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Abstract. Low-frequency electrostatic drift wave turbulence

has been studied in both laboratory plasmas and in space. The

present review describes a number of such laboratory exper-

iments together with results obtained by instrumented space-

craft in the Earth’s near and distant ionospheres. The sum-

mary emphasizes readily measurable quantities, such as the

turbulent power spectra for the fluctuations in plasma density,

potential and electric fields. The agreement between power

spectra measured in the laboratory and in space seems to be

acceptable, but there are sufficiently frequent counterexam-

ples to justify a future dedicated analysis, for instance by nu-

merical tools, to explain deviations. When interpreting spec-

tra at low ionospheric altitudes, it is necessary to give at-

tention to the DC ionospheric electric fields and the differ-

ences in the physics of electron–ion collisions and collisions

of charged particles with neutrals for cases with significant

Hall drifts. These effects modify the drift wave spectra. A

dedicated laboratory experiment accounted for some of these

differences.

Keywords. Electromagnetics (plasmas)

1 Introduction

Turbulence in neutral flows has been studied extensively, in

part because of its significance for industry, the environment,

etc., but also because of the theoretical intricacies which

the phenomenon represents. An understanding of turbulent

flows is important for weather forecasting, environmental

pollution, windmill design, the transport of material by wa-

ter flows in industrial plants, cooling and many other ap-

plications (Tennekes and Lumley, 1972; Hinze, 1975). En-

hanced density fluctuations in the Earth’s ionosphere can

contribute to the scattering of radiation or electromagnetic

waves (Bekefi, 1966), such as radio communication or waves

used for Global Positioning Systems (GPS). In plasmas, in

particular, turbulent transport will be mixing regions with

different compositions and parameters, eroding density gra-

dients especially (Taylor and McNamara, 1971; Misguich

et al., 1987). The problem is of interest in nature as well

as in laboratory experiments, including fusion plasma con-

finement. Low-frequency electrostatic drift waves have been

found to be particularly important. They are often called

“universal instabilities” since they are associated with plasma

density gradients (Chen, 1984), or more generally plasma

pressure gradients, which are unavoidable in the laboratory

as well as in naturally occurring plasmas and which are,

hence, universal. An inhomogeneous plasma is not in per-

fect thermodynamic equilibrium and the pressure tends to

expand the plasma. The expansion can provide free energy

for driving an instability (Chen, 1965d, e, 1984). The direc-

tion of linear drift wave propagation is almost perpendicu-

lar to an ambient magnetic field B, satisfying an inequality

uThi� ω/k‖� uThe in terms of the ion and electron thermal

velocities uThi and uThe, respectively, with ω/k‖ being the B-

parallel component of the phase velocity. The wave frequen-

cies ω are much below �ci, the ion cyclotron frequency. At

these low frequencies, the ion motion ⊥ B is well described

by the Ẽ×B/B2 velocity corrected by the lowest-order ion

polarization drift, with Ẽ being the fluctuating electrostatic

field. Compressibility arises only by the small contribution

from the polarization drift, but the density fluctuations can

be significant since the waves propagate with the electron

diamagnetic drift in a density gradient. Even incompressible

motion induces local density variations when plasma moves

in a density gradient ∇n0 ⊥ B. Electrostatic drift waves are

typically found for β ≤m/M , the electron/ ion mass ratio,

with β being the ratio of plasma and magnetic field pres-
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sures (Chen, 1984). For larger plasma β values we find a

coupling to Alfvén waves. Turbulence in, for instance, the

high-β plasma of the solar wind requires a different approach

(Tu and Marsch, 1995; Bruno and Carbone, 2005).

Electrostatic drift waves become unstable when a certain

mechanism inhibits the free flow of electrons along magnetic

field lines from wave crest to wave trough. Electron–ion col-

lisions have this effect, but in kinetic models electrons in res-

onance with the drift waves will also induce linear instabil-

ity, although with modest growth rates. Plasma currents can

enhance the instability (Kadomtsev, 1965). The theoretic re-

sults for the linear instability (the resistive instabilities, in

particular) of drift waves have been confirmed to good accu-

racy by a number of laboratory experiments (Hendel et al.,

1968; Rowberg and Wong, 1970; Rogers and Chen, 1970;

Schlitt and Hendel, 1972), mostly in Q machines (Motley,

1975; Pécseli, 2012). The fully developed saturated turbu-

lent state of these instabilities is usually found to be nearly

two-dimensional in the plane perpendicular to B. One possi-

ble way of characterizing such turbulent states is represented

by the mean square fluctuation levels and the entire normal-

ized frequency–wave-vector-varying power spectra of fluc-

tuating quantities, i.e. plasma density, potential or electric

fields. The corresponding correlation functions represent one

alternative. These results would contain all the available sta-

tistical information for a Gaussian random process with zero

mean.

Spectra are often easy to measure, and many studies both

in the laboratory and in space have reported such results. It

is a possibility that turbulent power spectra can be used to

identify some of the underlying mechanisms and instabili-

ties that give rise to the enhanced fluctuation levels. For the

time being, this remains speculative, but there seems to be

some basis for the argument. Drift wave turbulence, when it

is fully developed, seems to posses certain universal features,

best found by considering a fit in terms of a power law in

a wave number representation. The present review will dis-

cuss this possibility, illustrated by results from laboratory and

from space observations, with reference also to some of the

analytical results. Comparatively smaller attention is given to

numerical results in order to limit the exposition.

Higher-order spectral methods, such as bispectra (Kim and

Powers, 1979; Larsen et al., 2002; Yamada et al., 2008) and

their generalizations, represent valuable tools for obtaining

information that cannot be revealed by power spectra, ac-

counting for non-Gaussian, intermittent features (Rollefson,

1978). Unfortunately the increase in information comes at

a price, and higher-order spectra require increasingly longer

records. Space measurements are often limited in time, and

the accuracy of higher-order spectral studies is often limited.

For laboratory studies the conditions can be much better.

Following a brief summary of some basic results concern-

ing neutral flow turbulence, the present review will empha-

size drift wave turbulence supplemented by a shorter discus-

sion related to current-driven ion acoustic instabilities. This

approach may appear unduly restrictive, but for magnetized

low-β plasmas, there are in reality rather few candidates for

low-frequency turbulence with ω��ci. Current-driven in-

stabilities can be excited at low frequencies, and velocity

shear instabilities can also give rise to enhanced levels of

low-frequency fluctuations. As far as the velocity shear in-

stability perpendicular to magnetic fields is concerned, it will

here be argued that on small scales, the turbulent spectrum

is insensitive to the energy source: on this level there is no

need to distinguish drift wave instabilities from those caused

by velocity shears transverse to magnetic fields. The energy

cascade on the small turbulence scales can be expected to

be independent of the source on large scales. Similar argu-

ments can be made for ion temperature gradient (ITG) modes

(Cowley et al., 1991), in particular also because gradients

in ion temperature in space plasmas will almost always be

accompanied by plasma density gradients mixing the gra-

dient drift and the ITG modes of oscillation. The remain-

ing shortcoming will be the omission of longitudinal veloc-

ity shear instabilities where the flow is along magnetic field

lines (D’Angelo and von Goeler, 1966). This instability and

its nonlinear, possibly turbulent saturated stage deserves fur-

ther scrutiny.

2 Turbulence modelling

The ideas of turbulence (strong turbulence, in particular)

were first formulated for incompressible neutral flows (Chan-

drasekhar, 1957; Tennekes and Lumley, 1972), and a short

summary of early results obtained can be useful here, in par-

ticular also because they were closely followed by some early

attempts to discuss low-frequency turbulence in plasmas.

2.1 Models for strong turbulence in fluids and plasmas

It is generally believed that the Navier–Stokes equation is ad-

equate for describing all the scales that are important and rel-

evant for modelling incompressible turbulent neutral flows.

This is a relatively simple differential equation, after all, be-

ing of first order in time and second order in spatial differ-

entials. Some of the solutions of this equation are simple as

well. The solution represented by a turbulent flow has, how-

ever, so far escaped a complete understanding. Indeed, there

was a time when it was expected that turbulence phenom-

ena were to remain incomprehensible, and it probably came

as a surprise that while understanding an individual turbu-

lent flow is beyond our reach, some simple laws could be

predicted for statistical averages (Frisch, 1995), the second-

order structure function in particular. Some results by can

be argued by simple dimensional reasoning (Chandrasekhar,

1957).

For incompressible neutral flows the mass density does not

explicitly play a part, and the kinematic viscosity ν accounts

for the properties of the fluid. At least on small scales, the
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distribution of energy over the directions of wave numbers

can be assumed to be uniform, i.e. the turbulence has be-

come isotropic (Chandrasekhar, 1957). Concerning the tur-

bulence, we assume that it can be adequately described by

the average specific energy dissipation ε, which for steady-

state conditions is also the average energy input. It is usually

assumed that the bounding box is so large that its size L can

be taken to be irrelevant. More precisely,L is the scale size of

the largest energy-containing eddies in the turbulence. This

statement can be quantified in terms of the correlation func-

tion for a particular fluctuating quantity 9(r, t) that can rep-

resent a velocity component or any other relevant quantity.

The two-time, two-position correlation function can always

be written as R9(r1, t1, r2, t2). Spatially homogeneous tur-

bulence requires that R9 is a function of spatial separations

r1−r2 rather than r1 and r2 individually. We can always write

R9(r1, t1, r2, t2) as R9(R, t1, r , t2) with R ≡ 1
2

(r1+r2) and

r ≡ r1− r2, i.e. r1 ≡ R+
1
2
r and r2 ≡ R−

1
2
r . Local homo-

geneity implies thatR9(R, t1, r , t2) varies much more slowly

with R than with r . In this case we can Fourier transform

R9(R, t1, r , t2) with respect to the variable r and thereby ob-

tain a local power spectrum (Pécseli, 2000), referring to the

position R. For laboratory experiments we can safely assume

the turbulence to be a stationary random process, giving the

correlation function R9(R, r , τ) with τ ≡ t1− t2. This will

not often be so for space experiments. If the Fourier spectrum

with respect to a transform in r contains much smaller turbu-

lent wavelengths than the Fourier transform with respect to

R, we can argue for a separation in scales and ignore the

size of the bounding box as long as we consider only wave

numbers k� 1/L. In this limit, small-scale processes can be

described by universal laws, irrespective of L.

We want first to obtain an expression for the wave

number power spectrum S(k) for the turbulent fluctua-

tions in neutral fluid velocity in three spatial dimensions.

The arguments and methods apply, however, independently

of the dimensionality of the problem. The spectrum is

here defined so that 〈u2
〉 =

∫
∞

0
S(k)dk rather than 〈u2

〉 =∫ ∫ ∫
∞

−∞
S(k)dkxdkydkz, implying here the physical dimen-

sion [S(k)] = L3T −2, with L and T here denoting length

and time, respectively. It is known (Buckingham, 1914) that

any physically meaningful function can be written as a di-

mensionally correct coefficient multiplied by a dimension-

less function of dimensionless variables. This will always be

so, but the observation need not be of much help for solv-

ing the problem. The present case is, however, simplified by

noting that, given k, ν and ε, with [k] = L−1, [ν] = L2T −1

and [ε] = L2T −3, only one possible combination can give a

dimensionally correct velocity power spectrum

S(k)= (εν5)1/4G
(
kν3/4

ε1/4

)
, (1)

where the dimensionless function G(x) of a dimensionless

variable x is so far undetermined. It is now a common knowl-

edge that viscosity only has an affect on the very small scales

in a flow, and we can expect, still provided that L is large

enough, that an interval for k can exist, where the spectrum

is independent of ν. For this to be the case, we require ν

to cancel out (Chandrasekhar, 1957) and find here that this

implies the functional form G(x)∼ x−5/3, giving the inertial

range of the spectrum

S(k)= CKε
2/3k−5/3, (2)

the well-known Kolmogorov–Oubokhov velocity power

spectrum. Studies of turbulent flows in the laboratory and

in nature have given the Kolmogorov–Oubokhov spectrum

solid support. A universal numerical constant CK cannot be

determined by dimensional reasoning (Sreenivasan, 1995).

Experimentally, it is found that CK ≈ 1.6± 0.2. The inertial

subrange extends to scales comparable to the Kolmogorov

length scale η = (ν3/ε)1/4.

We have the relation ε = 2ν
∫
∞

0
k2S(k)dk, where the in-

tegral covers the entire spectrum (Batchelor, 1953). The

k2 multiplier in the integrand ensures that the contribution

from the large non-universal scales is suppressed. For k >

1/η we find the dissipation subrange, which in the classi-

cal Heisenberg analysis (Heisenberg, 1948; Chandrasekhar,

1949) is found to decrease like k−7. This particular re-

sults seems to agree well with some observations but is

nonetheless suspect since it predicts that higher-order ve-

locity derivatives 〈(∇ju)2〉 =
∫
∞

0
k2jS(k)dk should be diver-

gent for some large j . There are no indications of the Navier–

Stokes equation having this property (Sulem et al., 1983;

Constantin, 1991). Models containing power law spectra ex-

tending to infinity (in wave number or frequency) should be

considered with suspicion.

The foregoing arguments emphasized spectra in terms of

wave vectors. It is easily demonstrated that similar arguments

can be used to find an inertial subrange for frequency spectra,

giving

S(ω)= CF εω
−2, (3)

withCF being a universal constant. It is unfortunately not ob-

vious how Eq. (3) should be interpreted. For the wave num-

ber spectrum Eq. (2), we Fourier transform a spatially vary-

ing correlation function at any given time, and no ambiguity

is found. A temporal record can, however, be obtained by,

for instance, a fixed observer (Eulerian sampling) or by an

observer moving passively with the fluid (Lagrangian sam-

pling). The velocity field might be sampled along a curved

prescribed trajectory as well. Only the Eulerian sampling has

practical relevance here. The Eulerian frequency spectrum

will, however, contain contributions from large non-universal

scales with size L sweeping small-scale turbulences past

the observer (Tennekes, 1975). These large scales will be

the most energetic and their non-universal contributions will

dominate any universal part of the frequency spectrum. Most

analytical studies are concerned with wave number spectra,

where the interpretation is unambiguous.
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When it was realized that plasmas can also develop a

turbulent state, it was argued that the dimensional argu-

ments found for fluid turbulence might be applied also to the

plasma case and electrostatic drift wave turbulence in partic-

ular (Chen, 1965a). Dimensional arguments can be used irre-

spective of the dimensionality of the problem and the forego-

ing discussions can be applicable also for the plasma prob-

lem. It was argued (Chen, 1965a) that five dimensional pa-

rameters suffice to account for the basic properties of drift

wave turbulence with cold ions: the ion mass M , the ele-

mentary charge e, the sound speed Cs =
√
Te/M in terms

of the electron temperature Te; the effects of the magnetic

field are introduced via the ion gyro frequency�ci = eB/M .

These parameters are independent as none of them can be

constructed through a combination of the others. A char-

acteristic length scale, the effective ion Larmor radius, can

be constructed as ai ≡ Cs/�ci, which estimates the shortest

wavelength for drift waves. The power spectrum of the elec-

trostatic potential is introduced as 〈φ̃2
〉 =

∫
∞

0
GC(k)dk, hav-

ing the dimension (mass × length2
× charge−1

× time−2)2,

giving [GC(k)] = (M/e)
2L5T −4. If we were to discuss the

power spectrum of relative density variations, giving a di-

mensionless quantity 〈(̃n/n0)
2
〉, the arguments could easily

be generalized to this problem as well. With the foregoing

arguments we find that with the given parameters, the only

dimensionally correct combination is

GC(k)=

(
M

e

)2

�4
cia

5
i F(kai). (4)

If we are to have a universal long-wavelength range inde-

pendent of ai , we require F(x)∼ x−5 for a particular sub-

range for ai to vanish from Eq. (5). For drift waves within

this model, we then have

GC(k)∝

(
M

e

)2

�4
cik
−5. (5)

However, this result cannot possibly be correct, since it

predicts a turbulent spectrum independent of any energy in-

put, i.e. also in the absence of a density gradient (i.e. no drift

waves), for instance. The shortcoming is due to an oversim-

plification of the parameters needed to account for the ba-

sic properties of drift wave turbulence. Although the result is

in error, the paper by Chen (1965a) was nonetheless a pio-

neering work as it argued that ideas from strong neutral tur-

bulence could be generalized to plasmas and reasoned that

universal laws may be found also for plasma turbulence. A

different derivation by Fowler (1966) of the k−3 power spec-

trum for electric field fluctuations tried in part to remedy the

shortcomings of Eq. (5) by introducing the macroscopic ra-

dius of the plasma column as an outer scale, but the result

remained independent of the nature of the density gradient.

Other analytical works (Tchen et al., 1980) found a char-

acteristic frequency for drift wave turbulence,

ω0 ≡

�ci

∞∫
0

k2GT (k)dk

1/3

, (6)

which controls what can be called the equivalent of an inertial

spectral range, thus in a sense replacing �ci from the first at-

tempt Eq. (5) to derive a universal spectral law for drift wave

turbulence. The k2 multiplier in the integrand of ω0 ensures

that the contribution to GT (k) from the large non-universal

scales is suppressed. For the analysis it turned out to be

an advantage to introduce ψ ≡
√
(Te+ Ti)/M ln(n/nr)≡

Cs ln(n/nr), assuming isothermal ions, while nr is a fixed

normalizing reference density and GT (k) entering Eq. (6) is

the power spectrum of ψ . With this modified frequency ω0,

it is possible to recover the k−5 spectrum for the normalized

electrostatic potential, where the spectrum is defined so that

〈ψ2
〉 =

∫
∞

0
GT (k)dk. The physical dimensions for kGT (k)

are here length2
× time−2, giving [GT (k)] = L

3T −2. The

drift wave power spectrum was found to be

GT (k)∼
ω4

0

3c�ci

k−5, (7)

where 3c ≡ aD(Te/M)/�ci enters the analysis with an un-

determined numerical coefficient aD . Note that 3c has the

dimension length2
× time−1. For low levels of GT (k), i.e.

large k, we have ψ̃ ≈ Csñ/n0 for the fluctuating quantities,

so that Eq. (7) gives the density spectrum in that limit. The

analysis assumes nearly Boltzmann-distributed electrons so

that ñ∼ φ̃ for large k, so that the spectral indexes for den-

sity and potential fluctuations are similar. The steady-state

density gradient need not have any potential variation asso-

ciated with it. The isothermal electron Boltzmann equilib-

rium relates only to perturbations of the initial density vari-

ation. Possible initial large-scale steady-state electric fields

have their own sources.

The result Eq. (7) together with Eq. (6) can be seen as

a self-consistency relation for the power spectrum just as

for the Kolmogorov–Oubokhov spectrum (there with ε =

2ν
∫
∞

0
k2S(k)dk). Different subranges of the turbulent spec-

trum were identified (Tchen et al., 1980), in particular also a

long-wavelength spectral part, i.e. a production subrange for

the power spectrum of the electrostatic potential

GT (k)∼ 0
2
ψk
−3, (8)

with 0ψ ≡ Csn
−1
0 |∇n0| characterizing the inverse density

gradient length scale. This limiting spectral subrange has

a counterpart in neutral velocity shear-driven turbulence

(Tchen, 1953; Tchen and Pierson, 1988).
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A transition wave number separating the production and

coupling subranges (i.e. the k−3 and k−5 subranges) can be

found as

kc =
ω2

0
√
3c�ci

1

|0ψ |
, (9)

where 3c contains a numerical constant which is not well

known. kc is easily identified in the power spectra for den-

sity and potential fluctuations. Its parameter variation can be

studied experimentally (Pécseli et al., 1983) and also by nu-

merical simulations, but only little work has been done on

this problem. The wave number range of the spectrum given

by Eq. (7) is limited by kc on large scales and by k ∼ 1/ai
on small scales. The work by Tchen et al. (1980) includes

a short-wavelength limit, but it is also pointed out that this

subrange may not develop. The contribution of this subrange

to the spectral integral in ω0 will be negligible anyhow.

2.2 Strong- versus weak-turbulence models

It is by no means obvious that results from strong-turbulence

studies apply to plasmas as well (Dupree, 1969), at least not

in general. To discuss possible limitations in the analysis, we

first rewrite the Navier–Stokes equation after a Fourier trans-

form as

∂

∂t
ui(k, t)+ νk

2ui(k, t)=∑
j,`;p

M(i,j,`)uj (p, t)u`(k−p,t), (10)

where the linear viscous second term on the left side is neg-

ligible in the inertial subrange. The relative magnitude of the

nonlinear coupling coefficient on the right-hand side is mea-

sured by the Reynolds number, which can be written as the

ratio of the order of magnitude of the nonlinear term and the

linear term

Re=
|M(i,j,`)u

2
|

k2νu
=
|M(i,j,`)u|

k2ν
=
u

kν
=
Lu
ν
.

Recalling the dimension [M(i,j,`)] = length−1, we as-

sumed thatM(i,j,`) is of the order of k, which can be demon-

strated by a calculation of the coupling coefficients and

then letting the smallest wave number relevant be k ∼ 1/L,

where L is a characteristic system size (Dupree, 1969). The

Reynolds number can also be seen as the ratio between two

timescales, the damping time k2ν and a nonlinear coupling

time |M(i,j,`)u|. The Reynolds number obtained by these

arguments generally depends on the wave number k con-

sidered: in the original formulation by Reynolds, L∼ 1/k

was taken to be the diameter of a tube, for instance, i.e. a

fixed length scale. Strong turbulence in fluids is found when

Re� 1, implying that the nonlinear term on the right-hand

side of Eq. (10) completely dominates the second linear term

on the left side.

Within fluid models a class of nonlinear equations for

plasma dynamics can be written (Dupree, 1969; Diamond

et al., 2010) in the form

∂

∂t
Ei(k, t)+ iω(k)Ei(k, t)=∑

j,`;p

Q(i,j,`)Ej (p, t)E`(k−p,t), (11)

now expressed in terms of electric field components to make

it distinct from Eq. (10), allowing also for compressible mo-

tions. The summation can include restrictions on wave vector

triplet interactions. The dispersion relation derived from lin-

ear theory is here ω = ω(k). The model equation Eq. (11)

can for instance describe interactions of waves due to a

quadratic nonlinearity where the coupling coefficients are

Q(i,j,`). In many cases the second term on the left side of

Eq. (11) will be large for all wave numbers. Often there is

only a modest amount of free energy available for instabil-

ities (Dupree, 1969) so that E will not be large either. An

effective Reynolds number |Q(i,j,`)E|/ω(k) will therefore

often be of the order unity for a wide band of wave num-

bers, and a strongly turbulent state is unlikely to develop

in the sense described for neutral fluids (Dupree, 1969). In

some cases the linear and nonlinear terms balance exactly,

and we can find solitary or even soliton solutions that possess

an inverse scattering transform (Drazin and Johnson, 1989).

Strong turbulence is found for cases where the linear disper-

sion relation is immaterial, and possible restrictions on triplet

interactions are relaxed.

In many studies of seemingly turbulent plasmas it is

possible, by suitable chosen multiprobe diagnostic meth-

ods (Iwama et al., 1979; Beall et al., 1982), to determine

a relation between frequency and wave vector experimen-

tally. An illustrative example is shown in Fig. 1. Although

these experimental relations are subject to some broaden-

ing and therefore not dispersion relations in a traditional

sense, their presence indicates that the iω(k)Ei(k, t) term

in Eq. (11) is not negligible in comparison to the right-

hand side. Consequently the plasma conditions are not prop-

erly be called “strongly turbulent”. The dispersion relations

mentioned here differ from the frequency–wave-number pro-

portionality implied by the use of the Taylor hypothesis

(Shkarofsky, 1969; Hinze, 1975), or the “frozen turbulence

approximation” to be discussed later.

It turns out that drift waves offer one example of plasma

waves where a strongly turbulent state may develop. A close

analogy can be found, for instance, with waveforms in the

Earth’s neutral atmosphere, the Rossby waves. A simple

model equation was derived by Hasegawa and Mima (1978).

Introducing the potential vorticity q ≡ φ−∇2
⊥
φ−ϑx the

Hasegawa–Mima equation can be expressed as an Euler

equation(
∂

∂t
+U · ∇⊥

)
q = 0, (12)

www.ann-geophys.net/33/875/2015/ Ann. Geophys., 33, 875–900, 2015
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Figure 1. Summary figure from experimental studies of plasma den-

sity fluctuations in radio frequency (RF) discharges, obtaining dis-

persion relations against a noisy background (Iwama et al., 1979;

Beall et al., 1982). For the conditions on the left it is feasible to ob-

tain evidence of a dispersion relation. For the fully developed tur-

bulent conditions on the right-hand side, all that remains is a “blur”

for small ω and k. Reproduced with permission from Beall et al.

(1982). Copyright 1982, AIP Publishing LLC.

where φ is the electrostatic potential, U ≡−∇⊥φ×B/B2

is the lowest-order guiding centre velocity and ϑ ≡

n′0(x)/n0(x) measures the density gradient. For small ϑ the

relation Eq. (12) is inherently nonlinear, just like Eq. (10)

in the limit of small νk2, although we note that the Fourier

transform of q exists only in a limiting sense.

The Hasegawa and Mima equation accounts for the non-

linear coupling of modes, but describes linearly stable

plasma, with no energy input or dissipation. An extended

and generalized model of the Hasegawa and Mima equa-

tion (Hasegawa and Wakatani, 1983) produces linearly un-

stable conditions, with dissipation models included ad hoc.

For resistive electrostatic drift waves with electron–ion col-

lision frequency νei ≡ τ
−1
ei , we have the complex dispersion

relation (Chen, 1965d, e; Weiland, 2000; Pécseli, 2012) for

linear waves,

ω(ω−ωi)+ iσ‖[ω−ω
∗
+ b(ω−ωi)] = 0, (13)

using the seemingly universal notation σ‖ ≡

(k2
z/k

2
y)(ωceτei)�ci, b ≡ k

2
ya

2
i with a2

i ≡ Te/(M�
2
ci) and

the drift frequency ω∗ = kyUDe =−ky(n
′

0/n0)Te/(eB),

while ωi ≡−θω
∗ with θ ≡ Ti/Te and while n0 = n0(x) is

the unperturbed plasma density with x̂ ⊥ B. The ambient

homogeneous magnetic field B is in the z direction. UDe

is the electron diamagnetic drift velocity. Damped waves

propagate with the ion diamagnetic drift velocity. The

basic properties of the dispersion relation Eq. (13) can be

illustrated by the simplified results for cold ions, Ti ≈ 0;

see Fig, 2. The linear instability of the resistive drift waves

is caused by a small phase difference between the potential

and the electron density due to the electron–ion collisions

that prohibit the free electron flow along magnetic field lines

from wave crest to wave trough; see Fig, 2c. The isothermal

Boltzmann equilibrium of the electrons is thereby perturbed.

Collisions between charged particles and neutrals have the

same effect, with one significant difference: while electron–

ion collisional diffusion along a density gradient will not

give rise to any steady-state electric fields, the difference

in electron and ion mobilities due to neutral collisions will

imply the build up of an electric field in the latter case

(Pécseli, 2012). This electric field will have a magnitude of

the order of (T /e) |∇ lnn0|, with T being a characteristic

plasma temperature. Since the mobility of the ions across

magnetic field lines is much larger than for the electrons,

their motion will induce an electric field with a direction

being the same as the plasma density gradient direction. In

the ionosphere we can have additional steady-state electric

fields imposed by, for instance, the interaction between the

solar magnetic field and the Earth’s magnetosphere (Kelley,

1989).

These models, and those derived from them, formed the

starting points of many studies (although not all) of strong

drift wave turbulence. Investigations of turbulent drift waves

have been stimulated by their importance for anomalous

transport in magnetized plasmas and fusion plasma exper-

iments in particular (Liewer, 1985; Wootton et al., 1990;

Misguich et al., 1987; Horton, 1990, 1999). The present

summary implicitly assumes locally homogeneous magnetic

fields, but drift wave turbulence has been observed in more

complex magnetic field configurations such as stellarators

(Bol, 1964; Birkenmeier et al., 2013).

None of the early analytical studies of drift wave turbu-

lence (Chen, 1965a; Fowler, 1966; Tchen et al., 1980) dis-

tinguished energy and enstrophy cascades (Kraichnan, 1967,

1971; Chekhlov et al., 1996). When energy is injected on

a particular intermediate length scale for turbulence in two

spatial dimensions, say at λ0, energy can be assumed to cas-

cade towards scales larger than λ0, with enstrophy (i.e. the

square of the rotation of the velocity field) cascading to scales

smaller than λ0. The two subranges λ < λ0 and λ > λ0 have
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Figure 2. Summary of the normalized dispersion relation Eq. (13)

shown in (a), with full line giving the real part of the frequency and

dashed line the normalized growth rate. For the purposes of illus-

tration, we here took Ti = 0 and b = 0, thereby ignoring ion polar-

ization drifts. In (b) we show the ratio between normalized electro-

static potential χ ≡ eφ̃/Te and normalized density η ≡ ñ/n0, while

(c) gives the phase difference between fluctuating plasma density

and potential for linear drift waves (Pécseli, 2012).

different spectral laws. The enstrophy cascade is a feature of

some two-dimensional systems and applies to neutral flows

as well as low-frequency turbulence in magnetized plasmas.

The concept is supported by numerical simulations (Lilly,

1969). The present review primarily addresses observations

in laboratory and space plasmas, and the enstrophy cascade

in the form outlined above has found limited support there.

An experiment was carried out by Huld et al. (1988), where

energy was injected on a small localized scale at a particular

initial time. The subsequent temporal evolution of the spatial

energy distribution as given by the inhomogeneous, nonsta-

tionary correlation function was then followed. Details of the

energy cascade could, in principle, be distinguished by this
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Figure 3. Schematic illustration of spectra observed by Roth (1971)

in a modified Penning discharge, with a “common sense” argument

for the direction of a spectral cascade given by enhancement in

power levels as indicated by double arrows. We have energy cas-

cade to shorter wavelengths in (a) and the inverse cascade in (b).

procedure. The results were not conclusive. Simple and el-

egant arguments for identifying the direction of the energy

cascade have been suggested by Roth (1971) and described

in detail there; see also Fig. 3. The ideas can apply to cases

where a peak is found in the spectrum, as in the left side

of Fig. 1. In most cases where such features are observed

(Roth, 1971; Smith and Powers, 1973), the arguments seem

to favour models where energy cascades to large frequen-

cies and large wave numbers. Experiments on soap films (this

comes as close to truly two-dimensional systems as is possi-

ble) have given support for the dual energy–enstrophy cas-

cade (Rutgers, 1998).

2.3 Universal spectra in a weak-turbulence model

Universal spectral laws can be derived also within a weak-

turbulence theory. One of these results seems particularly rel-

evant here. The current generated ion acoustic instability (i.e.

an instability generated by an electron flow with velocity u

relative to the ions) saturates at a moderate level of turbu-

lent electrostatic fluctuations, and analytically it was found

(Kadomtsev, 1965) that the power spectrum of the normal-

ized electrostatic potential for u� Cs becomes

Ik ≡

〈(
eφ(k)

Te

)2
〉
∼

u

uth,e

Te

Ti

1

7θ2
0

1

4πk3
ln

(
1

kλD

)
(14)

for kλD < 1 with uth,e ≡
√

2Te/m. The potential power

spectrum is here defined so that 〈(eφ/Te)
2
〉 =

∫ ∫ ∫
VIkd

3k,

with the integration taken over a cone of wave vector direc-

tions with an opening angle θ0 in three-dimensional wave

vector space. For k� 1/λD we find Ik ∼ k
−3 to be a good

approximation. For the electric field power spectrum, we

have E2(k)= k2Ik . The cone angle θ0 of propagation direc-

tions is not well defined. The resulting Eq. (14) has received

some experimental support (Machalek and Nielsen, 1973),

although this experiment measured density fluctuations, and

it is not evident what the relation between density and poten-

tial fluctuations is for a turbulent-current-carrying plasma. It
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is interesting that the logarithmic correction in Eq. (14) was

also included in the experimental fit (Machalek and Nielsen,

1973) with good agreement. The experiment was carried

out at a hydrogen plasma density of n≈ 4× 1020 m−3, with

Te ≈ Ti ≈ 1 eV in a B-perpendicular shock at initially B ∈

{0.035− 0.1}T. Mach numbers were in the range {1.5− 6}.

Observed fluctuation frequencies were below the ion plasma

frequency, following a measured sound-like dispersion rela-

tion with a phase velocity comparable to the ion thermal ve-

locity, which is close to the ion sound speed for the present

parameters. The plasma conditions are thus not those used

for deriving Eq. (14), but the free energy for the turbulence

can nonetheless be identified as an electron current, in this

case the current perpendicular to B. It was not attempted to

identify an instability mechanism in the experiment.

The fluctuation level obtained from Eq. (14) can become

large for small k. The theoretical model has the basic as-

sumption that the current is due to a displaced Maxwellian

electron velocity distribution. For a high fluctuation level this

model for the electron velocity distribution may not be ap-

propriate. The lowest-order modifications taking distortions

of the velocity distribution into account (Kadomtsev, 1965)

did not alter the k−3 dependence in Eq. (14).

2.4 Taylor’s hypothesis

Experiments in the laboratory and in space obtain frequency

spectra which are subsequently interpreted as wave number

spectra with reference to the Taylor hypothesis (or the frozen

turbulence approximation) often used in studies of fluid and

plasma turbulence (Shkarofsky, 1969). The Taylor hypoth-

esis basically argues for the replacement r→ U t in the

detected correlation functions Rc, stating that Rc(r = 0, t)

≈ Rc(r = U t, t = 0), or the equivalent ω→ U · k replace-

ment in the detected power spectra, where U is the detec-

tor velocity (Shkarofsky, 1969). A detected frequency in a

power spectrum is interpreted in terms of the Doppler shift,

ω ≈ k ·U , for the case where the plasma is moving with a

high velocity U past a detector, the tip of a Langmuir probe

for instance. The hypothesis has to be supplemented by as-

sumptions about the distribution over the wave vector direc-

tions (Fredricks and Coroniti, 1976), hypothesizing, for in-

stance, local isotropy in a plane perpendicular to the mag-

netic field. For low observed frequencies it will generally not

be correct to assume that the Doppler shift dominates. Limi-

tations in the applicability of the Taylor hypothesis were dis-

cussed by Shkarofsky (1969). No universal criterion can be

given for the applicability of the hypothesis, but some rea-

sonably general models can be postulated stating the require-

ments to be U2
� 〈̃u2

〉 and t2k2
0 〈̃u

2
〉 � 1 when applied to

the autocorrelation function. The application of the hypothe-

sis for power spectra assumes U2
� 〈̃u2

〉 and ω2
� k2

0 〈̃u
2
〉.

In both cases we have ũ as the fluctuating velocity in the

medium, either fluid or plasma, and k0 representing the in-

verse of the scale size of the largest energy-containing eddies

(Shkarofsky, 1969). In practice it is often found that the Tay-

lor hypothesis can be applied with relatively mild restrictions

(Tennekes, 1975).

For one-dimensional turbulence (should it exist), the rela-

tions between the observed power spectrum So(ω = k ·U)

of a particular fluctuating scalar quantity and the actual

power spectrum S(k) are trivial. For a two-dimensional

case we have So(kx)=
∫
∞

−∞
S(kx,ky)dky , while in three

dimensions we have So(kx)=
∫∫
∞

−∞
S
(
kx,ky,kz

)
dkydkz,

with the x̂ axis taken along U . If, in addition, we

can assume isotropy in three dimensions, S(k)= S(|k|),

so that S
(
kx,ky,kz

)
dkydkz = S

(√
k2
x + k

2
y + k

2
z

)
dkydkz→

2πS
(√
k2+ k2

x

)
kdk, we have the relation

S(k)=−
1

2πk

dSo(k)

dk
, (15)

without requirements for a power law spectrum. For two spa-

tial dimensions no such simple relation exists. The advantage

of Taylor’s hypothesis is that it requires only one probe for

detection. More advanced methods that can estimate wave

number spectra directly require two or more probes (Smith

and Powers, 1973; Iwama et al., 1979; Beall et al., 1982).

It might be instructive to show the result for a case

where the turbulence is confined to a part of wave number

space: assume we have S(k)= A|k|−α within a cone with an

opening angle θ0 as in Eq. (14) and S(k)= 0 outside. For

k secψ0 tanθ0 > 0, we find, after some algebra,

S0(k)=Ak
2−α2−α/2π

× sec2(ψ0) tan(θ0)sin(θ0)sec(θ0−ψ0)

× 2F1

[
1

2
,
α

2
,2,−

1

2
sec2ψ0tan2θ0

]
,

where ψ0 is the angle between the detector trajectory and the

cone axis and 2F1[a,b,c,z] is the hypergeometric function.

A detector moving at a high speed where Taylor’s hypothesis

applies will thus detect a k2−α spectrum in this case, so that a

k−3 power law in the three-dimensional space will be aliased

to k−1 by a moving detector.

For three-dimensional fluid turbulence, we have an

isotropic velocity power spectrum ∼ k−11/3 in wave vector

space. This spectrum is aliased to∼ k−5/3 by a detector mov-

ing at a high speed.

Taylor’s hypothesis is not restricted to power law spec-

tra, although this form is often implied. Since these forms

for spectra are found so often, they are also emphasized

in this review. It should be noted, however, that arguments

have been offered also for other spectral laws (Maggs and

Morales, 2012), exponential spectra, for instance. It was ar-

gued by the authors that due to experimental uncertainties,

it can be difficult to distinguish such spectra from those ob-

tained by measurements. The most common source of uncer-

tainties can be found in limited record lengths. Many labora-

tory experiments are, however, in a position to provide very
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long records, and this uncertainty can be strongly reduced.

There is, on the other hand, no a priori guarantee that any

physically acceptable random process necessarily develops

power law spectra. It is, for instance, unlikely that the fre-

quency spectrum of noise from rain falling on a tin roof will

follow such a power law. It is also well known that by prop-

erly prepared synthetic time series, it is possible to gener-

ate data sets with any preselected integrable frequency power

spectrum as well as bispectrum (Pécseli and Trulsen, 1993;

Pécseli, 2000). A similar conclusion will be valid also for

wave vector spectra in one, two or three spatial dimensions

(Lynov et al., 1991).

3 Laboratory studies

A number of laboratory experiments have been carried out

for studying drift wave turbulence (Tynan et al., 2009). Some

investigations of turbulent spectra, in particular, were com-

piled and summarized in early studies (Chen, 1965a; Tchen

et al., 1980). Thus, even before analytical results for possibly

universal spectra were found, a number of experiments stud-

ied spectral distributions of fluctuations in density, potential,

etc. More detailed measurements were carried out later. A

summary is presented in Table 1 of this paper.

For cold plasmas, as in Q machines (Motley, 1975), mea-

surements by Langmuir probes can provide data for vari-

ations in plasma density and potential. For hot plasmas,

remote techniques, microwave scattering for instance (Ok-

abayashi and Arunasalam, 1977), are often used.

Studies of fully developed turbulent limits with power law

wave number spectra (Beall et al., 1982) found no signs of

a dispersion relation, which was, on the other hand, clear for

other cases. Referring to the discussion in Sect. 2.2, we take

this as an indication of a strongly turbulent state being devel-

oped in the former case. The waves were interpreted as drift

waves by Beall et al. (1982), but for this particular case the

spectral index was close to 3. The tokamak results shown in

Table 1 seem to fall systematically below the expected spec-

tral index for drift waves: this may be related to the distinct

deviations from near isothermal Boltzmann distributions for

the electrons found experimentally (Ritz et al., 1987). RF (ra-

dio frequency) discharge plasmas, on the other hand, seem

in some cases to support the drift wave power spectrum

(Smith and Powers, 1973) and in other cases to contradict

them (Beall et al., 1982). Variations in the neutral pressures

can be the cause of this discrepancy, as discussed later in

Sect. 3.2. Data from a “bumpy torus” (Roth et al., 1981)

show power spectra for the potential with index α ≈ 4.7,

while the density has α ≈ 2.8, again in disagreement with

the expected results assuming nearly Boltzmann-distributed

electrons, which would predict eφ̃/Te ≈ ñ/n0. The inhomo-

geneous magnetic field might be a cause of these deviations.

Turbulence in a cusped magnetic field has been studied as

well by D’Angelo et al. (1974): here the power spectrum of

turbulent fluctuations in plasma density varied significantly

from the cusp region, with weak magnetic fields, to the lo-

cally homogeneous magnetic field conditions near the mag-

netizing coils. In the former case an f−3 power law was

found, in the latter f−5, which, incidentally, seems consis-

tent with drift wave turbulence.

3.1 Resistive drift waves with ion–electron collisions

Systematic studies were carried out in a rotating caesium

plasma column in a linear Q device (D’Angelo et al., 1974;

Mikkelsen and Pécseli, 1978; Pécseli, 1982; Pécseli et al.,

1983), as illustrated in Fig. 4. The high rotation velocity of

the plasma allows Taylor’s hypothesis to be used in the region

near the radius of the plasma column. Some basic features

of this experiment are summarized in Fig. 5. The fluctuation

level maximizes near the position where the steady-state ra-

dial density variation is at a maximum. The relative fluctua-

tion level
√
〈(̃n/n(r))2〉 stays approximately constant (within

the uncertainty) for a large radial range. The parameter vari-

ations in the various spectral subranges and their “crossover”

wave numbers were analysed. A sample of power spectra

for density and potential fluctuations are shown in Fig. 6.

The lower limit for applying Taylor’s hypothesis (Shkarof-

sky, 1969) was estimated to be in the range of 3–5 kHz

(Mikkelsen and Pécseli, 1978). For small amplitudes, i.e. at

large and intermediate frequencies, we note a close similarity

of the two spectra, indicating a near proportionality between

ñ and φ̃. For large amplitudes (small frequencies, large wave-

lengths), this similarity is no longer pronounced. Similar ob-

servations were made in studies of fluctuations in a large

cylindrical magnetized plasma (Nagashima et al., 2008) and

in tokamak devices (Levinson et al., 1984). The similarity of

density and potential spectra at moderate fluctuation levels

agrees with models where the electrons are near an isother-

mal Boltzmann equilibrium eφ̃/Te ≈ ln((̃n+ n0(r))/n0(r)),

although this relation cannot be exact for linearly unstable

conditions; see Fig. 2c.

In some cases it has been possible to determine both wave

number and frequency spectra simultaneously and thus test

the accuracy of the Taylor hypothesis (Beall et al., 1982).

Such a case is shown on the right-hand side of Fig. 1. The

hypothesis is reasonably well satisfied for this case, although

the relation is by no means exact. The result can be seen as an

illustration of the uncertainty on the estimate of the spectral

index for wave number spectra obtained through the Taylor

hypothesis. Similar results were reported from measurements

in a tokamak (Levinson et al., 1984), where it was noted that

the wave number spectra seemed to be systematically slightly

steeper than the frequency spectra. The authors mention that

both density and potential spectra seemed to steepen even

more for large frequencies and wave numbers, so it might be

that the results reported in reality are weighted by a contri-

bution from a production subrange.
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Table 1. Spectral results from laboratory experiments. The data from Tore Supra identify a production and a coupling subrange as indicated

(Hennequin et al., 2004). The results are supported by different discharges giving nearly similar power spectra. A Q-machine experiment

(Mikkelsen and Pécseli, 1978; Pécseli et al., 1983) also identifies a production and a coupling subrange.

Source Device Spectral indices, Spectral indices, Spectral indices,

density potential electric field

Bol (1964) Etude stellarator 4.8± 0.2 – –

D’Angelo and Enriques (1966) Q machine – 5± 0.2 –

Robinson and Rusbridge (1971) ZETA discharge – – 2.8± 0.3

Smith and Powers (1973) RF discharge 5± 0.2 – –

Mikkelsen and Pécseli (1978); Pécseli et al. (1983) Q machine 1.6/5± 0.2 2.2/5± 0.2 –

Beall et al. (1982) RF discharge – 2.7± 0.3 –

Levinson et al. (1984) Tokamak 2.7± 0.3 2.7± 0.3 –

Latten et al. (1995) KIWI device 3.6± 0.1 – –

Tynan et al. (2006) CSDX device 5.4± 0.2 – –

Hennequin et al. (2004) Tore Supra 3.5/6.5 – –

Yamada et al. (2010) Mirror device 7 – –

Figure 4. Schematic illustration of a Q-machine set-up with a nearly

“solid body” E0×B-rotating plasma column induced by a radial

DC electric field E0 (Mikkelsen and Pécseli, 1978). The hot fila-

ment (“cathode”) was made by a double tantalum spiral, heated by

a DC current. Because of its spiral structure, the filament imposed

an almost parabolic potential variation across the plasma column,

giving rise to an imposed electric field, E0, increasing nearly lin-

early with radius (Pécseli et al., 1983).

For scales comparable to the density gradient scale length,

the assumption of local isotropy can be difficult to justify.

For short wavelengths it was found by microwave scatter-

ing (Okabayashi and Arunasalam, 1977) that local isotropy

in the plane perpendicular to B could be argued. Physically,

this implies that short wavelength drift waves propagate on

the density gradients of longer wavelengths, which in turn

propagate on gradients originating from even larger spatial

scales, etc. For a long-wavelength “production subrange”, it

seems more natural to assume that the waves propagate in

one preferred direction, given by the electron diamagnetic

drift velocity UDe. The two-dimensional nature of drift wave

fluctuations in a plane perpendicular to the magnetic field

was confirmed, for instance, by microwave scattering also in

the ohmic discharges in the Tore Supra tokamak (Truc et al.,

1992).

For neutral turbulence it has been argued by Tennekes

(1975) that large eddies sweep small eddies past a fixed ob-

Figure 5. Summary of basic Q-machine caesium plasma condi-

tions (Pécseli et al., 1983); see also Fig. 4. Temperatures were

Te ≈ 2Ti ≈ 0.2 eV and magnetic fields B ∈ {0.1−0.25}T. The sym-

bols “O” give the average density n/n0; “�” gives the root-mean-

square (RMS) fluctuation level
√
〈(̃n/n0)

2〉; both are normalized by

n0 = 1010 cm−3. The relative RMS-fluctuation level
√
〈(̃n/n(r))2〉

by shown with “•”. The normalizing length scale is R ≈ 4 cm. The

turbulent fluctuations make the plasma column expand outside the

radius of the plasma-producing hot filament, so we find plasma also

for radial positions larger than R.

server at a velocity that is sufficiently large to make the Tay-

lor hypothesis applicable the small scales, giving a ω−5/3

spectrum for large frequencies; see also the discussion of
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Figure 6. Experimentally obtained power spectra for fluctuations

in density and potential (Pécseli et al., 1983). The spectra are ob-

tained at a position r = 0.6R in Fig. 5. Note the similarity between

the density and potential spectra, in particular for large frequencies.

Dashed lines give f−3 and f−5 for reference.

Eq. (3). Isotropy on the small scales of the turbulence is

essential for this argument since the large-scale motion can

have any direction. It is not evident that a similar argument

applies to drift wave turbulence. In a weak-turbulence limit,

the assumption is definitely questionable, but its use might

be justified nonetheless if a linear isotropic dispersion rela-

tion with frequency and wave number being proportional (as

for ion acoustic sound waves) can be argued.

The variation in the spectral index in the coupling sub-

range in the terminology of Tchen (1975) and Tchen et al.

(1980) is shown in Fig. 7. In the central part of the plasma

column we find an index α ∼ 3− 4 but with modest fluctua-

tion levels; see Fig. 5. At positions where the plasma density

gradient is substantial and the fluctuation level is enhanced,

we have α ∼ 5 for a wide range of radial positions consis-

tent with a model assuming local homogeneity of the small-

scale fluctuations in a plane perpendicular to B. The most

easily varied parameter was the magnetic field, here in the

range of 0.1− 0.25 T. Results for two B values are shown in

Fig. 7. A change in plasma density would change the resis-

tivity and thereby the linear growth rate of the fluctuations.

Plasma density enters the electron–ion collisional resistivity

only through the Spitzer logarithm, so this variation is weak

(Chen, 1984). Variations in plasma temperature will have a

stronger effect.

In laboratory experiments we have the additional con-

straint that the average collisional mean free path `c should

be much smaller than the length of the device. Since `c ∼

T 2n−1 for electron–ion collisions in terms of temperatures

T and plasma densities n, most laboratory studies of resis-

Figure 7. Variation in the spectral index α in the “coupling sub-

range” for electrostatic potential based on the high-frequency parts

of spectra as that shown in Fig. 6 obtained at different radial probe

positions. Results from two different magnetic field values are in-

dicated by “O” and “∇”. Radial positions are normalized by the

outer radiusR = 4 cm of the terminating hot spiral that produces the

plasma; see Fig. 4. At the same time it imposes the radial electric

field that gives the near solid-body plasma rotation (Pécseli et al.,

1983). The scatter in data represents the uncertainty.

tive electrostatic drift waves have been carried out at rela-

tively large plasma densities. Enhanced growth rates of drift

wave instabilities can be found with field-aligned currents

(Hatakeyama et al., 1980, 2011; Garcia and Pécseli, 2013):

in these cases the restriction on mean free paths is of minor

consequence.

In comparison to the spectral index ∼ 5 mentioned above,

some related experiments for resistive drift wave turbulence

(Yamada et al., 2010) found somewhat steeper frequency

spectra with an index as high as 7 for the fluctuations in

plasma density as measured by the ion saturation current to

a probe. Density fluctuation spectra from ohmic discharges

in the Tore Supra tokamak using CO2 laser scattering for di-

agnostics (Gürcan et al., 2009) gave similar results, in agree-

ment with results based on analytical “shell” models of tur-

bulence. In these studies the spectrum is seemingly defined

as in Eq. (14) rather than in the reduced form used in Eq. (7),

and there need not be significant disagreement with the drift

wave index 5.

A finite length of an experimental device imposes certain

restrictions on the wavelengths parallel to B so that the range

of variability in σ‖ is limited (Chen, 1965b, c, 1979); see also

Fig. 2, where the parts with large abscissa values are rele-

vant for most laboratory conditions. As a consequence, the

growth rate of resistive drift waves is seldom large in lab-

oratories. For small-amplitude linear waves in this limit, we

have eφ̃/Te ≈ ñ/n0 and a small phase difference between the

fluctuating density and potential; see Fig, 2b and c. Strong
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drift wave turbulence levels in laboratory plasmas are usu-

ally found when some additional free energy is available due

to rotation (Mikkelsen and Pécseli, 1978). Due to the differ-

ence in electron and ion centrifugal forces at high E0×B/B2

angular velocities (see Fig. 4), the electrons and ions do not

have the same azimuthal velocity (Odajima, 1978; Mikkelsen

and Pécseli, 1978), and this rotation difference gives rise to

an azimuthal current that increases the available free energy

for the instability. Moreover, a velocity shear via Kelvin–

Helmholtz instabilities enhances the drift wave growth rates.

Only sheared velocities in the direction transverse to the

magnetic field lines are relevant in the present context (Kent

et al., 1969; Jassby, 1972; Nielsen et al., 1992). Sheared

plasma flows along magnetic field lines (D’Angelo and von

Goeler, 1966) will in general give strongly anisotropic three-

dimensional turbulence.

3.2 The influence of collisions with neutrals

Results from laboratory studies of plasmas with varying

neutral background densities have also been carried out

(Mikkelsen and Pécseli, 1980). In this case a parabolic po-

tential variation was imposed externally on the hot-plate po-

sition of a Q machine (Motley, 1975) as in Sect. 3.1. The re-

sulting stationary electric field gave rise to a zero-order solid-

body rotation of the plasma column (Pécseli et al., 1983).

A similar experiment was carried out in discharge plasma

(John and Saxena, 1975; Prasad et al., 1994) with very sim-

ilar results. Results for experimentally obtained variations in

power spectra for varying neutral density are shown in Fig. 8.

The variations in ion–neutral collision frequency correspond

qualitatively to what is found by moving from the top of the

ionospheric F region into the lower parts of the E region.

Two features are conspicuous in Fig. 8: a flattening of the

spectra for both density and potential fluctuations and an in-

creasing difference between the spectral index for density

and potential as the collision frequency between charged par-

ticles and neutrals is increased. The density fluctuation level

increases as the neutral density increases. At high neutral col-

lisionalities, as also found in the ionospheric E region, the

ions are no longer magnetized and it can be expected that the

power spectra differ significantly from those observed with

magnetized ions.

For low neutral densities we find that the spectral indices

for density and potential are nearly equal, consistent with

a model where ñ∼ φ̃, resulting from an approximate local

Boltzmann distribution of isothermal electrons. As the neu-

tral density (and thereby the collision frequency of charged

particles and neutrals) is increased, we find the density spec-

trum to be “flatter” than the potential spectrum, with a differ-

ence in index close to 2. This limit is consistent with models

where ñ∼ Ẽ, a result found also by analysing data from E re-

gion rockets (Pfaff et al., 1987b). The electron–neutral colli-

sions inhibit the free flow of electrons along magnetic field

lines, and a local isothermal electron Boltzmann relation can

Figure 8. Power spectra for the electrostatic potential and plasma

density at different neutral background pressures are shown in (a),

where full lines refer to potential and dotted lines to density fluc-

tuations. The spectral index for the potential is shown in (b) with

“O” for varying neutral pressures, while “•” gives the difference

between the spectral indices for density and potential fluctuations.

A shading on the horizontal axis in (b) indicates where the ion cy-

clotron frequency equals the ion–neutral collision frequency. In (c)

we have the variation in mean square relative density fluctuation

〈(̃n/n0)
2
〉 obtained at a fixed radial position for varying neutral

pressures (Mikkelsen and Pécseli, 1978). The data were obtained

in the same experimental set-up as the one used for Fig. 6.
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no longer be established. The spectral indices of density and

electric field fluctuations become similar in this limit.

The RMS–density fluctuation level
√
〈(̃n/n0)2〉 increases

significantly with increasing neutral density, from approxi-

mately 10 % to approximately 70 % as observed at a fixed

radial position; see Fig. 8c. The power spectra reported in

the rocket studies mentioned before (Pfaff et al., 1987b) have

a large uncertainty, but they are not inconsistent with labo-

ratory results at enhanced neutral pressures (Mikkelsen and

Pécseli, 1980; Prasad et al., 1994).

When the linear Farley–Buneman instability (Buneman,

1963; Farley, 1963) is strong (see discussion in Sect. 4.1),

it might excite short wavelengths directly, without any inter-

vening nonlinear spectral cascade found in strong-turbulence

models. This process gives rise to the flattening of both den-

sity and potential spectra as the relative electron–ion drift ex-

ceeds the sound speed and increases.

By a narrow-band filtering of the data at enhanced pres-

sures, a dispersion relation between frequency and propa-

gation velocity could be obtained (Mikkelsen and Pécseli,

1980), which is tantamount to a dispersion relation. In the

sense discussed in Sect. 2.2, the fluctuations may not rep-

resent a strongly turbulent state in this case, in spite of the

strongly enhanced fluctuation level.

The discrepancy between the two data sets for RF dis-

charges noted in Table 1 can be due to different radial electric

fields for the two cases. These discharges are often operated

at relatively high neutral pressures, and it is plausible that the

results of one case (Beall et al., 1982) in reality correspond

to the high neutral pressures depicted in Fig. 8b.

4 Drift waves in the ionosphere

Wave studies in the ionosphere have the attractive feature of

allowing boundary conditions to be ignored in many cases.

The analysis of collisional or resistive drift waves applies to

the Earth’s ionosphere. Collisions between charged particles

and neutrals dominate collisions between electrons and ions

at low altitudes, while results for resistive drift waves will ap-

ply at higher altitudes. In the equatorial regions, the geometry

will be the standard, with density gradients perpendicular to

the magnetic field lines. In polar regions there will be a den-

sity gradient component along magnetic field lines as well,

but simplified models have been suggested by Garcia and

Pécseli (2013) which can account for this feature, too. This

particular problem is interesting because it includes an exam-

ple of a “fake instability”, where a seeming wave amplifica-

tion is due to conservation of wave energy flux in a medium

with decreasing density (Dysthe et al., 1975, Pécseli, 2012).

4.1 Linear dispersion relations for ionospheric

E region parameters

The ionospheric plasma in the E and lower parts of the F

region has a significant neutral component. For a wide alti-

tude range up to 110–120 km, the collisions between neutrals

and charged particles will completely dominate electron–ion

collisions so that the ions are in effect unmagnetized. When

we have ωce� νen while �ci ≤ νin, in terms of electron and

ion cyclotron frequencies ωce and �ci with electron–ion–

neutral collision frequencies νen and νin, respectively, we

have significantly different Hall mobilities of ions and elec-

trons. These conditions have no direct counterpart in the clas-

sical analysis of resistive drift waves (Chen, 1965d, e, 1984).

One consequence of the difference in mobilities is the pos-

sibility of driving a significant Hall current by an externally

imposed electric field E0 ⊥ B. The steady-state electric field

E0 can be imposed by the interaction between the solar mag-

netic field and the Earth’s magnetosphere (Kelley, 1989).

For the present problem we find a linear dispersion rela-

tion for low-frequency electrostatic waves in the form (Fejer

et al., 1975; Kelley, 1989) valid in the limit where ωre ≤ νin

and ωim� ωre with the real part of the frequency being

ωre ≈
k · (U e0+9U i0)

1+9
. (16)

To the same approximation, the imaginary part of ω is ob-

tained as

ωim ≈
1

1+9

{
9

νin

(
(ωre− k ·U i0)

2
− k2C2

s

)
+

1

k2L

[
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)
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)
and ion/electron steady-state drift velocities being U i0 and

U e0, respectively, while |L| ≡ |n0/∇n0| is the zero-order

length scale of the background unperturbed density gradient.

The sign of L is measured with respect to E0. The gradient

term contributes to an instability when E0 ·∇n0 > 0. The first

term in Eq. (17) accounts for the Farley–Buneman or Hall

current instability (Buneman, 1963; Farley, 1963), which can

be effective even in the absence of a zero-order density gra-

dient. This instability requires the relative Hall drift of the

electrons with respect to the ions to exceed the ion acoustic

sound speed. The current-driven instability excites predomi-

nantly short wavelengths in contrast to the gradient instabil-

ity. If, on the other hand, the relative ion–electron Hall drift
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is less that the sound speed, this first term in Eq. (17) acts

as a damping, predominantly for short wavelengths. The re-

quirement ωim > 0 defines a directional cone (not necessar-

ily with elliptical cross section) in wave number space where

enhanced fluctuations are supported. Waves propagating out-

side this cone are generated by nonlinear interactions.

A model consistent with the observations is one where

we have a k−5 drift wave turbulent spectrum at low neutral

pressures with negligible Hall current. As the collision fre-

quency between plasma particles and neutrals increases (for

increasing neutral pressure), the Farley–Buneman instability

is excited in the rapidly rotating plasma (most effectively at

the edge of the plasma column) and generates predominantly

large wave numbers to flatten the drift wave spectra for both

density and potential fluctuations. For large neutral pressures

the neutral drag on the ions is effective, the ion–electron ve-

locity difference exceeds the ion sound speed and the Hall

current instability dominates entirely in the large frequency

limit; see Fig. 8. The enhanced density fluctuation level for

increasing Hall current, observed in Fig. 8, indicates that the

current instability is more effective than the drift instability,

at least in that particular experiment. For large Hall currents

the power spectrum is thus dominated by the two-stream in-

stability contribution and the fluctuations will also be excited

to significant amplitudes in the absence of any density gradi-

ent. In this limit the nearly two-dimensional features of the

turbulence may also vanish, although the electrojet instabili-

ties are usually found to have a high aspect angle sensitivity

(Foster et al., 1992), at least for short wavelengths. Labo-

ratory experiments (D’Angelo et al., 1974; John and Saxena,

1975; Mikkelsen and Pécseli, 1980) will inevitably have den-

sity gradients perpendicular to the confining magnetic field.

The polarity of this field was fixed by the experimental con-

ditions, and it was not possible to distinguish the contribu-

tions from the Farley–Buneman and gradient instabilities in

the experiments. This could have been possible if a change

in sign of E0 · ∇n0 had been feasible in the experiment.

4.2 Space observations

Turbulent spectra have been observed in situ in the Earth’s

ionosphere by use of instrumented rockets and satellites. Fol-

lowing the set-up used elsewhere (Kintner and Seyler, 1985),

we summarize selected results in Tables 2 and 3, with parts of

the information summarized in Figs. 9 and 10. The scatter in

spectral indices is large, even within one experiment, and it

is recommended that the original papers are consulted to see

precisely what result they are being cited for. Note the correc-

tion of spectral indices (Prakash et al., 1971) that takes into

account a varying filter bandwidth: this reference is predated

by others (Prakash et al., 1968, 1969), containing an erro-

neous value for spectral indices. Values for positive spectral

indices have been reported by Prakash et al. (1971), but these

apply only to some unspecified narrow spectral subranges

and they are not included in the present summary. Some

rocket experiments (Pécseli et al., 1989, 1993; Iranpour et al.,

1997) report E region turbulent spectra in a colour-coded ver-

sion, where a spectral index is not readily determined with

any significant accuracy. Within the uncertainty, the results

do not, however, in contradiction with similar data in Ta-

ble 2. Observations of turbulent electric field spectra have

been obtained by instrumented balloons (Mozer, 1971), but

these data will not be discussed further here, although they

can be relevant for comparison with E region turbulence re-

sults. Unfortunately, often only an altitude range is given for

a satellite experiment, without specifying the precise altitude

where the power spectra were obtained.

Since rockets or satellites do not have an absolute ground,

potential variations are usually detected by using probe po-

tential differences. For scales or wavelengths much larger

than the probe separation, the measurements can be inter-

preted in terms of an electric field component taken along

the direction of the boom connecting the probes. Very often

the situation is the opposite: the scales are shorter than the

probe separations. This has consequences for the interpreta-

tion of turbulent potential spectra detected by probes. The

Appendix offers arguments for interpreting high-frequency,

short-wavelength parts of experimentally obtained spectra as

power spectra for the electric potential.

A vast number of numerical simulations contain partial

results for spectral power laws: there are too many to be

summarized here, in part also because it is not always ev-

ident which ionospheric parameter range (if relevant at all)

the analysis refers to. There is an early summary of stud-

ies of the type II irregularities (McDonald et al., 1974), giv-

ing a density fluctuation spectrum close to k−3.5, albeit with

a clear tendency for steepening at small wavelengths. It is

stated explicitly that this result is obtained by averaging over

all directions, so that a k integration directly gives 〈̃n2
〉.

Some studies (Gondarenko and Guzdar, 2004) compare the

results of numerical simulations with experimental observa-

tions (Basu et al., 1990) and emphasize a subrange that would

correspond to the production subrange in the terminology of

Tchen et al. (1980). This subrange is, however, in the sim-

ulations of Gondarenko and Guzdar (2004) followed by a

“steeper” subrange that is not discussed in detail, but it might

be noted that it has the characteristics of a coupling subrange.

An overview and synthesis of plasma irregularities and tur-

bulence was given by Hysell (2000), with emphasis on the

F region.

Some reports seem to distinguish drift and transverse ve-

locity shear-driven turbulence (Kintner and Seyler, 1985;

Basu et al., 1988). Indeed in what could be called the pro-

duction range, we might expect differences. For an inertial

(or coupling) subrange, the precise nature of the energy in-

put should be of little consequence in the strong-turbulence

limit, since the spectral shape would be expected to be con-

trolled by the cascade, which will be the same for small-scale

electrostatic drift and B-transverse velocity shear instabili-

ties. The theoretical analysis of Tchen et al. (1980) antici-

Ann. Geophys., 33, 875–900, 2015 www.ann-geophys.net/33/875/2015/



H. L. Pécseli: Electrostatic drift wave turbulence 889

Table 2. Observations made by instrumented rockets. If two values for a spectral index are listed, then the lowest frequency range is listed

first. Note that the uncertainty on the spectral estimates is not always given in the literature. The data are sorted according to average altitudes,

with the lowest altitudes first.

Source Region/altitude Spectral indices, Spectral indices, Spectral indices,

density potential electric field

Pfaff et al. (1987a) 92–105 km – – 1.2/4.5

Krane et al. (2000) 100–110 km 1± 0.25 3± 0.3 –

Prakash et al. (1971) 150 km – – 2.5± 0.5

LaBelle et al. (1986) 300–500 km 2.5/4.5 – –

Kelley et al. (1982a) 390–560 km 2.2± 0.2/5.5± 0.5 – –

Earle et al. (1989) 450–500 km 2.2± 0.5 – 2.9± 0.5

Kelley (1982); Kelley et al. (1982b) 500 km 4.5± 0.4 – 3.1± 0.3

pated this by having two different “production mechanisms”

for the respective subranges of velocity and potential fluc-

tuations. The hypothesis finds support in numerical simula-

tions of nonlinear evolution of the Kelvin–Helmholtz insta-

bility in the high-latitude ionosphere (Keskinen et al., 1988),

where the high-frequency short-wavelength part of the spec-

trum was found to have characteristics very similar to those

of electrostatic drift waves. Similar studies for the ion tem-

perature gradient (ITG) instability have not been carried out

with the same aim and to the same accuracy, but such a study

seems worthwhile in the light of the results mentioned above.

The results of Basu et al. (1990) for the electric field in

Table 3 are obtained for different orbits, with a seemingly

large variability. It may be that the variation is due to different

subranges being sampled. This work includes an interesting

comparison of spectra for different wave number component

directions perpendicular to the magnetic field, giving some

indications of local isotropy in that plane. These results were

compared to numerical results from turbulence simulations

(Keskinen and Huba, 1990), and for some of the data, the

agreement was within the uncertainties.

The lists in Tables 2 and 3 are by no means exhaustive,

but already on this limited basis we can state that the re-

sults are not unconditionally promising regarding a universal

turbulent spectrum. There is a scatter in the spectral indices

reported, although this is seen mostly for the satellite data;

see Fig. 10. Separating data from rocket and satellite exper-

iments (as in Figs. 9 and 10), it becomes easier to obtain

a coherent presentation. The rocket data will thus support

models for a coupling subrange where a power law index

near 5 for density and an index of 3 for electric field fluc-

tuations is found for high altitudes and thereby low neutral

collisionalities, �ci > νin. The observed spectra (Earle et al.,

1989) giving a power law index of 2.2 for the density may

be a misinterpretation, belonging in reality to a large ampli-

tude production subrange where an index of 3 is predicted

(Tchen et al., 1980). The remaining disagreement with re-

sults expected for electrostatic drift wave turbulence are then

be the observations from the E region (Pfaff et al., 1987a;

Krane et al., 2000), where both potential and density spec-

Figure 9. Colour-coded representation of parts of the information

in Table 2. The power spectral index variation with altitude for den-

sity is shown as blue circles, electric field as red triangles and one

measurement for potential (Krane et al., 2000) as a green rectan-

gle; see also the discussion in the Appendix. Only spectral indices

for the (assumed) coupling subranges are shown. The dashed line

(with scale to the right of the figure) shows the normalized altitude

variation in the ion–neutral collision frequency νin(z)/�ci.

tra are completely off. This limit can, however, be accounted

for with reference to laboratory results of Mikkelsen and

Pécseli (1980), where the neutral collisions and the effects

of the Farley–Buneman (FB) instability modify the spec-

tra. In Fig. 9, a dashed curve shows the normalized altitude

variation in the ion–neutral collision frequency νin(z)/�ci.

This curve will change with plasma conditions and vary in

particular for day and night conditions. The corresponding

electron ratio νen(z)/ωce in negligibly small in the altitude

range shown. The curve is based on an average ion mass of

31 AMU and a vertical scale length C2
s /g of 25 km for a

sound speed of Cs = 500 m s−1. For the altitude range shown

in Fig. 9, we can take the magnetic field to be constant.

The altitude range with parameters �ci� νin should be

considered for two separate cases: one where the Hall elec-

tron drift is smaller than Cs and one where it is larger. The

laboratory experiment of Mikkelsen and Pécseli (1978) sum-
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Table 3. Observations made by instrumented satellites. The results are obtained by determining the exponent α in frequency spectra ∼ f−α

as in Table 2. For the data given by Kintner (1976) only the high-intensity cases are cited. The data are sorted according to average altitudes,

with the lowest altitudes first. Some studies, e.g. by Kintner (1976), also report magnetic field fluctuations with power law spectra. If these

fluctuations represent propagating waves, their presence may indicate relatively large plasma β values. The magnetic field fluctuations need

not always follow a power law spectrum (Gurnett and Frank, 1977).

Source Region/altitude Spectral indices, Spectral indices, Spectral indices,

density potential electric field

Shume and Hysell (2004) 325–450 km 1.6± 0.05 – –

Basu et al. (1990) 400 km 1.9± 0.1 – 1.9± 0.1,

2.3± 0.1,

3.3± 0.1

Rodrigues et al. (2009) 500 km 5.5± 1 – 1± 1

McDaniel and Hysell (1997) 530 km 1.65/3.52 – –

Dyson et al. (1974) 440–780 km 2.0± 0.2 – –

Cerisier et al. (1985) 400–2000 km 1.93 – 1.77

Golovchanskaya et al. (2012) 700–2500 km – – 2.2± 0.3

Gurnett and Frank (1977) 24 000–30 000 km – – 3± 0.3

Angelopoulos et al. (2001) 5700–54 000 km – – 1/2.5

Kintner (1976) 500–125 000 km – – 2.8± 0.3

Figure 10. Black- and white-coded representation of parts of the

information in Table 3. The power spectral index variation with al-

titude (on a logarithmic scale) for density is shown as “�” and for

electric field as “�;. The error bars are large, in particular for the

altitudes (see Table 3) and are omitted here. Some data are obtained

outside the Earth’s magnetopause. There are no reports concerning

the plasma β values for the altitudes where these spectra are ob-

tained.

marized in Fig. 8 refers to the latter case. The distinction

arises from the first term in Eq. (17). For the supersonic

Hall drifts, it gives rise to enhanced short-wavelength fluctua-

tions. In the subsonic flow the term damps short wavelengths,

and gradient drift spectra can be expected to be steeper that

those found for conditions with negligible neutral collisions.

For the flat spectra the plasma conditions were consistent

with the FB instability being excited (Mikkelsen and Pécseli,

1978), while the steeper spectra (Pfaff et al., 1987a) were as-

sociated with the gradient drift instability only. Results from

a laboratory experiment (Saxena and John, 1975) have a large

uncertainty and estimate a power law on the basis of a few

modes only, but the results are not in disagreement with the

rocket results. These observations relate only to what is here

called the coupling subrange: the corresponding production

subrange at long wavelengths (see first entry in Table 2) is

only marginally affected here (Pfaff et al., 1987a).

Using dimensional analysis Ott and Farley (1974) at-

tempted to give analytical predictions for the wave number

power law spectra for turbulent density fluctuations gener-

ated by the gradient instability with high neutral collisional-

ity. Defining a spectrum for fluctuating densities 〈(̃n/n0)
2
〉 ≡∫

SF (k,2)dkd2, it can be argued by dimensional reasoning

that the spectrum must have a form

kSF (k,2)= F

(
kLn,

Ud

kDa
,2,ζ1,ζ2

)
,

where F is a dimensionless function of several dimensionless

variables, with Ln ≡ n0/|∇n0|,2 is the angle between k and

the relative electron–ion drift velocity Ud, while Da is the

ambipolar diffusion coefficient and ζ1, ζ2 are reduced dimen-

sionless mobilities accounting for the collisional transport in

the region with enhanced neutral collisions. The model thus

contains several parameters that have to be fitted by exper-

iments. It is found experimentally that the scattered radar

power scales approximately with the square of Ud. If the

other parameters remain constant for varying Ud, this ob-

servation indicates that SF (k,2)∼ k
−3 in an inertial sub-

range, but this does not agree well with the rocket obser-

vations (Pfaff et al., 1987a); see Table 2 and Fig. 9. The

analysis assumed fluctuations in density and electric field to

be proportional. If we make the plausible assumption that
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the power scales inversely proportional to L2
n, the arguments

will imply the existence of a production subrange where

SF (k,2)∼ k
−3. This result corresponds to the production

subrange found in other studies (Tchen et al., 1980).

If we also include data from satellites (see Fig, 10), we find

a significant scatter in data points, and it seems unlikely that

one universal power law can be determined for fluctuations in

density, potential or electric fields. The reason is not obvious.

It might not be permissible to compare data from such di-

verse regions of space, but on the other hand, such a compar-

ison should be the whole point of universal properties. The

large altitude ranges covered by satellites makes the range

of variation in the length scales L for density larger, bear-

ing in mind, however, that the scale lengths should be mea-

sured in units of the local effective ion Larmor radius. The

neutral density (and thereby the collision frequency between

neutrals and plasma particles) decreases rapidly with alti-

tude; see Fig, 9. The electron–ion collision frequency scales

as ∼ nT −3/2 and decreases also with altitude above the F

maximum because of the decreasing plasma density n and

increasing plasma temperature T there. Ignoring the Spitzer

logarithm, we have the plasma resistivity due to electron–ion

collisions scaling with temperature as ∼ T −3/2. In general

we find that the Spitzer logarithm increases with altitude but

not by enough to increase the net plasma resistivity. Conse-

quently, the largest local growth rates for resistive drift waves

are found at low altitudes.

Can it be that a universal power law may simply not ex-

ist? This conclusion seems somewhat pessimistic, and in the

opinion of the present author it is in part a question of sort-

ing the data according to an effective Reynolds number as

argued in Sect. 2.2. Moreover, it should be noted that ob-

servations of a low-frequency turbulent spectrum need not

necessarily imply that the source is a drift instability. Univer-

sal laws for strong turbulence will be found when the non-

linear effects dominate, and, with the exception of the re-

sults of Kintner (1976), the data are not sorted according to

wave intensity. In the one case mentioned, the distinction of

low- and high-intensity spectra was significant. Data from the

Orbiting Geophysical Observatory 6 (OGO6) (Dyson et al.,

1974) showed, however, that for the long-wavelength fluc-

tuations (10–103 m) detected there, the spectral index was

constant within the uncertainty for all RMS amplitudes mea-

sured. Due to the predominantly long wavelengths involved,

these data might originate from a production subrange.

Most laboratory results refer to large intensity fluctuations,

and there indications of universal power law spectra were

found. It could also be that the instrumentations of the rock-

ets and satellites is insufficient to distinguish between differ-

ences in the nature of the turbulence. By applying Taylor’s

hypothesis (or the frozen turbulence hypothesis) to a “one-

point signal” alone, it is not logically possible to distinguish

between different dimensions of the turbulence field. It is

particularly unfortunate that with a one-point measurements,

it is not possible to estimate the density gradient either; at

best only one component of it can be found: for studies of

gradient-driven drift wave turbulence this information would

be essential, in particular for quantifying a spectral “produc-

tion subrange”.

It is possible that some space observations deal with

plasma turbulence that is almost two-dimensional and per-

pendicular to B; other cases may have a driving mechanism

that includes components parallel to B, where an insuffi-

cient instrumentation does not allow for the distinction be-

tween the separate cases. In one of the examples considered

above (Krane et al., 2000), the rocket was equipped with two

booms, giving altogether six signals for probe potential dif-

ferences (Rinnert, 1992); see also the Appendix. The space–

time resolution of this particular experiment allowed a confir-

mation of the directionality of the wave propagation (Krane

et al., 2000).

5 Conclusions

The present summary discussed observations of turbulent

fluctuations in magnetized plasmas, studied in the laboratory

and in space. It was demonstrated that turbulent spectra can

be observed and that these spectra can be characterized by

well-defined power laws that can span several orders of mag-

nitude, as in Fig. 6, for instance. No laboratory plasma can,

however, come close to the vast spatial ranges found for neu-

tral flows in nature (tidal flows between islands, for instance;

Grant et al. (1962)). It might be hoped that space observa-

tions can provide such extended power spectral results. So

far, even high-β turbulence as observed in the solar wind has

to rely on composite spectra (found by combining data from

several spacecraft) for producing results that cover many or-

ders of magnitude in the power spectrum of magnetic field

fluctuations (Bruno and Carbone, 2005).

Turbulence in plasmas dominated by collisions between

charged particles and neutrals seem to offer a problem that

is not readily accounted for by strong-turbulence models

for drift waves. Analytical studies (Hamza and St-Maurice,

1993a, b) can account for the parameter dependence of the

RMS-fluctuation levels and other properties but fail, so far,

to predict power spectra. For the time being, the most de-

tailed information is obtained by experimental observations.

Indications have been found for universal properties of weak

turbulence results in neutral-collision-dominated plasmas,

with results seemingly in agreement with spectra obtained

for current-driven turbulence (Kadomtsev, 1965). To some

extent the agreement between these early analytical results

(Kadomtsev, 1965) and observations (Machalek and Nielsen,

1973) might seem surprising, since the physical conditions

are different. The common feature is, however, that in both

cases the turbulence is driven by a current due to a bulk

electron drift with respect to ions. In the case studied by

Machalek and Nielsen (1973), the current is across magnetic

field lines. A detailed (future) analysis has to account not
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only for the power spectrum of potential but also for the ob-

served difference between density and potential fluctuations

for the case where instabilities are driven by Hall currents in

a magnetized plasma.

It is interesting to note that the rocket data in Table 2 at

least do not contradict the variation in spectral index illus-

trated in Fig. 8 if we associate a decreasing neutral collision

frequency with increasing ionospheric altitude. This similar-

ity assumes, however, that the results for the 450–500 km al-

titude (Earle et al., 1989) are related to the production sub-

range of the turbulent spectrum. The scattering in spectral

indices becomes conspicuous when satellite data are also in-

cluded in the database, but up to∼ 500 km altitude the rocket

and satellite results agree qualitatively for a production sub-

range. While rocket data give a reasonably coherent picture

of the observed spectral indices, satellite data need further

scrutiny. It has recently been suggested (Garcia and Péc-

seli, 2013; Garcia et al., 2015) that the ionospheric plasma

at high altitudes can be very sensitive to even small low-

altitude plasma variations when a slow bulk electron flow

causes field-aligned currents. Spectra observed at high polar

altitudes can thus be influenced by distant low-altitude per-

turbations. The models assume that the magnetic field lines

have a significant vertical component. These comments do

not apply for the plasma outside the magnetopause and there-

fore not to the data for the largest altitudes in Fig. 10. Inci-

dentally it is at these large altitudes that the agreement with

predicted spectral indices is good. It may be interesting to es-

tablish a database where gradient-driven instabilities in polar

and equatorial regions can be distinguished. These observa-

tions could be supported also by numerical simulations.

Laboratory experiments seem also to be in reasonable

agreement with rocket data concerning spectral indices for

low neutral pressures. Detailed studies with enhanced neu-

tral pressures have been carried out but seemingly only for

conditions where the Farley–Buneman instability is excited.

It would be valuable to investigate cases where only the gra-

dient instability is present, in particular in order to verify

that the short-wavelength damping effect of the first term in

Eq. (17) does indeed give rise to a steepening of the k−5 spec-

tra found for resistive drift waves at negligible neutral pres-

sures. Such an experiment (or numerical simulation) should

keep νi/�ci and νe/ωce constant (in terms of collision fre-

quencies between plasma particles and cyclotron frequen-

cies) and vary the Hall current from E0/B < Cs to E0/B >

Cs. Moreover, it seems that the fully saturated turbulent de-

velopment of magnetic field-aligned velocity shear instabili-

ties (D’Angelo and von Goeler, 1966; Koepke and Reynolds,

2007; Koepke, 2008) (possibly weakly turbulent) is not stud-

ied in any significant detail and is still not well understood.

These instabilities are likely to saturate in a power spectrum

that is non-uniformly distributed in a three-dimensional wave

vector space.

Turbulent signals can also be found at altitudes below the

E region (Røyrvik and Smith, 1984). In these regions we

have the neutral collisions dominating the plasma dynamics,

and it is generally believed (Gurevich et al., 1997) that tur-

bulence in the neutral background controls the fluctuations

of the plasma density. It is not known to what extent in-

compressible turbulence in the neutral gas can couple to the

plasma dynamics in the ionospheric E region. The study of

Buneman (1963) assumes such a coupling but for compress-

ible sound waves. In the presence of local plasma density

gradients, even incompressible neutral turbulence will give

rise to plasma density fluctuations (Tchen, 1973). The prob-

lem was addressed by comparing numerical simulations with

rocket data obtained in the ionospheric E region (Dyrud et al.,

2006). The agreement was good, and it was argued that since

the simulations did not include any neutral gas dynamics, it

was unlikely that neutral turbulence had any significant role

in the plasma fluctuations observed by the rocket.

Except for a few cases (Machalek and Nielsen, 1973), the

observed power spectra are mostly obtained by analysing

time records. Wave number spectra are the form most of-

ten predicted by analysis, so a comparison relies on Taylor’s

hypothesis in order to “translate” frequency spectra to wave

number power spectra. In a laboratory, it is possible to re-

late observations to locally homogeneous and time stationary

plasma conditions. In nature, a spacecraft will often traverse

spatially varying plasma parameters in a relatively short time,

so it is possible that a spectral analysis mixes separate spatial

regions with different characteristics. The results should be

interpreted with this in mind. The local correlation function

R9(R, r , τ) discussed in Sect. 1 and its spatial variation can

be analysed both experimentally and by numerical methods

to test these features.

Spectra are in general presented with the implied assump-

tion that the turbulence can be considered to be locally ho-

mogeneous to a good approximation, possibly also isotropic

in two or three spatial dimensions. In this context, it is in-

teresting that non-ideal laboratory studies with widely differ-

ent plasma conditions give results that show general agree-

ment, indicating that the homogeneity requirement is rela-

tively mild. See for instance Fig. 7, where the spectral index

is constant over a significant radial region of the plasma col-

umn.

An interesting possibility would be if a spectral index

could be used as a means of identifying the instability caus-

ing the observed turbulence, but so far this remains specu-

lative. It is interesting to note that turbulence in the high-β

plasma of the solar wind (Tu and Marsch, 1995; Bruno and

Carbone, 2005) has characteristics completely different from

those associated with electrostatic drift waves.

For ionospheric and magnetospheric studies in particular,

the question of waves excited by moving rockets and satel-

lites also needs to be addressed. Such perturbations can in-

fluence the observed wave spectra (Guio and Pécseli, 2005):

the moving rocket or satellite can generate the turbulence it

detects.
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Low-frequency electrostatic waves in space plasmas, pure

drift waves or their modified versions due to the Hall current

instability, are important for turbulent transport. For the re-

sistive drift waves, classical models based on transport due

to turbulent Ẽ×B/B2 velocities offer a useful starting point

(Taylor and McNamara, 1971; Misguich et al., 1987). In this

limit both the electron and the ion components move with

the same velocity to the lowest order where ion polarization

drifts are ignored. The spectral index has important conse-

quences, for instance, for modelling relative turbulent diffu-

sion (Misguich et al., 1987; Mikkelsen et al., 1987), so a co-

herent analytical model can be useful in this respect. It was

found that a k−3 power law for the electric field power spec-

trum had a special role for the relative diffusion of two par-

ticles (Misguich et al., 1987). For the limit where collisions

with a neutral component dominate (as appropriate for the

lower parts of the Earth’s ionosphere), the neutral drag on

the ions separates the motions of the electron and ion com-

ponents, requiring a more detailed analysis (Hamza and St-

Maurice, 1995). Turbulent transport in the ionosphere can be

important as it controls the gradients that can build up due to

other sources, such as particle precipitation. Enhanced den-

sity fluctuations in the ionosphere can also contribute to a

scattering of electromagnetic waves or radiation by a wave-

vector-matching condition (Bekefi, 1966). These waves can

be radio waves, GPS signals or naturally occurring radiation.

It has thus been argued by D’Angelo (1978) that “cosmic

noise absorption events” are in fact not caused by absorption

but rather by the backscattering of radiation due to enhanced

density fluctuations caused by the combination of drift and

Farley–Buneman instabilities (Alport et al., 1981). The two-

dimensional nature of the turbulence imposes restrictions on

the scattering geometry.

As mentioned in the Introduction, higher-order spectra,

such as bispectra, can also be of value for interpreting tur-

bulence data. In laboratory studies interesting and impor-

tant results have been found using these methods (Kim and

Powers, 1979; Yamada et al., 2008). Bispectra, in particu-

lar, can give indications of phase couplings among selected

modes in the turbulence. According to the arguments given

in the present summary, evidence for coherent phase relations

among a restricted number of modes (evidenced by peaks in

the bispectrum) are at variance with strong-turbulence mod-

els, where a large number of modes interact at the same time.

Bispectral studies have also been attempted for data obtained

by instrumented rockets in the ionospheric E region (Pécseli

et al., 1993; Larsen et al., 2002; Dyrud et al., 2006). Here,

it was found that bispectral couplings were very intermittent

or sporadic. The limited data sets made it difficult to obtain

quantitative results, but it was interesting that when the same

procedures were applied to data from numerical simulations

corresponding to similar physical conditions, the results were

similar to those found in the rocket data. This bispectral in-

termittency can be an indicator of a transition from weak to

strong turbulence.

Zonal flows (Nagashima et al., 2008; Tynan et al., 2009;

Jiquan and Kishimoto, 2011) have not been addressed in the

present review. Their observation in space plasmas and the

comparison with laboratory results and numerical simula-

tions could be of great interest.
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Appendix A

Instruments on rockets and satellites usually detect fluctua-

tions in plasma density, for instance by saturation currents to

Langmuir probes. These data can be considered as being ob-

tained by “point measurements”. Since no absolute ground is

available, direct measurements of fluctuating potentials are

not generally feasible and only potential differences between

two probes can be obtained (Rose et al., 1992), as illustrated

in Fig. A1. When the two probes have a small separation

compared to the scale length of the potential variations, it can

be argued that the signal approximates a component of the

electric field in the direction of the line connecting the two

probes. For large separations compared to the scale length,

the signal can be interpreted as being filtered, as best illus-

trated by considering a plane wave. Let the electrostatic po-

tential in space be given as

9(r, t)= Asin(k0 · r −ω0t +φ0),

where φ0 is a phase. The two probes are separated by 1,

and the difference signal divided by the probe separation be-

comes

SE(r, t)=
k1

1 · k0

(9(r +1, t)−9(r, t))

= Ak1

sin
(

1
2
1 · k0

)
1
2
1 · k0

cos

(
k0 · r −ω0t +φ0+

1 · k0

2

)
,

(A1)

where k1 is wave vector component along 1, so that we have

k1 ≡1 · k0/|1|. For small 1 · k0 we note that

sin
(

1
2
1 · k0

)
1
2
1 · k0

≈ 1

and SE(r, t) approximates the electric field derived from

9(r, t) when obtained at at the centre-of-mass position, be-

tween the two detecting probes. For larger 1 · k0 we can in-

terpret

sin
(

1
2
1 · k0

)
1
2
1 · k0

as a “filter” that reduces the detected signal. If the rocket

or satellite is spinning with a frequency � while detect-

ing a plane wave with fixed phase velocity so that 1 · k0 =

1k0 sin(�t), the filter characteristic will be observable (Kel-

ley and Mozer, 1973; Pfaff et al., 1997).

For a wide spectrum of waves, the situation is different.

The conditions can best be illustrated by a model signal ob-

tained by a random superposition of structures that represents

the turbulence. Using a model in one spatial dimension for

simplicity, we have

9(x, t)=
∑
j

ajφ(x− xj , t − tj ),

ΨB
(t)

ΨA
(t)

Δ1
2

Figure A1. Schematic illustration of a standard example of probe

positioning on a rocket (Rose et al., 1992). Altogether six probe

potential difference signals can be obtained; two of them are redun-

dant.

where xj , tj is the random space–time position of a struc-

ture with randomly distributed amplitudes aj . This model is

standard and has been used many times. For a fully devel-

oped strong turbulence, we can let some structures represent

small scales and other structures intermediate or large scales.

By Campbell’s theorem and its extensions (Campbell, 1909a,

b; Rice, 1944; Pécseli, 2000), the autocorrelation function of

the signal 9(x, t) can be determined analytically as

R9(ξ,τ )= µ〈a
2
〉

∫∫
φ(x, t)φ(x− ξ, t − τ)dxdt, (A2)

where µ is the density of structures φ(x, t) in the space–

time record and ξ,τ represent spatial and temporal separa-

tions in the idealized space–time-varying stationary and ho-

mogeneous signal record. We denote the correlation length

of R9(ξ,τ ) by `cor and the correlation time by τcor.

For the probe difference signal (see Fig. A1)

9A−9B =
∑
j

aj
(
φ(x− xj , t − tj )

−φ(x+1− xj , t − tj )
)
,

we find the autocorrelation function

RS(ξ,τ )=2R9(ξ,τ )

−R9(ξ +1,τ )−R9(ξ −1,τ ). (A3)

We can divide RS(ξ,τ ) by 12 and find for spatial separa-

tions 1� `cor the result RS(ξ,τ )/1
2
≈−∂2R9(ξ,τ )/∂ξ

2,

i.e. the electric field correlation function, as expected.
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We now introduce a relative velocity VR between the de-

tector and the structures. The signal sampled along the tra-

jectory ξ = VRτ will vary with time only. Basically, we find

two cases as illustrated in Fig. A2. In one case 1� `cor,

and we detect a temporal signal corresponding to the elec-

tric field: here the scale sizes (or wavelengths) in the turbu-

lence are much longer than the probe separation. The other

limiting case with 1� `cor has scale sizes (or wavelengths)

in the turbulence shorter than the probe separation, and the

two last terms in Eq. (A3) are clearly separated in space and

time from the first one. Here the detector samples the corre-

lation function for the potential, provided that the correlation

time is smaller than 1/VR. In this latter limiting case, one

probe acts as a reference “ground” for the other one (Krane

et al., 2000), and in this sense it is possible to detect potential

fluctuations also by a rocket or satellite. For realistic condi-

tions we have all scales represented at the same time, and

the argument has to be rephrased: when the Taylor hypoth-

esis is applicable, we generally expect that when they are

present, low-frequency–long-wavelength components repre-

sent electric fields, while high frequencies and short wave-

lengths will approximate the electrostatic potential variations

in the power spectra.

The projection of the separation vector 1 on the direction

of propagation V R can vary with time due to a rocket or satel-

lite spin. In such cases it might be necessary to sample data in

segments corresponding to a selected spin phase in order to

obtain spectra under uniform conditions (Krane et al., 2000).

Figure A2. Two possible autocorrelation functions found by sam-

pling a signal along a trajectory ξ = VRτ , shown as a solid blue

line. In the first case (a) with 1� `cor) we detect the correla-

tion function for the electric field; in the second case (b) with

1� `cor), we find the correlation function for the electrostatic

potential. The figure uses an illustrative model, with R9 (ξ,τ )=

exp(−ξ2/`2
cor− τ

2/τ2
cor+ ζ ξτ/(`corτcor)) with ζ = 0.75.
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