be de-

scribed by a hybrid of the electron gyroradius and the mag-

netic field gradient scale (ρeLB)
1/2 (e.g., Horiuchi and Sato,

1994; Kuznetsova et al., 1998; Hesse et al., 1999; Dorfman et

al., 2008). However, these expressions are not enough to pre-

dict precise dimensions of the whole diffusion region and the

inner non-gyrotropic region, since the inertial length de and

the meandering width can vary within the diffusion region

depending on the spatial variations of associated field and

plasma parameters. For example, although Shay et al. (2001)

obtained the scaling of the dimension of the diffusion region

(∝ de) by surveying the dependence on the ion-to-electron

mass ratio, de can also vary depending on the density varia-

tion between the background and the sheet center. The me-

andering width can also be affected by the non-uniform tem-

perature due to a local electron acceleration within the inner

region.

In this paper, we performed a series of fully kinetic

particle-in-cell simulations changing the ion-to-electron

mass ratio, the background plasma density and the electron

temperature to measure the spatial dimensions of the whole

diffusion region and the inner non-gyrotropic region under

different conditions. The simulations with sufficiently high

resolutions and large number of particles allowed us to ob-

tain clear scaling laws of the dimensions of both regions with

sufficiently small errors. We here obtained the scalings sepa-

rately in the reconnection inflow and outflow directions. The

obtained scalings in both directions can successfully be ex-

plained by some theories considering the spatial variations of

the associated parameters including the electron density and

temperature within the diffusion region, indicating the ade-

quacy of the scalings. This is the first study that obtains such

firm scalings of the dimensions of both regions, which pre-

dict precise dimensions in real space and provide important

implication to spacecraft observations including the NASA

Magnetospheric Multiscale (MMS) mission.

This paper is organized as follows. In Sect. 2, we present

the simulation setup employed in this paper. Section 3 con-

tains the overview of the simulation results (Sect. 3.1) and

the detailed analyses and theories on the scaling in each (in-

flow/outflow) direction (Sects. 3.2–3.4). In Sect. 4, we sum-

marize the results and discuss the implications for spacecraft

observations.

2 Simulation setup

We employ the fully kinetic particle-in-cell (PIC) code VPIC

(cf., Bowers et al., 2008). The simulations shown in this

paper are 2− 1/2 dimensional in the x–z plane. The ini-

tial parameters are similar to the ones employed in the

Geospace Environmental Modeling (GEM) magnetic recon-

nection challenge (Birn et al., 2001; Pritchett, 2001). The

initial magnetic field and the corresponding number density

profiles are set up as Bx(z)= Bx0 tanh(z/D0) (Harris sheet)

and ni0(z)= ne0(z)= n0sech2(z/D0)+ n0∞, where D0 is

the half-thickness of the initial current sheet, and n0 and n0∞

are the Harris and background density components, respec-

tively. D0 is set to be 0.5di0, where di0 is the ion inertial

length based on n0. β0 = βi0+βe0 based on B0 and n0 is

1.0. The ratio between the electron plasma frequency and the

gyrofrequency ωpe/�e = 2.0. The system size based on di0

is fixed as Lx ×Lz = 25.6di0× 12.8di0. The boundary con-

ditions are periodic along the x direction, with conducting

walls along the z direction. An initial magnetic field pertur-

bation is added according to δB = z×∇ψ , where ψ(x,z)=

0.1cos(2πx/Lx)cos(πx/Lz).

In this paper, we survey the grid spacing, the averaged

number of particles per cellNp/cell, the ion-to-electron mass
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Table 1. System size, Np/cell, mi/me, Ti0/Te0, βe0 and dx normalized by de0(de∞) and ρe0 for each run shown in this paper.

Run System size (grids) Np/cell ne∞/n0 mi/me Ti0/Te0 βe0 dx/de0(dx/de∞) dx/ρe0

1 1024× 512 100 0.2 25 5 0.167 0.125(0.056) 0.433

2 1024× 512 800 0.2 25 5 0.167 0.125(0.056) 0.433

3 2048× 1024 800 0.2 25 5 0.167 0.063(0.028) 0.217

4 1024× 512 800 0.5 25 5 0.167 0.125(0.088) 0.433

5 2048× 1024 800 0.2 100 5 0.167 0.125(0.056) 0.433

6 4096× 2048 800 0.2 400 5 0.167 0.125(0.056) 0.433

7 2048× 1024 800 0.2 25 2 0.333 0.063(0.028) 0.153

8 2048× 1024 800 0.2 25 11 0.083 0.063(0.028) 0.306

Figure 1. Time evolution of the reconnection rate (dAy/dt),

ENG
y and the approximated ENG

y1
=

√
2meTexx
e U ′ex and ENG

y2
=

√
2meTezz
e U ′ez measured at the X-point. The shaded interval in-

dicates the quasi-steady phase which is defined as the time when

|dAy/dt |> 0.75|dAy/dt |max where |dAy/dt |max is the maximum

value of the reconnection rate.

ratio mi/me, the ion-to-electron temperature ratio Ti0/Te0

and n0∞ as listed in Table 1.

3 Results

3.1 Overview

The black solid line in Fig. 1 shows the time evolution

of the reconnection rate (dAy/dt) for Run 2. The rate

rapidly increases after t = 10�−1
i and saturates (reconnec-

tion goes to a quasi-steady phase) around t = 20�−1
i . Fig-

ure 2a–c shows color contours of the reconnection elec-

tric field Erec
y = (E+U e×B)y , the electron inertial term

EEI
y =

me

e
[(U e ·∇)U e]y and the non-gyrotropic term ENG

y =

−
1
en e
(∂Pexy/∂x+∂Peyz/∂z) for Run 2 (800 particles cell−1)

at t = 20�−1
i without any smoothing techniques. Figure 2d

shows ENG
y at t = 20�−1

i for Run 1 (100 particles cell−1).

The thermal noise due to the PIC methods is generally re-

duced by increasing the number of particles per cell. We have

confirmed that runs with more than 500 particles cell−1 al-

low us to see sufficiently clear structures of Erec
y , EEI

y and

ENG
y (compare Fig. 2c and d). A similar result to Run 2

Figure 2. Color contours of (a–c) Erec
y = (E+Ue×B)y , EEI

y =

me
e [(Ue ·∇)Ue]y , and ENG

y =−
1
en e
(∂Pexy/∂x+∂Peyz/∂z) at t =

20�−1
i

for Run 2 (800 particles cell−1) and (d) ENG
y for Run 1

(100 particles cell−1).

(i.e., clear Ey structures without smoothing) was obtained

in Run 3 where the spatial resolution is twice as high as

that in Run 2 (not shown here), indicating that the particle

number and the grid spacing for Run 2 (800 particles cell−1

and dx = 8de0 ∼ 2.3ρe0, where ρe0 is the electron gyrora-
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Figure 3. Cuts from the white dashed (X = x−xrec = 0) and dotted (z= 0) lines in Fig. 2c which cross the X-point ofENG
y (red),EEI

y (green),

EVB
y = (−Ue×B)y (blue), Etot

y = E
NG
y +E

EI
y +E

VB
y (black solid), Ey (black dashed) and EVB

y |ion = (−U i ×B)y (magenta). The plots

are smoothed by averaging the data over |X| ≤ 1.75de0 for (a) and |z| ≤ 0.25de0 for (b). Vertical dotted lines show the locations of the

X-point, and vertical dashed lines in (a) and (b) show the locations of |z| = LDf
z and |X| = LDf

x , respectively.

dius based on B0) would be enough to examine the structure

within the electron diffusion region. In this paper, using runs

with 800 particles cell−1 and similar (or higher) spacial res-

olutions (Runs 2–8 in Table 1), we examined the scaling of

the spatial dimensions of the electron diffusion region.

Figure 3 shows cuts from the white dashed (X = x− xrec)

and dotted (z= 0) lines in Fig. 2c of each Ey component,

where X is the shifted coordinate crossing the X-point (x =

xrec). Ey is almost constant over the reconnection region

with ∼ 0.2VAiB0 as seen in past kinetic studies (e.g., Pritch-

ett, 2001). This finite Ey is almost perfectly sustained by

Etot
y = E

NG
y +E

EI
y +E

VB
y . Note again that since the time (t =

20�−1
i ) shown in Fig. 2 is in a quasi-steady state, me

e

∂Uey

∂t

in EEI
y can be neglected. At the X-point, Ey is sustained

only by ENG
y as seen in past kinetic studies (e.g., Pritch-

ett, 2001; Ricci et al., 2002; Ishizawa and Horiuchi, 2005;

Wang et al., 2015). The positive ENG
y region is surrounded

by the finite EEI
y region. With increasing the distance from

the X-point, EVB
y increases and reaches Ey at the edge of the

electron diffusion region (see vertical dashed lines in Fig. 3a

and b). Outside the electron diffusion region, EVB
y ∼ Ey and

EEI
y ∼ 0 and ENG

y ∼ 0 in the inflow direction (Fig. 3a), while

EVB
y >Ey and EEI

y < 0 and ENG
y < 0 in the outflow direc-

tion (Fig. 3b). Past fully kinetic simulations showed that this

EVB
y >Ey region in the outflow direction extends in larger

systems, while the length of the electron diffusion region

where EVB
y <Ey (i.e., Erec

y = E
EI
y +E

NG
y > 0) is not signif-

icantly affected by the system sizes (e.g., Karimabadi et al.,

2007; Shay et al., 2007). Note that although the EVB
y >Ey

and Erec
y > 0 regions are sometimes categorized as the outer

and inner electron diffusion regions, respectively, in this pa-

per only the Erec
y > 0 region is defined as the electron diffu-

sion region. In the next three subsections, we will analyze the

detailed dimensions of the electron diffusion region where

Erec
y > 0 and the non-gyrotropic region where ENG

y > 0.

3.2 Spatial dimension of the electron diffusion region

in the z direction

Figure 4a showsErec
y andENG

y along the white dashed line in

Fig. 12c for Run 2. In this paper, we defined the dimensions

of the electron diffusion region (LDf
x and LDf

z ) and the non-

gyrotropic region (LNG
x andLNG

z ) as the half-lengths between

the edges ofErec
y > 0 andENG

y > 0 regions, respectively (see

vertical red lines). Note here that only the |z| = LDf
z location

is defined as the point where Erec
y falls down to 0.05Erec

y |max

since Erec
y decrease asymptotically in the z direction (almost

on the 1/cosh2 curve) with some fluctuations which make it

difficult to determine the exact Erec
y = 0 point. We measured

these dimensions for all runs and the results are plotted in

Figs. 6 and 9, which shows a clear scaling law for each di-

mension (less than 3 % of the standard error for each regres-

sion line). In this subsection, we discuss the scaling of the

dimension of the electron diffusion region in the z direction

(LDf
z ). We start here from the z component of the momentum

equation of electrons in a steady state at X = 0,

∂

∂z

(
1

2
meUez(z)

2

)
∼−

1

n e

∂Pezz

∂z
− eUey(z)Bx(z). (3)

Figure 4b shows the profiles in the z direction of each term

in Eq. (3). The pressure gradient and the Lorentz force are

almost balanced (the inertial term can be negligible) within

the electron diffusion region. Assuming that Bx(z) varies lin-

early (Bx(z)∼ B
′
xz), Eq. (3) can roughly be written as

Tezz(0)− Tezz(z)∼ eUey(z)
e

2
B ′xz

2. (4)

Figure 4d–f show the electron thermal velocity compo-

nents Vth⊥ and Vthz, and Uey for Runs 2, 5 and 8. As seen in

Ann. Geophys., 34, 357–367, 2016 www.ann-geophys.net/34/357/2016/
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Figure 4. Cuts from the white dashed line in Fig. 2c of Erec
y

and ENG
y (a), ∂

∂z

(
1
2
meUez(z)

2
)

, − 1
n e
∂Pezz

∂z
and −eUeyBx (b)

and ne (c) for Run 2, and Vth⊥ =
√
(Peyy +Pezz)/2ne

(d), Vthz =
√
Pezz/ne (e) and Uey (f) normalized by VAe for Runs 2 (red),

5 (green) and 8 (blue). Vertical lines show the location of |z| = LDf
z

and LNG
z for Run 2. The black dotted line in (c) shows the initial

density profile.

past kinetic simulations, within the electron diffusion region

electrons decoupling from the magnetic field are accelerated

by Erec
y (e.g., Pritchett, 2001; Hesse, 2011). This produces

the finite Uey within the diffusion region whose profile is

roughly proportional to the electron Alfvén speed VAe (see

Fig. 4f). In addition, it is known that electrons which cross

the current sheet in the positive and negative z directions

Figure 5. Time evolution of averaged slopes of Bx variations in

the z direction over |z|< LDf
z divided by (me/mi)

−1/2β
−1/4
e for

Runs 2 (red), 5 (green) and 8 (blue) (a), and LDf
z and LNG

z for

Run 2 (b). The shaded interval indicates the quasi-steady phase for

Run 2.

(i.e., meandering electrons) produce a double-peak struc-

ture of the perpendicular velocity distributions F(Vey,Vez)

at the positive and negative Vez regions (e.g., Ng et al., 2012;

Bessho et al., 2014; Shuster et al., 2015). Hence, the shape

of F(Vey,Vez) and the resulting Tezz (Vthz) near the center

of the diffusion region is controlled by the speed at which

electrons cross the current sheet in the z direction. As seen

in Fig. 4e, the increase of Vthz near the center 1Vthz (the dif-

ference between the peak and background values) is roughly

proportional to VAe even when changing mi/me and βe (i.e.,

Vth0). From these relations and Eq. (4), we obtained the fol-

lowing relation,

B ′xL
Df
z

2
∝
Tezz(0)− Tezz

(
LDf
z

)
eVAe

∝
me

e
VAe. (5)

As shown in Fig. 5a, the simulation results indicate that

B ′x is roughly proportional to (me/mi)
−1/2β

−1/4
e . Thus,

from Eq. (5), LDf
z would roughly be proportional to LDf

z ∝

(me/mi)
1/2β

1/8
e di = β

1/8
e de.

The solid line in Fig. 5b shows the time evolution of LDf
z

for Run 2. LDf
z is roughly constant during the quasi-steady

phase (see around t = 20�−1
i ). We calculated average values

of LDf
z during a quasi-steady phase defined as the time when

|dAy/dt |> 0.75|dAy/dt |max (the shaded interval in Figs. 1

and 5 for Run 2) for Runs 2–8 and plotted the results in

Fig. 6a as a function of β
1/8
e de. The above prediction of the

scaling well matches the simulation results especially when

taking the background density n∞ for βe and di,e. This could

be because the density profiles within the diffusion region

www.ann-geophys.net/34/357/2016/ Ann. Geophys., 34, 357–367, 2016
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is basically controlled by the density of background plasmas

which flow into and fill the diffusion region (see Fig. 4c). The

slope of the regression line in Fig. 6a for n∞ is 2.07 with

1.97 % of the standard error. From these results, the dimen-

sion of the electron diffusion region in the z direction would

roughly be written as

LDf
z ∼ 2β

1
8

e de ∼ 2

(
me

mi

) 1
2

β
1
8

e di, (6)

where n= n∞, B = B0, and Ti,e = Ti0,e0 are used to obtain

βe and di,e. This scaling is consistent with the past kinetic

simulations which suggested the thickness of the electron dif-

fusion region is determined by the electron inertial length de

when βe is fixed (e.g., Shay et al., 2001; Zeiler et al., 2002;

Dorfman et al., 2008).

In addition, when 1Vth(∝ VAe) is sufficiently larger than

Vth0 (i.e., βe is sufficiently low), Vthz near the X-point would

roughly be proportional to VAe, as seen in Fig. 4e. In such

a low βe situation, from Eq. (5), B ′xL
Df
z

2
∝meVthz/e. Since

the flux UezBx reaches Ey near |z| = LDf
z , assuming the lin-

earity, U ′ezB
′
xL

Df
z

2
∼ Ey . Thus, Ey can roughly be propor-

tional to Ey ∝
me

e
VthzU

′
ez ∼

√
meTezz

e
U ′ez. This expression

is consistent with past theories of Ey component produced

by the non-gyrotropic effects near the X-point (ENG
y ) (e.g.,

Kuznetsova et al., 1998; Hesse et al., 1999; Dorfman et al.,

2008; Divin et al., 2012), in which they derived

ENG
y |theory ∼

√
2meTezz

e
U ′ez ∼

√
2meTexx

e
U ′ex . (7)

Dashed and dotted lines in Fig. 1 showENG
y ,

√
2meTexx

e
U ′ex

and
√

2meTezz

e
U ′ez at the X-point, respectively. The result

indeed shows that Eq. (7) is almost true (that is, ENG
y ∼

ENG
y |theory).

3.3 Spatial dimension of the non-gyrotropic region in

the z direction

The dimension of the non-gyrotropic region in the z di-

rection LNG
z is believed to be determined by the width of

the meandering motion near the X-point (e.g., Kuznetsova

et al., 1998; Hesse et al., 1999). The meandering width is

known to be described by the z coordinate where the lo-

cal gyroradius of electrons exceeds the z coordinate (that is,

ρe(z) > z) (e.g., Biskamp and Schindler, 1971; Horiuchi and

Sato, 1994; Kuznetsova et al., 1998). Assuming that Bx(z)

varies linearly and the perpendicular thermal velocity Vth⊥ is

constant near the meandering region, the z coordinate at the

edge of the meandering region (z= LNG
z ) can be described as

ρe(z)∼ ρeL
B
z /z∼ z, where ρe =meVth⊥/(eB0) and LBz =

B0/B
′
x is the magnetic field gradient scale. Thus, the mean-

dering width that corresponds to the dimension of the non-

gyrotropic region can be described as LNG
z ∼ (ρeL

B
z )

1/2. As

Figure 6. LDf
z versus (me/mi)

1/2β
1/8
e di = β

1/8
e de (a), and

LNG
z versus (me/mi)

1/2β
3/8
e

√
1+αβ

−
1
2

e di = β
3/8
e

√
1+αβ

−
1
2

e de

where α = 0.15 (b) normalized by di0 for Runs 2–8. n∞ (red),

and n0 (blue) are examined to calculate de and di. Each value is

the averaged one during a quasi-steady period where |dAy/dt |>

0.75|dAy/dt |max. Error bars show the standard deviation, and the

dashed lines indicates the regression lines with slopes and standard

errors.

seen in Fig. 4d, Vth⊥ is enhanced within the diffusion region

and roughly constant within the meandering region. The in-

crease of Vth⊥ from the background region is roughly pro-

portional to VAe (i.e., Vth⊥ ∼ Vth0+αVAe) even when chang-

ing mi/me and βe. From Fig. 4d, the acceleration rate α is

roughly 0.15 for all runs.

Since LBz ∝ (me/mi)
1/2β

1/4
e as shown in Fig. 5a, LNG

z

would be proportional to

LNG
z ∝

(
me

mi

) 1
2

β
3
8

e

√
1+αβ

−
1
2

e di = β
3
8

e

√
1+αβ

−
1
2

e de. (8)

As shown in Fig. 6b which shows the averaged LNG
z dur-

ing a quasi-steady phase for Runs 2–8, this prediction of the

scaling well matches the simulation results especially when

taking the background density n∞ for βe and di,e. The slope

of the regression lines in Fig. 6b for n∞ is 2.92 with 1.18 %

of the standard error. From these results, the dimension of the

electron diffusion region in the z direction would roughly be
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Figure 7. Cuts from the white dotted line in Fig. 2c of Erec
y (a) and

ENG
y (b) for Runs 2 (red), 5 (green) and 8 (blue), and meUex

∂Uex
∂x

,

−
1
n e
∂Pexx
∂x

and eUeyBz for Run 2 (c). Vertical lines in Fig. 7a–c

show the location of |X| = LDf
x ∼ L

NG
x for Run 2.

written as

LNG
z ∼ 3β

3
8

e

√
1+αβ

−
1
2

e de (9)

∼ 3

(
me

mi

) 1
2

β
3
8

e

√
1+αβ

−
1
2

e di,

where n= n∞, B = B0, and Ti,e = Ti0,e0 are used to obtain

βe and di,e.

3.4 Spatial dimensions in the x direction

As seen in Fig. 3b,EEI
y is basically negative on the x axis, and

the negative EEI
y peaks are seen outside the positive ENG

y re-

gion. Hence, the positiveErec
y region in the x direction almost

corresponds to the positive ENG
y region (i.e., LDf

x ∼ L
NG
x ) as

seen in Fig. 7a and b (see vertical lines for Run 2). In this

subsection, we discuss the dimension LDf
x (∼ LNG

x ) of the

Erec
y > 0 region in the x direction. Figure 7c shows the pro-

files along the x axis (i.e., z= 0) of each term of the x com-

ponent of the momentum equation, meUex
∂Uex

∂x
, − 1

n e
∂Pexx

∂x
and eUeyBz for Run 2. In contrast to the profiles in the z di-

rection, the inertial term cannot be negligible and therefore

the same approach to derive the scaling as shown in Sect. 3.2

cannot be applied to LDf
x . Instead, we start here from the ap-

proximated ENG
y described in Eq. (7), which is almost equal

to the constant Ey value within the diffusion region as shown

in Sect. 3.2. Assuming the linearity in the x direction and the

flux conservation at the edge of the electron diffusion region

Figure 8. Time evolution of averaged slopes of Bz variations in

the z direction over |X|< LDf
x divided by β

−1/2
e for Runs 2 (red),

5 (green) and 8 (blue) (a), and LDf
x and LNG

x for Run 2 (b). The

shaded interval indicates the quasi-steady phase for Run 2.

Figure 9. LDf
x (∼ LNG

x ) versus (me/mi)
1/4β

1/4
e di normalized by

di0 for Runs 2–8. n∞ (red), and n0 (blue) are examined to calculate

de and di. Each value is the averaged one during a quasi-steady

period. Error bars show the standard deviation, and the dashed lines

indicates the regression lines with slopes and standard errors.

(i.e., U ′exB
′
zL

Df
x

2
∼ Ey), from Eq. (7), LDf

x can roughly be

written as

LDf
x ∼

[
1

B ′z

√
2meTexx

e

] 1
2

∼

(
me

mi

) 1
4
(
B0

B ′zdi

) 1
2

β
1
2

e di. (10)

As shown in Fig. 8a, the simulation results indicate

that B ′z is roughly proportional to β
−1/2
e . Thus, from

Eq. (10), LDf
x (∼ LNG

x ) would roughly be proportional to

(me/mi)
1/4β

1/4
e di = β

1/4
e (dide)

1/2. As shown in Fig. 9 which

shows the averaged LDf
x during a quasi-steady phase for

Runs 2–8, this prediction of the scaling well matches the sim-
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ulation results especially when taking the background den-

sity n∞ for βe and di,e. The slope of the regression line in

Fig. 9 for n∞ is 3.31 with 2.94 % of the standard error. From

these results, the dimension of the electron diffusion region

in the x direction would roughly be written as

LDf
x ∼ L

NG
x ∼ 3β

1
4
e (dide)

1
2 , (11)

where n= n∞, B = B0, and Ti,e = Ti0,e0 are used to obtain

βe and di,e. Similar scalings were also seen in past kinetic

simulations (Hesse et al., 1999; Ricci et al., 2002; Daughton

et al., 2006; Karimabadi et al., 2007; Divin et al., 2012),

where they indicated that the dimension of the electron dif-

fusion region in the x direction is proportional to (me/mi)
1/4

when βe is fixed.

The same scaling of LDf
x can also be derived from the

flux conservation at both edges of the electron diffusion re-

gion in the inflow and outflow directionsUeinBin ∼ UeoutBout

where Uein = Uez(L
Df
z ), Ueout = Uex(L

Df
x ), Bin = Bz(L

Df
z ),

and Bout = Bz(L
Df
x ). Assuming the linearity and the in-

compressibility (which lead to Uein/L
Df
z ∼ Ueout/L

Df
x ), the

above flux conservation can be rewritten as Bin/Bout ∼

LDf
x /L

Df
z . From this relation and the scalings used in Sect. 3.2

and this section (B ′x (∼ Bin/L
Df
z ), B ′z (∼ Bout/L

Df
x ) and

LDf
z ), we can obtain the relation shown in Eq. (11) LDf

x ∝

(me/mi)
1/4β

1/4
e di. This is not surprising since the theoretical

Ey at the X-point (Eq. 7) is basically the same value as the

flux (UeinBin) at the edge of the electron diffusion region as

shown in Sect. 3.2.

4 Summary and discussions

In this paper, based on 2-D fully kinetic PIC simulations we

systematically analyzed the dimensions of the whole electron

diffusion region of anti-parallel reconnection (LDf
x and LDf

z )

and the non-gyrotropy dominant region located near the cen-

ter of the diffusion region (LNG
x and LNG

z ). The simulations

with sufficiently small grid spacing and large number of par-

ticles allowed us to successfully obtain the following precise

scalings of the dimensions with sufficiently small errors (see

regression lines and bars in Figs. 6 and 9),

LDf
z ∼ 2β

1
8

e de ∼ 25×

(
βe

0.1

) 1
8
(

0.1cm−3

n

) 1
2

km, (12)

LNG
z ∼ 3βe

3
8

√
1+αβ

−
1
2

e de ∼ (13)

25×

(
βe

0.1

) 3
8

(
1+ 0.15

(
0.1

βe

) 1
2

) 1
2(

0.1cm−3

n

) 1
2

km,

LDf
x ∼ L

NG
x ∼ 3β

1
4

e (dide)
1
2 ∼ (14)

200×

(
βe

0.1

) 1
4
(

0.1cm−3

n

) 1
2

km,

where we takemi/me = 1836 to estimate the real values. The

density and βe for all dimensions are taken as the values in

the background region. The results show that the dimensions

in the inflow direction are basically proportional to the elec-

tron inertial length, while those in the outflow direction are

proportional to the ion-electron hybrid inertial length. The

dependence on βe (the electron temperature) is different for

each dimension. As shown in Sects. 3.2–3.4, these scalings

are in good agreement with theories that we extended to pre-

dict the scalings by considering the spatial variations of field

and plasma parameters within the diffusion region. In the the-

ories, the above scaling laws can be predicted by inputting

the gradients of the magnetic field in the inflow (B ′x) and

outflow (B ′z) directions within the diffusion region which

are obtained from the simulations – i.e., the scalings are de-

termined self-consistently when the magnetic field gradients

are given. Shay et al. (2007) showed that even when con-

sidering larger system sizes both the reconnection rate and

the gradient in the outflow direction B ′z near the X-point are

not significantly changed. This could be the reason why the

length of the electron diffusion region in the outflow direc-

tion where EVB
y <Ey (LDf

x in this paper) is not significantly

affected by the system sizes, despite the outer region where

EVB
y >Ey can be extended depending on the system sizes

(e.g., Karimabadi et al., 2007; Shay et al., 2007).

The scalings obtained in this paper lead to important im-

plications for spacecraft observations in the Earth’s mag-

netotail. A recent statistical study using the Cluster space-

craft showed that the reconnection X-line in the magnetotail

tends to move tailward (∼ x direction in this paper) at about

70 km s−1 on average (Alexandrova et al., 2015). This ten-

dency is consistent with past event studies (e.g., Baker et al.,

2002; Nagai et al., 2011), in which the tailward X-line speed

was estimated as the order of 100 km s−1. Assuming that

the X-line moves in the x direction at Urx = 50–100 km s−1

and the spacecraft is fixed near the center of the plasma

sheet (z∼ 0), from Eq. (14), the observation duration for the

electron diffusion region when 0.01< n < 0.1 can roughly

be predicted as 1tx = 2LDf
x /Urx ∼ 5–30 s when βe ∼ 0.1.

Here n roughly corresponds to the local density near the

diffusion region as shown in Sect. 3.2. This prediction is

roughly consistent with recent observational studies using

the Geotail spacecraft (Nagai et al., 2011, 2013), in which

they showed direct observations of the vicinity of the X-line

where ion and electron reconnection outflows are separated.

In their observations, the peak-to-peak duration of electron

outflows were about 20–30 s for some representative events

and less than 1–2 min. on average. The density in these in-

tervals was roughly comparable or less than 0.1 cm−3. Since
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the peak-to-peak distance of the electron outflows is roughly

two times larger than 2LDf
x (see the peak-to-peak distance

of blue line in Fig. 3b), the expected peak-to-peak duration

when 0.01< n∞ < 0.1 is roughly 10s <1t < 1 min, which

is roughly consistent with the observations.

Although the above observation duration of the electron

diffusion region predicted from our simulations (1tx = 5–

30 s) is calculated under the assumption that the spacecraft

is fixed near the center of the plasma sheet (i.e., the X-line

motion speed in the z direction Urz is small enough), the ob-

servation duration would also be sensitive to Urz. We here

introduce τ which is defined as the ratio of the observation

durations between the z and x directions,

τ =
1tz

1tx
=

2LDf
z /Urz

2LDf
x /Urx

(15)

=
LDf
z

LDf
x

Urx

Urz

∼
2

3
βe
−

1
8

(
me

mi

) 1
4 Urx

Urz

∼ 0.13×

(
βe

0.1

)− 1
8 Urx

Urz

.

When τ > 1 the observed data reflect the change of the struc-

ture of the electron diffusion region in the x direction rather

than that in the z direction, and vice versa. From Eq. (15),

the threshold τ = 1 corresponds toUrz/Urx ∼ 0.1 when βe ∼

0.1. Although it is difficult to know Urz/Urx in the above

Geotail events, the consistency with the predicted duration

in the x direction implies τ > 1 (i.e., Urz/Urx < 0.1) in these

events.

On the other hand, to analyze the structure of the elec-

tron diffusion region in the z direction, the condition with

τ < 1 (i.e., Urz/Urx > 0.1) would be required. The statistical

study of the X-line motion using Cluster (Alexandrova et al.,

2015), which analyzed reconnection events following current

sheet crossings, showed that the X-line tends to move in the

north–south (∼ z) direction correlated with the motion of the

current sheet, and its motion speed is about 30 km s−1 on

average and varies up to 100–200 km s−1 (corresponding to

1tz = 0.2–5 s when 0.01< n∞ < 0.1 and βe ∼ 0.1). Since

the averaged speed in the x direction in Alexandrova et al.

(2015) is 70 km s−1, these X-line motion speeds indicate that

the case with τ < 1 (Urz/Urx > 0.1) would not be uncommon

at least for reconnection events with current sheet crossings.

Since the expected observation duration of the electron diffu-

sion region for such events (0.2–5 s) is comparable to or less

than typical spin periods (i.e., the time resolution) of space-

craft such as Geotail, Cluster or THEMIS, the detailed struc-

ture of the electron diffusion region is expected to be realized

for the first time by further comparison with the MMS mis-

sion which measures particles with millisecond resolution.

Although this paper treated an anti-parallel magnetic field

configuration, effects of the guide magnetic field component,

which often exists for the dayside reconnection (e.g., Swis-

dak et al., 2003; Hesse, 2006) or the vortex-induced recon-

nection (e.g., Nakamura et al., 2013) at the Earth’s magne-

topause, should be examined to more generally understand

the structure of the electron diffusion region. Since electrons

are more strongly magnetized even near the X-point when

considering the guide field, the orbit of electrons near the X-

point and the associated structure of the non-gyrotropic re-

gion would significantly be affected by the guide field as in-

dicated in past kinetic studies (e.g., Horiuchi and Sato, 1997;

Ricci et al., 2004; Swisdak et al., 2005; Hesse, 2006). In addi-

tion, the strongly magnetized electrons in the guide field case

would easily be trapped around the ion and electron diffusion

regions (e.g., Egedal et al., 2008), and these trapped electrons

would affect the structures and the dimensions of the diffu-

sion regions. Considering such guide field effects would be

an important future research topic.

Non-steady features, which are also neglected in this pa-

per, should also be considered to understand the electron-

scale physics of magnetic reconnection. Recent 2-D and 3-D

kinetic simulations demonstrated that repeated formation of

secondary small-scale flux ropes near the X-line and within

the reconnection exhausts drastically disturb steady recon-

nection features (e.g., Daughton et al., 2006; Fujimoto and

Sydora, 2012; Lapenta et al., 2015). Furthermore, recent 3-D

fully kinetic simulations also demonstrated that when con-

sidering the strong guide field component, similar turbulent

features easily spread even outside these regions and fill the

whole reconnection layer through the copious formation of

oblique secondary flux ropes (Daughton et al., 2011, 2014).

Spacecraft observations using Cluster indeed indicated the

existence of turbulence near the X-line in the magnetotail

(Eastwood et al., 2009). Understanding the structure of the

diffusion region in such non-steady situations would also be

an important future research topic.
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